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Optimization under Generalized Equation Constraints in Asplund
Spaces

Optimization under Generalized Equation Constraints in

Asplund Spaces

min
x ,y

f (x , y) subject to 0 ∈ F1(x , y) + Q(F2(x , y)), (x , y) ∈ Ω,

where F1 : X × Y → W , F2 : X × Y → Z , Q : Z ⇉ W , f : X × Y → R

and Ω ⊂ X × Y
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Optimization under Generalized Equation Constraints in Asplund
Spaces

Normal Cone

Let Ω be a non-empty subset of the Asplund space X and let x̄ ∈ Ω. Then
the Frechet normal cone to Ω at x̄ which is denoted as N̂(x̄ ,Ω) and is
given as

N̂(x̄ ,Ω) = {x∗ ∈ X ∗ | lim sup
x∈Ω,x→x̄

〈x∗, x − x̄〉

‖u − x‖
≤ 0}.

N(x̄ ,Ω) = lim sup
x→x̄

N̂(x ,Ω).

N(x̄ ,Ω) := {x∗ ∈ X ∗ | ∃xn
Ω
→ x̄ , x∗

n
w∗

→ x∗, x∗

n ∈ N̂(xn,Ω)}
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Optimization under Generalized Equation Constraints in Asplund
Spaces

Differentiability

f : X → Y is Fréchet differentiable at x̄ if there is a linear operator
∇f (x̄) : X → Y , called the Fréchet derivative of f at x̄ , such that

lim
x→x̄

f (x) − f (x̄) −∇f (x̄)(x − x̄)

‖ x − x̄ ‖
= 0.

Strictly Differentiable

lim
x→x̄,u→x̄

f (x) − f (u) −∇f (x̄)(x − u)

‖ x − u ‖
= 0.
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Optimization under Generalized Equation Constraints in Asplund
Spaces

Co-derivative

Given (x , y) ∈ X × Y , we define the coderivative of F at (x,y) as a
multifunction D̂∗F (x , y) : Y ∗

⇉ X ∗ with the values

D̂∗F (x , y)(y∗) = {x∗ ∈ X ∗|(x∗,−y∗) ∈ N̂((x , y), gphF )}.

The normal coderivative of F at (x̄ , ȳ) ∈ gphF is a multifunction
D∗

NF (x , y) : Y ∗
⇉ X ∗ defined by

D∗

NF (x̄ , ȳ)(ȳ∗) = lim sup
(x , y) → (x̄ , ȳ)

y∗
w∗

→ ȳ∗

D̂∗F (x , y)(y∗).

The mixed coderivative of F at (x̄ , ȳ ) ∈ gphF is a multifunction
D∗

MF (x , y) : Y ∗
⇉ X ∗ defined by

D∗

MF (x̄ , ȳ)(ȳ∗) = lim sup
(x , y) → (x̄ , ȳ)

y∗
→ ȳ∗

D̂∗F (x , y)(y∗).
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Optimization under Generalized Equation Constraints in Asplund
Spaces

Sequential Normal Compactness and Partial Sequential

Normal Compactness

Let Ω ⊂ X × Y where X and Y are Asplund spaces. The set Ω is said to
be sequentially normally compact (SNC) at (x̄ , ȳ) ∈ Ω if for any sequence

(xk , yk , x∗

k , y∗

k ) ∈ Ω × X ∗ × Y ∗ satisfying (xk , yk)
Ω
→ (x̄ , ȳ),

(x∗

k , y∗

k ) ∈ N̂((xk , yk),Ω) (1)

and (x∗

k , y∗

k )
w∗

→ 0 then one has ‖ (x∗

k , y∗

k ) ‖→ 0 as k → ∞. Ω is said to be
partially sequentially normally compact (PSNC) if for any sequence

(xk , yk)
Ω
→ (x̄ , ȳ) satisfying (1) one has the implication x∗

k

w∗

→ 0, ‖ y∗

k ‖→ 0
implies that ‖ x∗

k ‖→ 0, as k → ∞.
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F2 strictly differentiable and F1 is continuous

Necessary Optimality condition

F2 strictly differentiable and F1 is continuous

Let (x̄ , ȳ) be a local optimal solution to the problem(P). Assume that f is
locally Lipschitz continuous around (x̄ , ȳ) with modulus lf , that the sets Ω
and gphQ are closed sets. Also assume following conditions on F1 and F2.

