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Abstract— A robust H  controller design in an LMI 
framework has been carried out for a load-frequency 
control problem of a single-area uncertain power system 
model. For carrying out this design, the uncertainties 
have been restructured by considering norm-bounded 
uncertainty instead of rank-1 uncertainty structure of 
[16]. The proposed design is simple and can be easily 
solved to obtain optimal values of the controller gain. It 
is concluded by simulation that the proposed approach 
may improve dynamic performance and disturbance 
rejection property over the existing controllers. 

∞

 
Key words: LMI (Linear matrix Inequality), Load-Frequency 
control (LFC), Single-area power system, H∞ Controller 
Norm bounded uncertainty,  robust controller. 

I. INTRODUCTION 
Load frequency control (LFC) is used to maintain electric 
supply frequency around a desired value with respect to load 
variation in electric power systems. Several control strategy 
such as PI control, optimal control and variable structure 
control have been used to control the frequency of the output 
electric power. One major advantage of PI controller is that 
it reduces the steady state error to zero. Since these 
conventional controllers are generally designed at some 
nominal operating point of the actual uncertain system, these 
do not perform well under varying operating conditions and 
exhibits poor dynamic performance. To improve the 
performances in presence of the load disturbances we 
require robust controllers. Several types of controller with 
ability to handle uncertainties and (or) disturbances have 
been developed in literature, e.g., control, adaptive 
control, Neuro-control schemes [1],[3],[5],[12],[13]. In this 
paper, we consider the controller with the objective to 
reject load disturbances.  

H∞

H∞

In [6],[8],[9], and [15] the issues of load-frequency control 
with time-delays have been discussed in the framework of 
LMI and  controller. Traditionally, the area control error 
(ACE) signal is used as the input for the load frequency 
controller (LFC) whose objective is to control the frequency 

H∞

                                                 
 A. Rajeeb Dey is with the Department of Electrical Engineering, 

Jadavpur University, West Bengal, Kolkata, India (corresponding author  
phone: +91-9475078606; e-mail: rajeeb_de@rediffmail.com).  

 B. Sandip Ghosh is with Department of Electrical Engineering, National 
Institute of Technology, Rourkela, Orissa, India (e-mail: 
ghoshsandy@gmail.com). 

 C. Dr. G. Ray is professor in the department of Electrical Engineering, 
Indian Institute of Technology, Kharagpur, West Bengal, India (e-mail: 
gray@ee.iitkgp.ernet.in). 

deviation. In [16] the robust LFC design has been carried out 
for an uncertain power system model with rank-1 
uncertainty in the system matrix and simply bounded 
uncertainties in the input and disturbance input matrices. The 
uncertainty is parametric one i.e, due to varying operating 
conditions. The load disturbance rejection part was not 
considered in the controller design, also the simulation of the 
considered system was carried out for constant disturbance 
input only. The controller design was based on Riccati 
equation approach. In [17] robust LFC design was based on 

synthesis technique and in [4] an LMI based decentralized 
controller was designed for multi area power system. 

µ
H∞

 
In this paper, we have reformulated the uncertain power 
system model in [16] by restructuring the uncertainties in 
norm bounded fashion instead of rank-1 type. The effect of 
this consideration may be seen as the ability to improve 
performance of the designed robust  load-frequency 
controller in LMI framework. This improvement is validated 
by closed loop simulation results. 

H∞

II. LFC MODEL  
We consider a of linearized single-area power system model 
with time-varying norm bounded uncertainties in the system 
and input matrices. The state space representation of it is 
([16]) 
 

( ) ( ) ( ) ( ) ( )x t A t x t Bu t L w t= + +                                    (1) 
 
where the state vector is 

( ) [ ( ) ( ) ( ) ( )]T
g gx t f t P t X t E t= ∆ ∆ ∆ ∆ ,  is  the 

incremental frequency deviation (in Hz), 
( )f t∆

( )gP t∆  is the 
incremental change in generator output (in p.u. MW), 

( )gX t∆  is the incremental change in governor valve position 
(in p.u. MW),  ( )E t∆  is the incremental change in integral 
control; ( )u t ∈ℜ  is the input vector; the disturbance scalar 

( ) ( )dw t P t= ∆  , ( )dP t∆  is the load disturbance (in p.u. 
MW). ( ), ( )A t B t  and  are uncertain time-varying 
matrices with appropriate dimensions. The matrices 

( )L t
( )A t  

and  are having nominal and uncertain components as:  ( )B t
 

( ) ( )A t A A t= + ∆ and ( ) ( )B t B B t= + ∆                                  (3) 
 
The time-varying uncertain matrices ( )A t∆  and ( )B t∆  are 
norm bounded and may be decomposed as  
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( ) ( )a a aA t D F t E∆ = and                        (4) ( ) ( )b b bB t D F t E∆ =
 
where ( )aF t  and ( )bF t satisfy ( ) ( )T

a aF t F t I≤ , 
( ) ( )T

b bF t F t I≤ . The decomposition of the uncertain matrices 
as in (4) may be used to exploit the uncertainty structure and 
to normalize the time-varying components ( )aF t , ( )bF t to 
have effective result.  

