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Nomenclature 

 

a  crack length (mm) measured from the edge of the plate 

ai    crack length corresponding to the ‘ith’ step (mm) 

aj    crack length corresponding to the ‘jth’ step (mm) 

AN

da     retarded (ANFIS) crack length (mm) 

EN

da     retarded (exponential) crack length (mm) 

E

da    retarded (experimental) crack length (mm) 

A, B, C   fuzzy sets 

Aj, Bk, Cm   linguistic labels 

CBA ′′′ ,, and D′    curve fitting constants in the ‘Exponential Model’ 

da/dN  crack growth rate (mm/cycle) 

E  Young’s modulus (MPa) 

f   linear consequent  function of TSK model  

Kmax  maximum stress intensity factor ( mMPa ) 

∆K    stress intensity factor range ( mMPa ) 

KC    plane stress fracture toughness ( mMPa ) 

Kol    stress intensity factor at overload point ( mMPa ) 

B

maxK     maximum base line stress intensity factor ( mMPa ) 

l  dimensionless factor in the ‘Exponential Model’ 

  formulation 

m    specific growth rate 

mij    specific growth rate corresponding to the step interval i-j 

n    No. of input nodes 

Ni    number of cycles corresponding to the ‘ith’ step  

Nj   number of cycles corresponding to the ‘jth’ step 

AN

dN     number of delay (ANFIS) cycles 

EN

dN    number of delay (exponential) cycles  

E

dN    number of delay (experimental) cycles  
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AN

fN     number of delay (ANFIS) cycles 

EN

fN    final (exponential) number of cycles  

E

fN   final (experimental) number of cycles  

o, p, q, r  consequent parameters  

p  No. of fuzzy partitions 

S1, S2, S3  universe of discourse of three input variables 

w  plate width (mm) 

wi   firing strength 

x1, x2, x3   input variables of ANFIS 

β    overloading angle  

( )1x
jAµ , ( )2x

kBµ , ( )3x
mCµ  membership grade functions 

σys    yield point stress (MPa) 
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1. Introduction 

 
The use of high strength materials is common in aircrafts, ships and offshore 

structures which are sensitive to flaws and defects. Those tiny flaws or imperfections are 

present to some extent during manufacturing as fabrication defects or material defects (in 

the form of inclusions or second phase particles) or localized damage in service. They 

eventually coalesce and develop into larger cracks and subsequently grow to a critical 

size leading to catastrophic failure of the structure. The structural components are often 

designed for some degree of damage tolerance to ensure survival in the presence of 

growing cracks. The basic need of damage tolerance design philosophy is to establish a 

timely inspection schedule so as to give the inspector the ample opportunities to detect a 

growing crack. It helps in recommending the repair or replacement of the affected 

component in order to prevent failure, injury or loss of life and thus reduce any associated 

financial loss. These all need a reliable life prediction methodology.  

 Load sequence is one of the major factors that affect the fatigue crack growth rate 

particularly in case of variable amplitude loading (VAL). The simplest type of VAL is 

the occurrence of high peak loads interspersed in constant amplitude loading (CAL) 

history. Typical examples where this type of load interaction occurs are airplane flying 

under gust spectrum, ships and offshore structures coming under high loads for a certain 

periods etc. When such types of load sequence are tensile in nature the crack growth is 

slowed down in comparison to the normal (CAL) growth rate leading to retardation in 

fatigue crack growth. The assessment of life under those complex situations is certainly 

tedious because of the lack of proper understanding of micro-mechanisms of retardation. 

Based on various mechanisms, a number of retardation models (Willenborg, Engle & 

Wood, 1971; de Koning, 1981; Bolotin & Lebedev, 1996; Lee, Kim & Nam, 2003; 

Borrego, Ferreira, Pinho & Costa, 2003; Kim & Sim, 2003) have been proposed till date. 

However, each model has its own merits and demerits as a result; significant ambiguities 

and disagreements still exist in terms of the exact mechanism of retardation (Sadananda, 

Vasudevan, Holtz & Lee, 1999; Murthy, Palani & Iyer, 2004).  

