
DESIGN OF A PIPELINED FIR FILTER USING
APPLICATION DESCRIPTION LANGUAGE

Umakanta Nanda

Electronics and Communication Engineering

National Institute of Technology

Rourkela, India

uk_nanda@yahoo.co.in

Kamalakanta Mahapatra

Electronics and Communication Engineering

 National Institute of Technology

Rourkela, India

kmaha2@rediffmail.com

Abstract—Usually there are two approaches to design an

application specific instruction set processor (ASIP). One

of them is at Register Transfer Level (RTL) and another is

at just higher level than RTL. Application Description

Languages (ADLs) are becoming popular recently because

of its quick and optimal design convergence achievement

capability during the design of ASIPs. It comprises several

stages to design a processor using ADLs. These are

architecture design implementation, software

development, instruction and system verification.

Verification of such ASIPs at various design stages is a

tedious job to do. This paper presents the architecture

description of a FIR filter using ADL based instruction set

description. Here the design process is more consistent

while allowing maximum flexibility. Furthermore, it

enables the design process in both instruction and cycle

accurate modes. The design process of a FIR filter with

pipelining is demonstrated here. The main advantage is

that the FIR filter model can be optimized with respect to

resources by changing the LISA code written in Coware

platform.

 Keywords- LISA, ASIP, RTL, FIR filter, HDL, CoWare,

Profiling

I. INTRODUCTION

 Now a days digital signal processors are considered to be

an important member in the processor family because of its

flexibility and portability. The flexibility of these processors

can be achieved by many ADLs [1-2] like LISA,

EXPRESSION, MIMOLA etc. Different phases of design of

the processor are distributed among different designers in

there respective fields. There should be some type of

communication between the groups of design engineers or

between the phases of the design. Out of the above languages,

LISA [3-4] is more preferable because of it’s software

development and HDL generation capability.

 VHDL and Verilog languages are widely used to design

and simulate a processor keeping in mind to implement in

hardware. But these models can not be used for architecture

exploration and optimization especially to design cycle based

or instruction level processor simulation. Because the

hardware implementation details are very high which are not

required for performance evaluation, cycle based simulation

and software verification[5-6].

 In this paper we have implemented the architecture of a

FIR filter using LISA where the description for each

instruction of the instruction set (of that specific architecture)

is described properly in CoWare platform. A brief description

of LISA is specified in the next section.

II. LISA

 Language for Instruction Set Architecture is very much

helpful to reduce the gap between the traditional design of a

processor using VHDL or Verilog and instruction set

languages for architecture exploration. The syntax of this

language is having so much flexibility to describe the

processor (RISC, VLIW, DSP, ASIPs, Special purpose co

processors) instruction set which have complex pipelining.

 Generally the processor model that include LISA consists

of two sections. Those are Resource and Operation section [6].

Instruction resource is a register that is referred as the

instruction register. But the instruction resource can be a

memory location, an input pin array or a concatenation of a

multiple storage elements. Operation section describe the

complete transition function of the processor including

pipelining stages such as fetch, decode, execute and write

back. This section generally consists of three sub sections.

Those are behavior, syntax and coding. Behavior describes

the transition function of the processor. Coding section

describes the binary image of the instruction word and the

syntax section describe the syntax of that particular instruction

in assembly programs.

 This language is more suitable with the processor designer

tool called CoWare [5] for its advanced and flexible features

such as,

 Automatic generation of synthesizable RTL with

both control and datapath.

USER
Text Box
National Conference on Wireless Communication and VLSI Design, March 27-28, 2010, Gwalior, India

 Accurate profiling capabilities for high speed

instruction set simulator.

 Compatible with extensively used synthesis tools like

SYNOPSYS, MAGMA.

Figure 1. Design tool flow of CoWare

 Software development tool generation like assembler,

linker, debugger, C- compiler.

 Integrated profiling [5,6] helps to optimize

instructions for the target architecture.

 Enables the design team to develop flexible and

reusable ASIPs rapidly.

III. ARCHITECTURE DESIGN

 Two fields are used for the development of development

tools are realized using a high level language to describe the

target architecture, and for implementation purpose hardware

description languages [3] are used to model the underlying

hardware. It is advantage to combine both the development

process and the HDL description. Here the LISA compiler can

generate both the of these.

Figure 2. Exploration and implementation

 After design exploration and application design the target

architecture needs to be implemented which is discussed in

next part of this paper.

IV. ARCHITECTURE IMPLEMENTATION

 The LISA compiler should derive all the necessary

information from the given LISA description since the

generated HDL model does not have any predefined

components. Then the generated HDL model can be compared

to the LISA model components as shown in the figure below.

 LISA memory model derives the memory

configuration which summarizes the registers and the

memory sets.

 Resource models [3] gives the idea about the

structure of the architecture such as pipeline stages

and pipeline registers.

Figure 3. Comparision of HDL And LISA model

 Functional units are either generated as empty frames

or with fully functionality depending on the HDL

language used.

 Coding information in the instruction set model and

the timing model results the decoders.

 Pipeline controller is also generated from the above.

