Optimization under Generalized Equation Constraints in Asplund Spaces

Seminar

by Dr. Suvendu Ranjan Pattanaik

Department of Mathematics and Applications National Institute of Technology, Rourkela Rourkela, Orissa, INDIA

Suvendu Ranjan Pattanaik (NIT Rourkela) [Optimization under Generalized Equation Constraints in Asplund Spaces](#page-17-0) 1 / 18

Outline of the Talk

- 1 [Optimization under Generalized Equation Constraints in Asplund Spaces](#page-2-0)
- (2) F₂ [strictly differentiable and](#page-7-0) F₁ is continuous
- 3 $F₂$ is strictly differentiable and $F₁$ [are strictly Lipschitz continuous](#page-10-0)
	- F_2 and F_1 [are strictly Lipschitz continuous](#page-12-0)
- (5) F_2 and F_1 [are strictly differentiable](#page-14-0)

Optimization under Generalized Equation Constraints in Asplund Spaces

min $\min_{x,y} f(x, y)$ subject to $0 \in F_1(x, y) + Q(F_2(x, y)), \quad (x, y) \in \Omega,$ where $F_1: X \times Y \to W$, $F_2: X \times Y \to Z$, $Q: Z \rightrightarrows W$, $f: X \times Y \to \mathbb{R}$ and $\Omega \subset X \times Y$

Suvendu Ranjan Pattanaik (NIT Rourkela) [Optimization under Generalized Equation Constraints in Asplund Spaces](#page-0-0) 3 / 18

Normal Cone

Let Ω be a non-empty subset of the Asplund space X and let $\bar{x} \in \Omega$. Then the Frechet normal cone to Ω at \bar{x} which is denoted as $\hat{N}(\bar{x}, \Omega)$ and is given as

$$
\hat{N}(\bar{x}, \Omega) = \{x^* \in X^* \mid \limsup_{x \in \Omega, x \to \bar{x}} \frac{\langle x^*, x - \bar{x} \rangle}{\|u - x\|} \le 0\}.
$$

$$
N(\bar{x}, \Omega) = \limsup_{x \to \bar{x}} \hat{N}(x, \Omega).
$$

 $N(\bar{x}, \Omega) := \{x^* \in X^* \mid \exists x_n \stackrel{\Omega}{\to} \bar{x}, x_n^* \}$ n $\stackrel{w^*}{\rightarrow} x^*, x_n^* \in \hat{N}(x_n, \Omega)$

Differentiability

$f: X \to Y$ is Fréchet differentiable at \bar{x} if there is a linear operator $\nabla f(\bar{x}): X \to Y$, called the Fréchet derivative of f at \bar{x} , such that

$$
\lim_{x\to \bar x}\frac{f(x)-f(\bar x)-\nabla f(\bar x)(x-\bar x)}{\parallel x-\bar x\parallel}=0.
$$

Strictly Differentiable

$$
\lim_{x\to\overline{x},u\to\overline{x}}\frac{f(x)-f(u)-\nabla f(\overline{x})(x-u)}{\Vert x-u\Vert}=0.
$$

Co-derivative

Given $(x, y) \in X \times Y$, we define the coderivative of F at (x, y) as a multifunction $\hat{D}^*F(\mathsf{x},\mathsf{y}) : \mathsf{Y}^* \rightrightarrows \mathsf{X}^*$ with the values

$$
\hat{D}^*F(x,y)(y^*) = \{x^* \in X^* | (x^*, -y^*) \in \hat{N}((x,y), gphF) \}.
$$

The normal coderivative of F at $(\bar{x}, \bar{y}) \in gphF$ is a multifunction D_{Λ}^* $N^*N^*F(x, y)$: $Y^* \rightrightarrows X^*$ defined by

> $D_N^*F(\bar{x}, \bar{y})(\bar{y}^*) =$ lim sup $(x, y) \rightarrow (\bar{x}, \bar{y})$ $y^* \stackrel{w^*}{\rightarrow} \bar{y}^*$ $\hat{D}^*F(x,y)(y^*)$.

The mixed coderivative of F at $(\bar{x}, \bar{y}) \in gphF$ is a multifunction $D_M^*F(x, y) : Y^* \rightrightarrows X^*$ defined by

> $D_M^*F(\bar{x}, \bar{y})(\bar{y}^*) =$ lim sup $(x, y) \rightarrow (\bar{x}, \bar{y})$ $y^* \rightarrow \overline{y}^*$ $\hat{D}^*F(x,y)(y^*)$.