 With the recent advances in the field of soft-computing technology, crack 

propagation life is now being simulated with the existing experimental data so as to avoid 
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more difficult, time-consuming and costly fatigue tests. Out of different soft-computing 

methods such as artificial neural network (ANN), genetic algorithm (GA), fuzzy-logic, 

adaptive neuo-fuzzy inference system (ANFIS) etc, ANFIS is one of the recent developed 

method to handle fatigue problems successfully. Although ANN has been frequently used 

by several researchers (Pleune & Chopra, 2000; Venkatesh & Rack, 1999; Cheng, Huang 

& Zhou, 1999; Pidaparti & Palakal, 1995; Jia & Davalos, 2006) in modeling and 

analyzing different types of fatigue problems during last 10 years, the application of other 

soft-computing techniques are quite rare. Canyurt (Canyurt, 2004) has developed a 

genetic algorithm fatigue strength estimation model (GAFSEM) to estimate the fatigue 

strength of the adhesively bonded tubular joint using several adherent materials. 

Bukkapatnam and Sadananda (Bukkapatnam and Sadananda, 2005) have predicted 

fatigue crack growth life of Al 5052 by using genetic algorithm in the light of ‘Unified 

Approach’ with a prediction result of 12% error. In the later stage, this innovative 

modeling tool has been used in modeling the fatigue life of several fiber-reinforced 

composite material systems by Vassilopoulos & Bedi (Vassilopoulos & Bedi, 2008). Wu 

et al. (Wu, Hu & Pecht, 1990) has applied fuzzy regression analysis to analyze the fatigue 

crack growth data and shown that the result is quite comparable with the conventional 

least square methods. As far as the application of adaptive neuo-fuzzy inference system 

(ANFIS) in the field of fatigue is concerned, very limited work has been reported in 

literature (Vassilopoulos & Bedi, 2008; Jarrah, Al-Assaf & El Kadi, 2002). Both ANN 

and fuzzy logic techniques have their own advantages and disadvantages. However, 

ANFIS combines the advantages of both the techniques without having any of their 

disadvantages.  

 The focus of the present investigation is on the development of a novel life 

prediction model using ANFIS in case of constant amplitude loading interspersed with 

mode-I spike overload. The model result has been compared with the results of 

‘Exponential Model’ earlier proposed by the authors (Mohanty, Verma & Ray, 2009). It 

has been observed that the present model not only evaluates different retardation 

parameters but also predicts the end life of both 7020T7 and 2024T3 Al-alloys quite 

satisfactorily.   
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2. Adaptive neuro-fuzzy inference system (ANFIS) 

 Adaptive Network based Fuzzy Inference System (ANFIS) is a cross between an 

artificial neural network (ANN) and a fuzzy inference system (FIS). It is a powerful 

universal approximator that removes the requirement for manual optimization of the 

fuzzy system by automatically tuning the system parameters using neural network 

technique. It combines advantages of both ANN and FIS, thereby improving the system 

performances without operator intervention. With a given input/output data set, this 

integrated neuro-fuzzy system constructs a fuzzy inference system whose membership 

function parameters are tuned (adjusted) using either a back-propagation algorithm alone, 

or in combination with least-squares estimator. Before applying the above novel 

computational technique one needs to be familiar with its fundamental principle as 

discussed in the following sections. 

2.1 Fuzzy Inference System (FIS) 

 Fuzzy inference systems also called rule-based systems are capable modeling 

non-linear complex problems by employing both fuzzy logic and linguistic if-then rules. 

A simple model of the system is presented in Fig. 1. The controller has four main 

components: the fuzzification interface, inference engine, rule base and defuzzifier. The 

rule base contains a number of linguistic fuzzy if-then rules provided by experts. The 

fuzzification interface transforms crisp inputs into corresponding fuzzy memberships in 

order to activate rules that are in terms of linguistic variables. The inference engine 

defines mapping from input fuzzy sets into output fuzzy sets. The defuzzifier transforms 

the fuzzy results into a crisp output through various defuzzyfication methods including 

the centroid, maximum, mean of maxima, height and modified height defuzzifier. The 

two commonly used inference techniques are Mamdani (Mamdani & Assilian, 1975) and 

Takagi-Sugeno (TSK) (Takagi & Sugeno, 1985). In the present investigation, type-3 

ANFIS (Jang, 1993) topology based on first-order Takagi-Sugeno (TSK) if-then rules has 

been used, where the output is a first-order polynomial and the fuzzy rules of the output 

is represented by a crisp function. 