III. CONTROLLER DESIGN 
Consider the system (1) with feedback control 
law . Then one can write (1) as  ( ) ( )u t K x t=
 

( ) ( ( ) ( ) ) ( ) ( )x t A t B t K x t L w t= + +                                       (5) 
 
Our objective is to design the control gain K . To have this, 
we now present the following Lemmas which will be used to 
design . K
Lemma 1 [13]: Given matrices  and 

 with appropriate dimensions, and 
, for all 

, ,TQ Q H E=

0TR R= >

0T T TQ HFE E F H+ + < F  satisfying TF F R≤ , if 
and only if there exists some 0λ > , such that 

. 1 0T TQ H H E R Eλ λ −+ + <
 
Lemma 2 [7]: For any  and for nay symmetric 
positive definite matrix

, nz y∈ℜ
n nX ×∈ℜ , following inequality is 

true 
12 T T Tz y z X z y X y−− ≤ +  

 
Lemma 3 (Schur Complement) [2]:  For any matrices  
and   

,Q R
S

0T

Q S
S R

⎡ ⎤
<⎢ ⎥

⎣ ⎦
 

is equivalent to  
10 and 0TR Q SR S−< − < . 

 
Lemma 4: If there exists a matrix  and positive 
scalar

0TY Y= >

1ε , 2ε  and γ  such that 
 

1

2

2

* 0 0 0
0* 0 0 0

* 0 0 0
* 0 0 0

T T T T T
a bY E X E YC LY

I

ε
ε

γ

⎡Λ
⎢ ⎥−⎢ ⎥
⎢ ⎥Λ = <−
⎢

−⎢
⎢ ⎥−⎣ ⎦

⎤

⎥
⎥

T

                 (6) 

where 
1 2

T T T T
a a b bYA A Y X B BX D D D Dε εΛ = + + + + +  

 

then the system states of (5) subject to the assumptions in 
section II satisfies a H norm-bound of ∞ γ with respect to 
the disturbance input. 
 
Proof: The proof is based on Lyapunov’s direct method. We 
consider a Lyapunov function as  
 

( ) ( ) ( )TV t x t P x t=                                                   (7)  
 
Finding the time-derivative of (7) one obtains 
 

( ) ( ) ( ) ( ) ( )T TV t x t Px t x t Px t= +                                             (8) 
Along the trajectory of (5) one may write (8) as 

( ) [( ( ) ( ) ) ( ) ( )] ( )
( ) [( ( ) ( ) ) ( ) ( )]

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

T

T

T T T T T

T T T

T T

V t A t B t K x t Lw t P x t
x t P A t B t K x t Lw t

x t A t P x t x t K t B t P x t
w t L Px t x t P A t x t
x t PB t Kx t x t PLw t

= + +

+ + +

= +

+ +

+ +

           (9) 

Now, 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
2 ( ) ( )

T T T T T

T T

T

V t x t A t P x t x t K t B t P x t
x t P A t x t x t PB t Kx t

x t PLw t

= +

+ +

+

          (10) 

 
Substituting the values of ( ) and ( )A t B t  as defined above 
and using Lemma 2, (10) may be written as  
 

2 2

( ) ( )[

] ( ) ( ) ( )

T T T T T T
a a a

T T T T
a a a b b b b b b

T T

V t x t A P P A K BP PBK E F D P

PD F E PD F E K K E F D P

PLL P x t w t w tγ γ−

≤ + + + +

+ + +

+ +

      (11) 

 
Using Lemma 1 in (11) one can obtain 
 

2( ) ( ) ( ) ( ) ( )T TV t x t x t w t w tγ≤ Ω +                                       (12) 
where 

  1
1 1

1 2 1

( )

     ( )

T T T
a a

T T T T
a a b b b b

A P P A K BP PBK PD PD

E E PD PD K E E K PLL P

ε

ε ε ε γ− −

Ω = + + + +

+ + + + 2 T−

 
 
Now defining a cost function  
 

2

0
[ ( ) ( ) ( ) ( )]T TJ x t x t w t w t dtγ

∞

= −∫                                       (13) 

Note that, if 0ywJ <  then the system states achieve a H∞  
norm of γ  with respect to the disturbance input  since ( )w t

2 2
( ) ( )x t wγ≤ t . 