Sequential Normal Compactness and Partial Sequential Normal Compactness

Let $\Omega \subset X \times Y$ where X and Y are Asplund spaces. The set Ω is said to be sequentially normally compact (SNC) at $(\bar{x}, \bar{y}) \in \Omega$ if for any sequence (x_k, y_k, x_k^*) χ^*_k , y^*_k $\mathcal{L}_{k}^{*})\in \Omega\times X^{*}\times Y^{*}$ satisfying $\left(x_{k}, y_{k}\right)\stackrel{\Omega}{\rightarrow} (\bar{{\rm x}}, \bar{y}),$

$$
(x_k^*,y_k^*)\in \hat{N}((x_k,y_k),\Omega)
$$
 (1)

and (x_k^*) χ^*_k , y^*_k $\binom{1}{k} \stackrel{w^*}{\rightarrow} 0$ then one has $\parallel (x_k^*)$ χ^*_k , y^*_k $\binom{*}{k} \parallel \rightarrow 0$ as $k \rightarrow \infty$. Ω is said to be partially sequentially normally compact (PSNC) if for any sequence $(\mathsf{x}_k ,\mathsf{y}_k) \stackrel{\mathbf{\Omega}}{\rightarrow} (\bar{\mathsf{x}},\bar{\mathsf{y}})$ satisfying (1) one has the implication x_k^* k $\stackrel{w^*}{\rightarrow} 0, \|y_k^*$ $\mathsf{r}_k^* \parallel \rightarrow 0$ implies that $|| x_k^*$ $\frac{k}{k} \parallel \rightarrow 0$, as $k \rightarrow \infty$.

 $F₂$ strictly differentiable and $F₁$ is continuous Let (\bar{x}, \bar{y}) be a local optimal solution to the problem(P). Assume that f is locally Lipschitz continuous around (\bar{x}, \bar{y}) with modulus l_f , that the sets $Ω$ and gphQ are closed sets. Also assume following conditions on F_1 and F_2 .

- (i) F_2 is strictly differentiable at (\bar{x}, \bar{y}) .
- (ii) F_1 is continuous around (\bar{x}, \bar{y}) and either PSNC at (\bar{x}, \bar{y}) or Ω is SNC at (\bar{x}, \bar{v}) .
- Let us define the mapping, $\Psi : Z \times W \rightrightarrows X \times Y$ as

 $\Psi(v_1, v_2) = \{(x, y) \in \Omega | (v_1 + F_2(x, y), v_2 - F_1(x, y)) \in gphQ \},\$

which is calm at $(0, 0, \bar{x}, \bar{y})$ with modulus *l*. Assume further that the constraint qualification(CQ),

 $\{D_M^*F_1(\bar{x},\bar{y})(0)\}\cap\{-N((\bar{x},\bar{y}),\Omega)\}=\{0\}$

Suvendu Ranjan Pattanaik (NIT Rourkela) [Optimization under Generalized Equation Constraints in Asplund Spaces](#page-0-0) 8 / 18

 $F₂$ strictly differentiable and $F₁$ is continuous Then there exists $(z^*, w^*) \in Z^* \times W^*$ with $\parallel (z^*, w^*) \parallel \leq I_f$. I and $(-z^*, -w^*) \in \mathcal{N}((\bar{F}_2(\bar{x},\bar{y}), -\bar{F}_1(\bar{x},\bar{y})),\mathit{gph}Q)$ satisfying $0\in \partial f(\bar{\mathsf{x}},\bar{\mathsf{y}})+D^*_{\mathsf{N}}F_1(\bar{\mathsf{x}},\bar{\mathsf{y}})(w^*)-\nabla F_2(\bar{\mathsf{x}},\bar{\mathsf{y}})^*(z^*)+\mathsf{N}((\bar{\mathsf{x}},\bar{\mathsf{y}}),\Omega)$ which is equivalent to

 $0\in \partial f(\bar x,\bar y)+D^*_N F_1(\bar x,\bar y)(w^*)+\nabla F_2(\bar x,\bar y)^*D^*_N Q(F_2(\bar x,\bar y),-F_1(\bar x,\bar y))(w^*)$ $+N((\bar{x}, \bar{y}), \Omega).$