2.2 Adaptive Network 

 An adaptive network is a multilayer feed-forward neural network with supervised 

learning in which each node performs a particular function (node function) on incoming 
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signals. The detail description of the procedure has been cited by Jang (Jang, 1993). It is 

a network structure consisting of both circles (fixed) and square (adaptive) nodes 

connected by directional links showing direction of signals between nodes. The 

parameter set of an adaptive network is the union of the parameter sets which are updated 

according to the given training data and a gradient based learning procedure. 

2.3 Structure of ANFIS 

 The illustration of ANFIS structure used in the present work is given in Fig. 2 

which is a first-order Takagi-Sugeno type. The network calculates the system’s output for 

given input data set through fuzzy if-then rules. The optimal model parameters are 

determined by both back-propagation and hybrid learning algorithms. A typical first-

order TSK fuzzy inference system with three inputs and one output can be expressed in 

the following form: 

IF 1x is jA          (1) 

 2x is kB          (2) 

AND 3x is mC          (3) 

THEN iii rxqxpxof +++= 321ii        (4) 

for  1,....,1 Sj =  

 2,....,1 Sk =  

 3,....,1 Sm =  

 321,....,1 SSSi ××=  

where A, B, and C are fuzzy sets defined on input variables 1x , 2x , and 3x  respectively; 

1S , 2S , and 3S  are the number of membership functions; f is a linear consequent function 

defined in terms of input variables; while o, p, q, and r are linear coefficients referred to 

as consequent parameters. It consists of a number of interconnected fixed and adjustable 

nodes and is composed of five layers having three inputs and one output. The functions of 

different layers are as follows: 

Layer-1: Every node in this layer is a square node with a particular membership function 

specifying the degree to which a given input satisfies the quantifier. For three inputs 

ANFIS model, the output of a given node is given by: 
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( )1
1 xO

jAj µ= , 1,.....,1 Sj =         (5) 

( )2

1
xO

kBk µ= , 2,.....,1 Sk =         (6) 

( )3

1
xO

mCm µ= , 3,.....,1 Sm =         (7) 

where 1S , 2S , and 3S  are universes of discourse of three input variables respectively; x is 

the input to nodes j, k, and m respectively; jA , kB , and mC  are the linguistic labels 

(small, large etc) associated with the respective node functions. In this layer, the 

membership function can be any appropriate parameterized membership function such as 

triangular, Gaussian or bell. Bell membership function has been selected for the present 

work because, it has the characteristics of smoothness and succinctness, and are 

extensively applied to the fuzzy sets. It is defined as: 

( )
ii b

i

i

A

a

cx
x







 −

+

=

1

1
µ         (8) 

where ia , bi, and ci are the membership function parameters. Parameters in this layer are 

referred to as ‘premise parameters’. 

Layer-2: Every node in this layer is a fixed node, marked by a circle, whose output is the 

product of all the incoming signals (T-norm operation): 

( )
mkj CBAii xwO µµµ 1

2 ==         (9) 

The output of a node in the 2nd layer represents the firing strength (degree of fulfillment) 

of the associated rule. Typical representation of fuzzy rules in a first-order TSK FIS is 

given as: 

Rule-1: if x1 is A1, x2 is B1 and x3 is C1 then 13121111 rxqxpxof +++=   (10) 

Rule-2: if x1 is A2, x2 is B2 and x3 is C2 then 23222122 rxqxpxof +++=   (11) 

Layer-3: Every node in this layer is also a circle node. The output of ith node is the ratio 

of the ith rule’s firing strength to the sum of all rules’ firing strengths: 

321

3

www

w
wO i

ii
++

==         (12) 

The output is called as ‘normalized firing strength’. 

Layer-4: Every node i in this layer is a square or adaptive node with a node function: 
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( )
iiiiiiii rxqxpxowfwO +++== 321

3       (13) 

where iw  is the output of layer 3, and { }
iiii rqpo ,,,  is the parameter set. Parameter in this 

layer is referred to as the consequent parameter. 