(i) F2 is strictly differentiable at (x̄ , ȳ).

(ii) F1 is continuous around (x̄ , ȳ) and either PSNC at (x̄ , ȳ ) or Ω is
SNC at (x̄ , ȳ).

Let us define the mapping, Ψ : Z × W ⇉ X × Y as

Ψ(v1, v2) = {(x , y) ∈ Ω|(v1 + F2(x , y), v2 − F1(x , y)) ∈ gphQ},

which is calm at (0, 0, x̄ , ȳ) with modulus l . Assume further that the
constraint qualification(CQ),

{D∗

MF1(x̄ , ȳ)(0)} ∩ {−N((x̄ , ȳ),Ω)} = {0}

holds.
Suvendu Ranjan Pattanaik (NIT Rourkela) Optimization under Generalized Equation Constraints in Asplund Spaces 8 / 18



F2 strictly differentiable and F1 is continuous

Necessary Optimality condition

F2 strictly differentiable and F1 is continuous

Then there exists (z∗,w∗) ∈ Z ∗ × W ∗ with ‖ (z∗,w∗) ‖≤ lf .l and
(−z∗,−w∗) ∈ N((F2(x̄ , ȳ),−F1(x̄ , ȳ)), gphQ) satisfying

0 ∈ ∂f (x̄ , ȳ) + D∗

NF1(x̄ , ȳ)(w∗) −∇F2(x̄ , ȳ )∗(z∗) + N((x̄ , ȳ),Ω)

which is equivalent to

0 ∈ ∂f (x̄ , ȳ) + D∗

NF1(x̄ , ȳ)(w∗) + ∇F2(x̄ , ȳ)∗D∗

NQ(F2(x̄ , ȳ ),−F1(x̄ , ȳ))(w∗)

+N((x̄ , ȳ),Ω).
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F2 strictly differentiable and F1 is continuous

Strictly Lipschitz function

Let f : X → Y be a single-valued mapping between Banach spaces.
Assume that f is Lipschitzian at x̄ . Then f is called as strictly Lipschitzian
at x̄ if there is a neighborhood V of the origin in X such that the sequence

yk =
f (xk + tkv) − f (xk)

tk
, k ∈ N,

contains a norm convergent subsequence whenever v ∈ V , xk → x̄ and
tk ↓ 0.
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F2 is strictly differentiable and F1 are strictly Lipschitz continuous

Necessary Optimality condition

F2 is strictly differentiable and F1 are strictly Lipschitz continuous

Let (x̄ , ȳ) be a local optimal solution to the problem(P), where F1,F2 and
Q are mapping between Asplund spaces. Assume that f is locally Lipschitz
continuous around (x̄ , ȳ), that the sets Ω and gph Q are closed sets, and
that Q is SNC at (F2(x̄ , ȳ),−F1(x̄ , ȳ)). Also assume that F1 and F2 are
strictly Lipschitz continuous and strictly differentiable at (x̄ , ȳ),
respectively, and that relations (x∗, y∗) ∈ NgphQ(F2(x̄ , ȳ),−F1(x̄ , ȳ)) and

(0, 0) ∈ [∇F2(x̄ , ȳ)∗(x∗) + ∂〈y∗,−F1〉(x̄ , ȳ) + N((x̄ , ȳ),Ω)],

holds only for x∗ = y∗ = 0.
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F2 is strictly differentiable and F1 are strictly Lipschitz continuous

Necessary Optimality condition

F2 strictly differentiable and F1 is strictly Lipschitz continuous

Then there is (z∗,w∗) ∈ −N(−F (x̄ , ȳ), gphQ) such that the necessary
optimality condition