Suvendu Ranjan Pattanaik (NIT Rourkela) Optimization under Generalized Equation Corstraints in Asplund Spaces 9 / 18

Strictly Lipschitz function

Let $f: X \rightarrow Y$ be a single-valued mapping between Banach spaces. Assume that f is Lipschitzian at \bar{x} . Then f is called as strictly Lipschitzian at \bar{x} if there is a neighborhood V of the origin in X such that the sequence

$$
y_k = \frac{f(x_k + t_k v) - f(x_k)}{t_k}, \quad k \in \mathbb{N},
$$

contains a norm convergent subsequence whenever $v \in V, x_k \to \overline{x}$ and $t_k \downarrow 0$.

 $F₂$ is strictly differentiable and $F₁$ are strictly Lipschitz continuous Let (\bar{x}, \bar{y}) be a local optimal solution to the problem(P), where F_1, F_2 and Q are mapping between Asplund spaces. Assume that f is locally Lipschitz continuous around (\bar{x}, \bar{y}) , that the sets Ω and gph Q are closed sets, and that Q is SNC at $(F_2(\bar{x}, \bar{y}), -F_1(\bar{x}, \bar{y}))$. Also assume that F_1 and F_2 are strictly Lipschitz continuous and strictly differentiable at (\bar{x}, \bar{y}) , respectively, and that relations $(x^*,y^*)\in N_{\mathsf{gphQ}}(F_2(\bar x,\bar y),-F_1(\bar x,\bar y))$ and

 $(0,0) \in [\nabla F_2(\bar{x},\bar{y})^*(x^*) + \partial \langle y^*, -F_1 \rangle(\bar{x},\bar{y}) + N((\bar{x},\bar{y}),\Omega)],$

holds only for $x^* = y^* = 0$.

 $F₂$ strictly differentiable and $F₁$ is strictly Lipschitz continuous Then there is $(z^*,w^*)\in -N(-F(\bar{x},\bar{y}),gphQ)$ such that the necessary optimality condition

 $0 \in \partial f(\bar{x}, \bar{y}) - \nabla F_2(\bar{x}, \bar{y})^*(z^*) + \partial \langle w^*, F_1 \rangle(\bar{x}, \bar{y}) + N((\bar{x}, \bar{y}), \Omega),$

which is equivalently,

 $0\in \partial f(\bar x,\bar y)+\partial \langle w^*,F_1\rangle(\bar x,\bar y)+\nabla F_2(\bar x,\bar y)^*D^*_N Q(F_2(\bar x,\bar y),-F_1(\bar x,\bar y))({w^*})+$ $N((\bar{x}, \bar{y}), \Omega)$

is satisfied.

 F_2 and F_1 are strictly Lipschitz continuous Let (\bar{x}, \bar{y}) be a local optimal solution to the problem(P). Assume that f is Lipschitz around (\bar{x}, \bar{y}) , and that sets Ω and gphQ are closed sets. Let us consider F_1 and F_2 are strictly Lipschitz at (\bar{x}, \bar{y}) . Then there exists $(x^*, y^*) \in N(H(\bar{x}, \bar{y}), gphQ)$ such that

 $0 \in \partial f(\bar{x}, \bar{y}) + \partial \langle x^*, F_2 \rangle (\bar{x}, \bar{y}) + \partial \langle y^*, -F_1 \rangle (\bar{x}, \bar{y}) + N(\bar{x}, \bar{y}), \Omega),$

under the assumptions :

(i) If $x_1^* \in \bigcup [\partial \langle (x^*, y^*), -F \rangle (\bar{x}, \bar{y}) | (x^*, y^*) \in N(-F(\bar{x}, \bar{y}), gphQ)], x_2^* \in$ $N((\bar{x}, \bar{y}), \Omega)$, and $x_1^* + x_2^* = 0$, then it implies that $x_1^* = x_2^* = 0$. (ii) $N(-F(\bar{x}, \bar{y}), gphQ) \cap kerD_N^*(-F(\bar{x}, \bar{y})) = \{0\}.$ (iii) Ω is SNC is at (\bar{x}, \bar{y}) , either $(-F)$ is PSNC at (\bar{x}, \bar{y}) and gphQ is SNC at $((\bar{x}, \bar{y}), -F(\bar{x}, \bar{y}))$, or $(-F)$ is SNC at (\bar{x}, \bar{y}) .