Layer-5: The single node in this layer computes the overall output as the summation of 

all incoming signals: 

∑
∑
∑

==
i i

ii

iii
w

fw
fwO

5         (14) 

 In the proposed ANFIS topology, there are 1S , 2S  and 3S  number of membership 

functions associated with each of the three inputs respectively. So the input space is 

partitioned into ( )321 SSS ××  fuzzy subspaces, each of which is governed by fuzzy if-

then rules. The premise part of a rule (layer 1) defines a fuzzy sub-space, while the 

consequent part (layer 4) specifies the output within this sub-space. 

2.4 Learning algorithm of ANFIS  

 The basic learning rule of adaptive network is back-propagation algorithm where 

the model parameters are updated by a gradient descent optimization technique. 

However, due to the slowness and tendency to become trapped in local minima its 

application is limited. A hybrid-learning algorithm, on the other hand is an enhanced 

version of the back-propagation algorithm.  It is applied to adapt the premise and 

consequent parameters to optimize the network. In the forward pass, functional signals go 

forward till layer 4 and the consequent parameters are identified by the least square 

estimate. In the backward pass, the error rates propagate backward and the premise 

parameters are updated by the gradient descent method. Heuristic rules are used to 

guarantee fast convergence. The details of the above technique have been elaborately 

discussed by Jang (Jang, 1993). 

3. Experimental data base 

 The present work has been focused to predict the residual fatigue life along with 

various retardation parameters of two aluminum alloys (7020 T7 and 2024 T3) under 

single tensile overload in mode-I by applying ANFIS model. For the purpose, the 

experimental data base was created from the fatigue tests conducted by the present 

authors’ (Mohanty, Verma & Ray, 2009) in their earlier work. Single edge notch tension 



 10

(SEN) specimens cut from a 6.5mm plate in an LT plane (with the loading aligned in the 

longitudinal direction) were subjected to single spike overload (loading rate of 8KN/min) 

at an a/w ratio of 0.4 followed by constant amplitude load test. The various overload 

ratios 







= B

ol
ol K

K
R

max

 for the two alloys were as follows: 

Al 7020 T7:  2.0, 2.25, 2.35, 2.5, 2.6 and 2.75  

Al 2024 T3:  1.5, 1.75, 2.0, 2.1, 2.25 and 2.5 

All the fatigue tests were performed in a servo-hydraulic controlled dynamic testing 

machine Instron-8502 (250KN load capacity) in ambient air at room temperature with a 

frequency of 6Hz maintaining a load ratio of 0.1.  

4. Design of ANFIS model for crack growth rate prediction 

 It has been verified earlier (Willenborg, Engle & Wood, 1971; de Koning, 1981; 

Bolotin & Lebedev, 1996; Lee, Kim & Nam, 2003; Borrego, Ferreira, Pinho & Costa, 

2003; Kim & Sim, 2003; Mohanty, Verma & Ray, 2009) that the application of a single 

tensile overload during fatigue crack propagation can lead to significant retardation of 

crack growth and results in an increase in the specimen life time (Fig. 3 and 4). This 

delaying effect must be taken into account while predicting the residual fatigue crack 

growth lives of the structures subjected to variable amplitude loading conditions. Not 

only the enhanced residual life, but various retardation parameters such as number of 

delay cycles (Nd), retarded crack length (ad) etc are also equally important for quantitative 

analysis of the retardation effect. This is, of course, one of the important factors of 

damage tolerant design philosophy adopted in various air-craft industries. Hence, the 

present work has been devoted for automatic prediction of the above quantities 

quantitatively by using neuro-fuzzy technique. 

 The most fundamental principle of ANFIS is that the input/output data 

must be normalized (pre-processing) before applying the model to obtain optimum 

results. It should be pointed out that in case of single tensile overload; crack growth 

retardation depends on the magnitude of overload ratio (Rol). Further, it has been proved 

that fatigue crack growth rate is governed not only by single crack driving force ∆K, but, 

according to ‘Unified Approach’, by the simultaneous action of both ∆K and Kmax 

(Sadananda, Vasudevan, Holtz & Lee, 1999; Dinda & Kujawski, 2004; Noroozi, Glinka 
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& Lambert, 2005). Therefore, overload ratio (Rol), maximum stress intensity factor 

(Kmax), and stress intensity factor range (∆K) were considered as linguistic input variables 

whereas, crack growth rate (da/dN) was taken as output variable for the proposed model. 

