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Functionally graded (FG) materials are a class of composites that have a continuous variation of material properties from one 
surface to another and thus eliminate interface problems found in laminated composites.  
FG materials are typically manufactured from isotropic components such as metals and ceramics since they are used as thermal 
barrier structures in environments with severe thermal gradients. FG materials have the advantage of heat and corrosion 
resistance typical of ceramics and mechanical strength and toughness typical of metals. Buckling and parametric instability 
behavior of functionally graded shells subjected to in-plane static and pulsating loads are carried out in the present paper. The 
shell forms considered here are cylindrical (CYL), spherical (SPH) and hypar (HYP). Temperature change through the thickness 
is not uniform, and is governed by one-dimensional Fourier equation of heat conduction. Finite element formulation based on a 
higher order shear deformation theory is used to carry out the analyses. The parametric instability problem is solved using the 
Bolotin’s approach. 
 
The displacement fields are assumed in the form as [1], 
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where u, v and w are the displacements of a general point (x,y,z) in an element along x, y and z directions, respectively. The 
parameters u0, v0 and w0 are the displacements of mid-plane along x, y and z axes, respectively. The symbols xθ  and yθ  are 

rotations of the mid-plane about x and y axes, respectively, while * *
0 0u ,  ,  xv *θ  and *

yθ  are the higher-order terms in  Taylor’s 
series expansion and represent higher-order transverse cross sectional deformation modes. 
The effective material property P (such as Young’s modulus E, Poisson’s ratio ν , mass density ρ , coefficient of thermal 
expansion α , thermal conductivity K etc.) can be expressed as 
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where  and  refer to the corresponding properties of the ceramic and metal constituents, respectively and n represents the 
volume fraction index.   

cP mP

For a FG panel, the temperature change through the thickness is not uniform, and is governed by one-dimensional Fourier 
equation of heat conduction. 
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subjected to conditions,  (at ), cT T= / 2z h= mT T=  (at / 2z h= − ) 
where  and  denote the temperature changes at the ceramic and metal sides, respectively. cT mT
The governing differential equation of motion of the undamped system is written as [2], 
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where,  is the initial stress stiffness matrix due to temperature field, ,  and TK eK M gK  are the elastic stiffness, mass and 

geometric stiffness matrices, respectively, and {  and  are the structural displacement and acceleration vectors, 
respectively.  
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In Eq. (4), the in-plane load factor  is periodic and can be expressed in the following form  ( )P t
( ) coss tP t P P tθ= + …………………………………………………………………………………………………………………….(5) 

in which,  is the static portion of the load,  is the amplitude of the dynamic portion and sP tP θ  is the frequency of excitation. 

The quantities  and  are expressed in terms of static elastic buckling load  of panel as, sP tP crP

s crP Pα= ,      tP Pcrβ=  ………………………………………………………………………………………………………………..(6) 
where α  and β   are static and dynamic load factors, respectively.  
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For a static buckling problem with in-plane load, equation (4) becomes: 
( ) { } 0e T gK K Kcr sP d⎡ ⎤+ + =⎣ ⎦ …………………………………………………………………………..…………………………..(7) 

Eigenvalues of the above governing equation are the buckling loads for different modes. The parametric instability regions are 
obtained by solving the eigenvalue problem 
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The validity of the present approach is established by comparing the results obtained by the present study with those available in 
the literature (Table 1).  

Table 1 Comparison of γ = ( )2 2
cr / cP b Dπ  of a clamped plate made of 

Aluminum-Zirconia 
 a/h = 20 a/h = 40 
 Present Ref. [3] Present Ref. [3] 
n = 0.0 9.2760 9.3922 9.7985 9.6938 
n = 2.0 5.9325 6.0544 6.2757 6.2517 
n = 5.0 5.4752 5.6770 5.8111 5.8829 
n = ∞ 4.5892 4.3540 4.8573 4.4938 

 
Figure 1 shows the effect of volume fraction index n on the dynamic instability regions of CYL (Fig. 1a), SPH (Fig. 1b) and HYP 
(Fig. 1c) shells for five different values of n. For HYP shells, the rise to length ratio c/a is taken as 0.2.It is observed that the origin 
of instability regions for pure ceramic shells (n = 0) occurs at higher excitation frequencies than the same for pure metallic shells 
(n = ∞) of all the shell forms. Also it is seen that with the increase in the value of n, the origin of instability shifts to lower 
excitation frequency and width of the instability regions is reduced. 
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                      Fig. 1 (a)  SPH shell (a/Rx = 10)            Fig. 1 (b)  SPH shell (a/Rx = 10)   
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                         Fig. 1 (c) HYP shell (c/a = 0.2) 

Fig. 1. Effect of volume fraction index on dynamic instability regions of FG shells 
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