 F_2 and F_1 are strictly Lipschitz continuous F_1, F_2 are strictly lipschitz continuous function. Then there exists $(x^*,y^*)\in \mathsf{N}((\mathsf{F}_2(\bar{x},\bar{y}),-\mathsf{F}_1(\bar{x},\bar{y})),\mathsf{gphQ})$ such that

 $0 \in \partial f(\bar{x}, \bar{y}) + \partial \langle x^*, F_2 \rangle (\bar{x}, \bar{y}) + \partial \langle y^*, -F_1 \rangle (\bar{x}, \bar{y}) + N((\bar{x}, \bar{y}), \Omega),$

holds, under the following qualification condition(CQ). For any $(x^*, y^*) \in N((F_2(\bar{x}, \bar{y}), F_1(\bar{x}, \bar{y})), gphQ)$, if $(0,0)\in \partial \langle (x^*,y^*),(F_2,-F_1)\rangle(\bar x,\bar y)+{\sf N}((\bar x,\bar y),\Omega)$, then it implies that $x^* = y^* = 0.$

F_2 and F_1 are strictly differentiable

Let (\bar{x}, \bar{y}) be a local solution of problem(P) and assume that gphQ is closed set and that the constraint qualification(CQ)

> $(\nabla F_2(\bar{x},\bar{y})^{\mathsf{T}},-\nabla F_1(\bar{x},\bar{y})^{\mathsf{T}})(x,y)^{\mathsf{T}} \in -\mathsf{N}((\bar{x},\bar{y}),\Omega),$ $(x, y) \in N_{\text{subQ}}(F_2(\bar{x}, \bar{y}), -F_1((\bar{x}, \bar{y})),$

implies $(x, y) = (0, 0)$, holds true. Then there exists $\xi \in \partial f(\overline{x}, \overline{y}), \eta \in N_{\Omega}(\overline{x}, \overline{y})$ and a pair $(z,w) \in N_{\sigma hoQ}(F_2(\bar{x}, \bar{y}), -F_1((\bar{x}, \bar{y}))$ such that

 $0 = \xi + \nabla F_2(\bar{x}, \bar{y})^T(z) - \nabla F_1(\bar{x}, \bar{y})^T(w) + \eta.$

Bibliography

- Borwein, J M, ; Zhu, Q. J. Techniques of variational analysis. CMS Books in Mathematics/Ouvrages de Mathmatiques de la SMC, 20. Springer-Verlag, New York, 2005.
- F Burke, J. V.; Lewis, A. S.; Overton, M. L. Approximating subdifferentials by random sampling of gradients. Math. Oper. Res. 27 (2002), 567–584.
- F Dutta, J. Revisiting the Lagrange multiplier rule. Pac. J. Optim. 2 (2006), pp 501–519.
- F Durea, M., Dutta, J., Tammer, C., Langrange multiplier for ϵ - Pareto solutions in vector optimization with nonsolid cones in Banach Space, JOTA, (to be published).

Bibliography

- 量 Mordukhovich, B.S.Variational analysis and generalized differentiation. I. Basic theory., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330. Springer-Verlag, Berlin, 2006.
- Mordukhovich, B.S., Variational analysis and generalized F differentiation.II. Applications., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 331. Springer-Verlag,Berlin ,2006.
- Ħ Mordukhovich, B.S., Bao, T.Q., Variational principle for set-valued mappings with application to multiobjective optimization, Control and Cybernetics vol-36(2007), 1-33.
- Ħ Mordukhovich, B.S., Bao, T.Q., Relative Pareto minimizer to multiobjective problems: Existance and optimality conditions, Pre
- Rockafellar, R. T., Wets, R.J., Variatio[na](#page-15-0)l Anal[ys](#page-17-0)[is](#page-15-0)[, S](#page-16-0)[p](#page-17-0)[r](#page-13-0)[i](#page-14-0)[nge](#page-17-0)r[,](#page-14-0) [Be](#page-17-0)[rli](#page-0-0)n 螶

Suvendu Ranjan Pattanaik (NIT Rourkela) Optimization under Generalized Equation Construction Construction Number 17 / 18

Thanks

AMAN

Suvendu Ranjan Pattanaik (NIT Rourkela) [Optimization under Generalized Equation Constraints in Asplund Spaces](#page-0-0) 18 / 18