Out of six sets of overload test data (Rol = 2.0, 2.25, 2.35, 2.5, 2.6 and 2.75 for Al 7020 

T7 and 1.5, 1.75, 2.0, 2.1, 2.25 and 2.5 for Al 2024 T3) one set for each alloys i.e. Rol = 

2.35 for Al 7020 T7 and Rol = 2.1 for Al 2024 T3 was selected as the validation set (VS). 

The other five data sets were considered as training set (TS). The input variables i.e. 

overload ratio, maximum stress intensity factor and stress intensity factor range were 

conditioned in such a way that their maximum values were normalized to unity. The 

crack growth rate, which constitutes the system output, was also normalized in similar 

manner.  

Referring to Fig. 2, layer 1 has 15 ( )35×  nodes with 45 parameters. Layers 2, 3 

and 4 have 125 ( )35  nodes each with 500 parameters associated in layer 4. The 

performances of the model during training and testing were assessed using various 

standard statistical performance evaluation criteria such as root mean square error 

(RMSE); coefficient of determination (R2) and mean percent error (MPE) defined by Eqs. 

15 to 17: 

( )
21

1

1 







−= ∑

=

p

i

ii otpRMSE         (15) 

( )

( ) 
















−

−=

∑

∑

=

=

p

i

i

p

i

ii

o

ot

R

1

2

1

2

2 1         (16) 

∑
=









×

−
=

p

i i

ii

t

ot

p
MPE

1

100
1

        (17) 

where ‘t’ is the target value, ‘o’ is the output value, and ‘p’ is the number of data items. 

5. Results and discussion 

5.1 Simulation results 

 In order to implement the ANFIS model (Fig. 2) in the present work, a 

computer program was performed under MATLAB environment using the Fuzzy Logic 

Toolbox. The numbers of membership functions (MF) were chosen to be 5-5-5 
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corresponding to the inputs Rol, Kmax and ∆K respectively. The 125555 =××  fuzzy ‘if-

then’ rules were constituted in which fuzzy variables were connected by T-norm (fuzzy 

AND) operators. The adjustment of premise and consequent parameters was made in 

batch mode based on the hybrid-learning algorithm. The model was trained for 4000 

epochs until the given tolerance was achieved. The flow chart of the trained ANFIS 

model is illustrated in Fig. 5. Fig. 6 and 7 show the resulting surface plots identifying the 

relationship among selected variables. It can be observed from the surface plots that the 

identified relationship by ANFIS methodology is non-linear in nature. Fig. 8 shows the 

membership function diagrams of the inputs of the crack growth rate prediction process 

before training. Table 1 summarizes all the characteristics of ANFIS network used. The 

performance of the model during training and testing was verified through three statistical 

indices (Eqs. 15 to 17) and presented in Table 2. 

Based on above statistical performances, the trained ANFIS model was tested for 

the validation sets (Rol = 2.35 for Al 7020 T7 and Rol = 2.10 for Al 2024 T3) and the 

predicted crack growth rates were compared with the experimental data in Figs. 9 and 10. 

The numbers of cycles (fatigue life) were calculated from predicted and experimental 

results in the excel sheet (Figs. 11 and 12) as per the following equation: 

i

ij

j N

dN
da

aa
N +

−
=          (18) 

where, ai and aj = crack length in ith step and jth step in ‘mm’ respectively, 

Ni and Nj = No. of cycles in ith step and jth step respectively, 

i = No. of experimental steps, 

and j = i+1  

5.2 Comparison with ‘Exponential Model’ 

 The predicted ANFIS results were quantitatively compared in Table 3 with 

‘Exponential Model’ (Mohanty, Verma & Ray, 2009) results proposed earlier by the 

present authors. At this point, a brief overview of the exponential model needs to be 

discussed for clear understanding. The fundamental equations of the model were: 