Substituting  from (12) into (13) one may write  2 ( ) ( )Tw t w tγ
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0
[ ( ) ( ) ( )]TJ x t x t V t dt

∞

≤ Σ −∫                                                (14) 

where . IΣ = + Ω
Clearly if  then  is satisfied 
assuming  which is obvious in case of 

. Therefore,   implies the system states are 
bounded with 

0Σ < < 0J
( ) (0) 0V V∞ − >

(0) 0V = 0Σ <
H∞  norm of γ . Finally, pre- and post-

multiplying  by , letting Σ 1Y P−= KY X=  and using 
Lemma 3 one obtains the LMI criterion (6).                         ■ 

IV. NUMERICAL RESULTS 
We consider a power system model as given in (1) with the 
following nominal parameters [16] 
 

0.0665 8 0 0 0

00 3.663 3.663 0
,

13.7366.86 0 13.736 13.736

00.6 0 0 0

A B

⎡− ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

and . 8 0 0 0
T

L ⎡ ⎤= −⎢ ⎥⎣ ⎦
The structural decomposition matrices of the uncertain 
parameters are  

2 0 0 0 0
0 2 0 0 0

, ,
0 0 10 0 13.736
0 0 0 0 0

a b bD D I E

⎡ ⎤ ⎡
⎢ ⎥ ⎢
⎢ ⎥ ⎢= = =
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎣ ⎦ ⎣

,

⎤
⎥
⎥
⎥
⎥
⎦

⎤

⎥−

⎦

 

   

0.01675 2 0 0
0 0.5495 0.5495 0

0.3779 0 0.4121 0.4121
0 0 0 0

aE

−⎡
⎢ ⎥−⎢ ⎥=
⎢ − −
⎢ ⎥
⎣

 

A. Open-loop simulation:  
The open-loop simulation for the proposed uncertain system 
is carried out for the system model (1) with  and the 

proposed uncertainty structure in (3) and (4) with 

( ) 0u t =

( ) and ( )a bF t F t  matrices are taken to be identity matrices, 
whereas the uncertain system of [16] has been simulated by 
considering the values of nominal and uncertain matrices 
given in section 4, equation (14) of [16] with . The 

simulation results presented in Fig. 1 and 2 shows that, both 
the uncertainty structure effect the system dynamics in a 
similar fashion. 

( ) 0u t =

 

    

 
Fig.1: Plot for frequency deviation under open-loop simulation for the 
model in [16] 
     

 
Fig. 2: Plot for frequency deviation under open-loop simulation for the 
proposed model. 
 

B. Closed-loop simulation:  
The closed-loop simulation is carried out for the proposed 
uncertain system model in (5) with the uncertainty structure 
in (3) and (4) with ( ) and ( )a bF t F t  matrices taken to be 
identity matrices. The gain matrix  has been 

obtained by solving the LMI (6) in Lemma 4 with the 
objective to minimize

-1(K=XY )

γ  using standard algorithm available 
with LMI toolbox of MATLAB [11]. The closed loop 
simulation for both the uncertain power system model has 
been carried for two different types of load disturbance (i) 
for a constant load disturbance of 0.01 p.u and (ii) for a 
sinusoidal time-varying load  disturbance ( ) with 0.1sin 2πft
f 0.1Hz= . Closed loop simulations with the present 
controller and with that obtained in [16] is shown in Fig. 3 
and 4. A comparison of these shows the proposed controller 
provides better attenuating performance for the simulated 
cases. 
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Fig.3: Plot for frequency deviation under constant load disturbance input of 
0.01 p.u 
      

 
 
Fig.4: Plot for frequency deviation under Sinusoidal load disturbance input 
with f=0.1 Hz. 

V. CONCLUSION 
In this paper a H  controller has been designed for an 
uncertain single area LFC power system in LMI framework. 
The uncertain system matrices are considered to be norm-
bounded rather than the rank-1 type as considered in [16]. 
This reformulation helps in improving performance of the 
designed controller. Moreover, such an advantage may be 
utilized to further designing the controller by considering 
more practicality in the system model, e.g., actuator 
saturation.  

∞
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