 The designer will have full control over the generated

HDL model with all its components. The generated HDL

model can be analyzed with respect to power, area and time

constraints and the optimized HDL model can be replaced

with the handwritten HDL code written by the experienced

designers which will be done in future work.

V. IMPLEMENTATION RESULT

 Here we have taken the case study of a low power FIR

filter designed using LISA. Then the resource section of this

model has been optimized. A major decrease in total

architecture design time can be seen, as the LISA model

results from the design exploration phase.

 The software development tool suit includes assembler,

linker and simulator as well as a graphical debugger frontend.

The tools are the enhanced version of those tools used for

architecture exploration. The enhancements for the software

simulate the ability to graphically visualize the debugging

process of the application under test. The LISA debugger

frontend is a generic graphical user interface for the generated

LISA simulator as shown in the figure.

 It visualizes the internal state of simulation process. Here

the C source code, the disassembly of the application as well

as all the configured memories and registers (pipeline) are

displayed. In this frontend all contents can be changed at the

run time of the application. Tools like assembler and linker

can be enhanced in functionality as well. More than 30

assembler directives, labels and symbols are supported by the

assembler.

Figure 4. LISA debugger window

 The processor debugger provides extensive hardware and

software profiling capabilities. Operation profiling gives us

the information about Calls/Total which shows the proportion

of operation executions for a specific operation to all executed

operations.

Figure 5. Operation profiling window

𝐶𝑎𝑙𝑙𝑠

𝑇𝑜𝑡𝑎𝑙
=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

 Calls/Max contains information containing the proportion

of the execution of a specific operation to the execution of the

LISA operation which has been executed the highest number

of times.

𝐶𝑎𝑙𝑙𝑠

𝑀𝑎𝑥
=

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

𝑀𝑎𝑥 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝑠

These information can be shown graphically also.

 Memory profiling tells about the access statistics for the

memories contained in the processor model. Similarly

resource profiling shows the access statistics for all resources

modeled with the resource specifier as one of register,

program counter and control register in the LISA model as

shown in the figure 6.

Figure 6. General Purpose Register window

 These profiling information is very much required to

optimize our design. This architecture was designed on the

respective abstraction level with LISA and software

development tools were generated successfully.

VI. OPTIMIZED IMPLEMENTATION RESULT

 Now we have optimized the FIR filter with respect to the

resources we used like,

 Data and program memory

 Instruction set

 Number of general purpose registers

 In the operation profiling we can see that the instructions

or operations like decr, alui, mac, alu1op, jmp, sub, and, or

and mov have not been called in our specific application. So

writing the behavioral code for these operations is not required

and the result will be unchanged. To reduce the resource

section further we can take 16 general purpose registers (GPR)

instead of 32 which will reduce the area of our model.

Figure 7. Optimized profiling window

 In the optimized model we have less space allocated for

data and program memory. Program memory starts from

0x0000 to 0x0015 and Data memory starts from 0x0016 to

0x0042 reducing the area further.

VII. CONCLUSION

 ADLs are growing in demand for design of ASIPs

because we can change our model according to the instruction

set provided for the specific application. In this paper we

implemented FIR filter architecture using LISA. Then the

same model was optimized with respect to resources like data

memory, program memory, instruction set and number of

general purpose registers.

 Our future work will focus on the generation of the RTL

file from which we can get the HDL model of the same

architecture. The automatic generation of pipelined functional

units of the ASIP with optimization in data path and resources

will be another interesting research work. Furthermore we can

analyze and compare the area, power and timing issues of our

 generated HDL model and the hand written model for the

same architecture.

REFERENCES

[1] Anupam Chattopadhaya, Arnab Sinha, Dandian Zhang, Rainer Leupers,

Gerd Ascheid, Henrich Meyr, ”Integrated Verification approach during

ADL driven processor design”, Microelectronics journal 40(2009), page
1111-1123.

[2] Welhua Sheng, Jianjiang Ceng, Manuel Hohenauer, Hanno

Scharwachter, Rainer Leupers, Henrich Meyr, Institute for Integrated
systems, Achen, Germany, ”A novel approach for fexible and consistent

ADL driven ASIP design”, DAC’04, June 7-11, 2004, San Diego,

California, USA.
[3] Andreas Hoffman, Member IEEE, Tim Kogel, Achim Nohl, Gunnar

Braun, Oliver Schliebush, Oliver Wahlen, Andreas Wieferink and

Henrich Meyr, Fello, IEEE, “A novel methodology for the design of
application specific instruction set processors (ASIPs) using a machine

description language”. IEEE transaction on Computer Aided Design of

integrated circuits and systems, vol-20, number 11, Nov.-2001.
[4] O. Schliebusch, A. Chattopadhayay, E M Witte, D Kammler, G.

Ascheid, R Leupers, H Meyr, ”Optimization techniques for ADL driven

RTL processor synthesis” in IEEE workshop on rapid system
prototyping(RSP), Montreal, Canada, June 2005.

[5] CoWare, The ESL design Leader reference manuals,
Product version V2007.1.2, June-2008.

[6] CoWare,inc,http://www.coware.com.