)(

ij
ijij NNm

eaa
−

=          (19) 
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( )ij

i

j

ij

ln

NN

a

a

m
−










=          (20) 

where, ai and aj = crack length in ith step and jth step in ‘mm’ respectively, 

Ni and Nj = No. of cycles in ith step and jth step respectively, 

mij= specific growth rate in the interval i-j, 

i = No. of experimental steps, 

and j = i+1    

The exponent ‘m’, called specific growth rate, was correlated with a parameter ‘l’ 

which takes into account the two crack driving forces ∆K and Kmax as well as material 

parameters KC , E ,σys by the following equation: 

''2'3'
DlClBlAm +++=          (21) 

where,
4

1

ys

C

max

C

∆
































=

EK

K

K

K
l

σ
 

and '''' ,,, DCBA are curve-fitting constants. 

 The values of specific growth rate (m) were obtained using equation (21) for all 

the overload ratios of both the alloys. It was observed that the above values were different 

for different overload ratios. This is due to the fact that the amount of retardation is solely 

dependent on the overload ratio values. Therefore, each constant of different overload 

ratios (except the tested Rol) were correlated with Rol by a 2nd degree polynomial curve fit 

through equations (22) to (29) as follows: 

for Al 7020 T7:  

)10460905()10354083()1045168( 6626 −−− ×+×−+×=′
olol RRA    (22) 

)10107645()1081208()108.9600( 6626 −−− ×−+×+×−=′
olol RRB    (23) 

)101.6389()105.4462()1069.354( 6626 −−− ×+×−+×=′
olol RRC    (24) 

)10813.90()10842.49()106904.3( 6626 −−− ×−+×+×=′
olol RRD    (25) 

and for Al 2024 T3:  

)10143543()10127925()1031269( 6626 −−− ×−+×+×−=′
olol RRA    (26) 

)1060396()1053849()1013117( 6626 −−− ×+×−+×=′
olol RRB    (27) 
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)105.8506()107761()101883( 6626 −−− ×−+×+×−=′
olol RRC    (28) 

)1094.385()1011.359()10669.86( 6626 −−− ×+×−+×=′
olol RRD    (29) 

Putting the values of various constants in equation (15) the predicted ‘m’ values were 

determined for the tested overload ratios (Rol =2.35 for 7020 T7 and Rol =2.10 for 2024 

T3). Then the number of cycles (fatigue life) was calculated cycle-by-cycle basis as 

follows; 

i

ij

i

j

j

ln

N
m

a

a

N +









=     (30) 

The various predicted model results are presented in Table 3 along with the experimental 

results for quantitative comparison. The graphs for a-N and da/dN-∆K are plotted in Figs. 

13 to 16 for comparison of both the model results along with experimental findings. Figs. 

17 to 20 show various retardation parameters in order to account for the retardation 

effect. 

5.3 Analysis of results 

The performances of different models were analyzed by comparing the prediction 

results with the experimental findings by the following criteria: 

• Percentage deviation of predicted data from the experimental data i.e. 

100
result alExperiment

result alExperimentresult Predicted
Dev0

0 ×
−

=  

• Prediction ratio which is defined as the ratio of actual result (i.e. experimental) to 

predicted result i.e. 

Prediction ratio, 
result Predicted

result Actual
Pr =  

• Error bands i.e. the scatter of the predicted life in either side of the experimental 

life within certain error limits.  

Table 4 presents various model results as per the above evaluation criteria. From the 

above table it is observed that the percentage deviations of different retardation 

parameters are within ± 7.0% (maximum). The post overload fatigue crack propagation 

lives are within –0.2% to +1.5% whereas, the prediction ratio is about 1.0. From the 

above results it can be concluded that the performance of ANFIS model is quite 
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satisfactorily. As far as relative performance is concerned, the exponential model gives 

better results in comparison to ANN model. Analyzing the error band scatter (Figs. 21 

and 22) it is observed that the results of Al 7020 T7 are within ± 0.05% error band while, 

it is less i.e. ± 0.025% for Al 2024 T3. 