0 ∈ ∂f (x̄ , ȳ) −∇F2(x̄ , ȳ)∗(z∗) + ∂〈w∗,F1〉(x̄ , ȳ) + N((x̄ , ȳ ),Ω),

which is equivalently,

0 ∈ ∂f (x̄ , ȳ) + ∂〈w∗,F1〉(x̄ , ȳ) + ∇F2(x̄ , ȳ )∗D∗

NQ(F2(x̄ , ȳ),−F1(x̄ , ȳ))(w∗) +

N((x̄ , ȳ),Ω)

is satisfied.
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F2 and F1 are strictly Lipschitz continuous

Necessary Optimality condition

F2 and F1 are strictly Lipschitz continuous

Let (x̄ , ȳ) be a local optimal solution to the problem(P). Assume that f is
Lipschitz around (x̄ , ȳ), and that sets Ω and gphQ are closed sets. Let us
consider F1 and F2 are strictly Lipschitz at (x̄ , ȳ ). Then there exists
(x∗, y∗) ∈ N(H(x̄ , ȳ ), gphQ) such that

0 ∈ ∂f (x̄ , ȳ) + ∂〈x∗,F2〉(x̄ , ȳ) + ∂〈y∗,−F1〉(x̄ , ȳ) + N(x̄ , ȳ),Ω),

under the assumptions :

(i) If x∗

1 ∈
⋃

[∂〈(x∗, y∗),−F 〉(x̄ , ȳ)|(x∗, y∗) ∈ N(−F (x̄ , ȳ ), gphQ)], x∗

2 ∈
N((x̄ , ȳ),Ω), and x∗

1 + x2∗ = 0, then it implies that x∗

1 = x∗

2 = 0.

(ii) N(−F (x̄ , ȳ), gphQ) ∩ kerD∗

N (−F (x̄ , ȳ)) = {0}.

(iii) Ω is SNC is at (x̄ , ȳ), either (−F ) is PSNC at (x̄ , ȳ) and gphQ is
SNC at ((x̄ , ȳ ),−F (x̄ , ȳ)), or (−F ) is SNC at (x̄ , ȳ).
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F2 and F1 are strictly Lipschitz continuous

Necessary Optimality condition

F2 and F1 are strictly Lipschitz continuous

F1,F2 are strictly lipschitz continuous function. Then there exists
(x∗, y∗) ∈ N((F2(x̄ , ȳ),−F1(x̄ , ȳ)), gphQ) such that

0 ∈ ∂f (x̄ , ȳ) + ∂〈x∗,F2〉(x̄ , ȳ ) + ∂〈y∗,−F1〉(x̄ , ȳ) + N((x̄ , ȳ),Ω),

holds, under the following qualification condition(CQ), For any
(x∗, y∗) ∈ N((F2(x̄ , ȳ),F1(x̄ , ȳ)), gphQ), if
(0, 0) ∈ ∂〈(x∗, y∗), (F2,−F1)〉(x̄ , ȳ) + N((x̄ , ȳ),Ω), then it implies that
x∗ = y∗ = 0.
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F2 and F1 are strictly differentiable

Necessary Optimality condition

F2 and F1 are strictly differentiable

Let (x̄ , ȳ) be a local solution of problem(P) and assume that gphQ is
closed set and that the constraint qualification(CQ)

(∇F2(x̄ , ȳ )T ,−∇F1(x̄ , ȳ)T )(x , y)T ∈ −N((x̄ , ȳ),Ω),

(x , y) ∈ NgphQ (F2(x̄ , ȳ),−F1((x̄ , ȳ)),

implies (x , y) = (0, 0), holds true. Then there exists
ξ ∈ ∂f (x̄ , ȳ ), η ∈ NΩ(x̄ , ȳ) and a pair
(z ,w) ∈ NghpQ(F2(x̄ , ȳ ),−F1((x̄ , ȳ)) such that

0 = ξ + ∇F2(x̄ , ȳ)T (z) −∇F1(x̄ , ȳ)T (w) + η.
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F2 and F1 are strictly differentiable
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F2 and F1 are strictly differentiable
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F2 and F1 are strictly differentiable

Thanks
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