5.4 Discussion 

As shown in the Table 2, the MPE and RMSE values for the training data were negligible 

in both the cases. MPE values for testing were found to be slightly higher than those for 

training. The coefficient of determination was found to be close to 1.0 for training in both 

the materials. However, its value for testing was slightly less than unit. The performance 

of the proposed ANFIS model was quite good as coefficient of determination was high 

and errors were small.  But one cannot rely only on those numerical values. It may 

sometimes happen that numerical values are good, but fitting results of the model are not 

good in some operating area. Therefore, the trained model was tested for validation data 

sets (VS) and the various predicted results were compared with the experimental findings 

as well as with the exponential model results presented in Table 3. It was observed that 

percentage errors of retarded crack lengths (ad) in case of both the materials were within 

+7%, whereas the percentage error of retarded number of cycles (Nd) were maximum of 

+8%. As far as the end lives of the specimens were concerned, the error percentage was 

limited to maximum of +2%. Although the accuracy of the proposed model was low in 

comparison to exponential model, but it was within the acceptable range. This is due to 

the fact that prediction accuracy of fatigue, in general, is quite low. Moreover, 

determination of various curve-fitting constants from the scattered experimental fatigue 

data in the exponential model is a tedious job in comparison to the formulation of fuzzy 

rules in ANFIS model, which is one of its advantages.  

 Limitation of neuro-fuzzy modeling is that selection of the number of parameters 

affects the goodness and adaptiveness of the model. For example too few parameters 

neglect non-linearities of the process affecting the model performance. On the contrary, 

too many parameters may cause overfitting. Hence, the number of parameters should be 

suitable for the model to work well for both training and testing data. Further, the neuro-

fuzzy model can only be used in the training range. 
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6. Summary and conclusion 

 Prediction of fatigue crack propagation life is a prime requirement in order to 

avoid costly and time consuming fatigue tests. It provides prior warning to repair/replace 

the damaged machine parts in time so as to avoid catastrophic failure. But, it is obviously 

is a challenging job to the fatigue communities because, the physical interpretation of 

fatigue damage is quite ambiguous since it depends on several mechanisms. Further, 

there are so many factors responsible for the fatigue cracks to propagate. Therefore, 

formulation of a universal mathematical model for fatigue life prediction to suit for all the 

situations is almost impossible. Recently, introduction of various soft-computing 

techniques in the field of fatigue solves the above complex problems in a much better 

way.  

 In the present work, the adaptive neuro-fuzzy inference system (ANFIS), a novel 

non-conventional hybrid technique was applied to predict various retardation parameters 

along with residual fatigue life under the given loading condition. The performance of the 

proposed model was compared with the results of exponential model for two aluminum 

alloys. It was observed that its prediction accuracy was quite reasonable. As a future 

work, the above method can be successfully applied to determine the specific growth rate 

(m) of the exponential model which in turn, the prediction of fatigue life (No. of cycles) 

will be possible by avoiding the calculation of various curve-fitting constants. 
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Table 1 – Characteristics of the ANFIS network 

Type of membership function generalized bell 

Number of input nodes (n) 3 

Number of fuzzy partitions of each variable (p) 5 

Total number of membership functions 15 

Number of rules ( )np  125 

Total number of nodes 394 

Total number of parameters 545 

Number of epochs 4000 

Step size for parameter adaptation 0.01 
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Table 2 – Statistical performance of ANFIS model 

Material During training 

RMSE             R2                MPE 

During testing 

RMSE             R2            MPE 

Computat-
ional Time 

(Min.) 

7020 T7 0.002643 0.99873 0.348387 0.010879 0.96895 0.86495 355 

2024 T3 0.001413 0.99967 0.385620 0.018268 0.93879 0.89697 425 

 

Table 3 – Comparison of ANFIS and exponential model results with experimental data 

Test sample AN

da  

mm 

 EN

da  

mm 

E

da  

mm 

AN

dN  

K cy. 

EN

dN  

K cy. 

E

dN  

K cy. 

AN

fN  

K cy. 

EN

fN  

K cy. 

E

fN  

K cy. 

7020 T7 2.23 2.10 2.13 31.88 29.89 30.51 82.39 79.46 80.82 

2024 T3 2.33 2.06 2.18 40.58 36.65 37.60 138.31 135.75 136.80 

 

 

Table 4 – Various model results under interspersed mode-I overload 

Test 
sample 

% 

Dev 

EN

da  

% Dev 

AN

da  

%  

Dev 

EN

dN  

% 

Dev 

AN

dN  

% Dev 

EN

fN  

% Dev 

AN

fN  

Prediction 

ratio of 

exponentia

l model 

EN

rP  

Prediction 

ratio of 

ANFIS 

AN

rP  

7020 T7 –0.80 –5.72 –1.20 +0.966 –0.241 +0.357 1.0024 0.996 

2024 T3 –1.13 –6.52 –2.27 +1.653 –0.219 +0.604 1.0021 0.994 
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Fig. 1 – Fuzzy Inference System 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 – Structure of the ANFIS model 
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Fig. 3 – Superimposed a ~ N curve of Al 7020 T7 

 
 

 
Fig. 4 – Superimposed a ~ N curve of Al 2024 T3 
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Fig. 5 – Flow chart of ANFIS model 
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Fig. 6 – Surface plot for Kmax and ∆K with FCGR of ANFIS model 
 
 
 
 
 
 

 
 

Fig. 7 – Surface plot for Rol and ∆K with FCGR of ANFIS model 
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Fig. 8 – Bell-shaped membership functions of inputs before training 
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Fig. 9 – Comparison of predicted (ANFIS) and experimental crack growth  

    rate with stress intensity factor range for Al 7020 T7 

 

 

Fig. 10 – Comparison of predicted (ANFIS) and experimental crack growth  

    rate with stress intensity factor range for Al 2024 T3 
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Fig. 11 – Comparison of predicted (ANFIS) and experimental crack length  

with number of cycle for Al 7020 T7 

 
 

 
Fig. 12 – Comparison of predicted (ANFIS) and experimental crack length  

with number of cycle for Al 2024 T3 
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Fig. 13 – Comparison of predicted (ANFIS), exponential and experimental  

crack length with number of cycle Al 7020 T7 

 

 

Fig. 14 – Comparison of predicted (ANFIS), exponential and experimental  

crack length with number of cycle Al 2024 T3 
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Fig. 15 – Comparison of predicted (ANFIS), exponential and experimental  

  crack growth rate with stress intensity factor range for Al 7020 T7 

 
 
 

 

Fig. 16 – Comparison of predicted (ANFIS), exponential and experimental  

  crack growth rate with stress intensity factor range for Al 2024 T3 
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Fig. 17 – Comparison of predicted (ANFIS), exponential and experimental  

 retarded crack length with stress intensity factor range for Al 7020 T7 

 
 
 

 
Fig. 18 – Comparison of predicted (ANFIS), exponential and experimental  

 retarded crack length with stress intensity factor range for Al 2024 T3 
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Fig. 19 – Comparison of predicted (ANFIS), exponential and experimental  

  delay cycle with stress intensity factor range for Al 7020 T7 

 
 
 
 

 
Fig. 20 – Comparison of predicted (ANFIS), exponential and experimental  

  delay cycle with stress intensity factor range for Al 2024 T3 

0.00E+00

2.00E-04

4.00E-04

6.00E-04

8.00E-04

1.00E-03

1.20E-03

1.40E-03

1.60E-03

1.80E-03

2.00E-03

3.00E+04 4.00E+04 5.00E+04 6.00E+04 7.00E+04 8.00E+04

No. of cycle (N)

C
ra

c
k
 g

ro
w

th
 r

a
te

 (
d
a
/d

a
N

),
 m

m
/c

y
c
le

Base line

ANFIS

Exponential

Experimental

Nd

Overload point

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

7.00E+04 8.00E+04 9.00E+04 1.00E+05 1.10E+05 1.20E+05 1.30E+05 1.40E+05

No. of cycle (N)

C
ra

c
k
 g

ro
w

th
 r

a
te

 (
d
a
/d

N
),

 m
m

/c
y
c
le

Base line

ANFIS

Exponential

Experimental

Nd

Overload point



 31

 

Fig. 21 – Error band scatter of predicted lives of 7020 T7 under mixed mode overload 

 

 

 

 

Fig. 22 – Error band scatter of predicted lives of 2024 T3 under mixed mode overload 
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