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Abstract— This work presents system identification using neural 
network approaches for modelling a laboratory based  twin rotor 
multi-input multi-output system (TRMS). Here we focus on a 
memetic algorithm based approach for training the multilayer 
perceptron neural network (NN) applied to nonlinear system 
identification. In the proposed system identification scheme, we 
have exploited three global search methods namely genetic 
algorithm (GA), Particle Swarm Optimization (PSO) and 
differential evolution (DE) which have been hybridized with the 
gradient descent method i.e. the back propagation (BP) algorithm 
to overcome the slow convergence of the evolving neural 
networks (EANN). The local search BP algorithm is used as an 
operator for GA, PSO and DE. These algorithms have been 
tested on a laboratory based TRMS for nonlinear system 
identification to prove their efficacy. 
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I. INTRODUCTION 

SYSTEM identification using neural networks has been 
considered as a promising approach due to its function 
approximation properties [1] and for modeling nonlinear 
system dynamics. However, a lot more research is needed to 
achieve its faster convergence and obtaining global minima. 
Hence there has been a great interest in combining training 
and evolution with neural networks in recent years. The major 
disadvantage of the EANN [2] approach is that it is 
computationally expensive and has slow convergence. With a 
view to speed up the convergence of the search process, a 
number of different gradient methods such as LM and BP are 
combined with evolutionary algorithms. These new class of 
hybrid algorithms i.e. global evolutionary search 
supplemented by local search techniques are commonly 
known as memetic algorithms (MAs). MAs have been proven 
very successful across a wide range of problem domains such 
as combinatorial optimization [3], optimization of non-
stationary functions [4], multi-objective optimization [5], 
bioinformatics [6] etc.  

A variant of evolutionary computing namely the Differential 
Evolution [7-9] is a population based stochastic optimization 
method similar to genetic algorithm [4] that finds an 
increasing interest in the recent year as an optimization 
technique in the identification of nonlinear systems due to its 
achievement of a global minimum. However, a little work has 
been reported on memetic differential evolution learning of 
neural network. Therefore, it attracts the attention of the 
present work for neural network training. In this work, a 
differential evolution hybridized with back propagation has 
been applied as a optimization method for feed-forward neural 
network. Differential Evolution (DE) is an effective, efficient 
and robust optimization method capable of handling nonlinear 
and multimodal objective functions. The beauty of DE is its 
simple and compact structure which uses a stochastic direct 
search approach and utilizes common concepts of EAs. 
Furthermore, DE uses few easily chosen parameters and 
provides excellent results for a wide set of benchmark and 
real-world problems. Experimental results have shown that DE 
has good convergence properties and outperforms other well 
known EAs. Therefore, there is scope of using DE approach to 
neural weight optimization. In comparison to a gradient based 
method differential evolution seems to provide advantage in 
terms convergence speed and finding global optimum. 

In this work, the authors propose a hybrid approach in which 
the local search methods (LM, BP) acts as an operator in the 
global search algorithm in view of achieving global minimum 
with good convergence speed. Here, genetic algorithm, 
particle swarm optimization and differential evolution are 
acting as global search methods which are individually 
combined with BP for training a feed-forward neural network. 
In the proposed scheme, in each generation back-propagation 
acts as an operator which is applied after crossover and 
mutation operator. 

The main contributions of the paper are as follows:  
� The paper proposed a new training paradigm of neural 

networks combining an evolutionary algorithm i.e. DE 
with a local search algorithm i.e. BP for getting faster 
convergence in comparison to only evolutionary 
computation and to avoid the possibility of the search 
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process being trapped in local minima which is the 
greatest disadvantage of local search optimization. 

� BP has been integrated as an operator in global 
searches for optimizing the weights of the neural 
network training enabling faster convergence of the 
EANN employed for nonlinear system identification. 

II.PROPOSED DIFFERENTIAL EVOLUTION BACK-PROPAGATION 
TRAINING ALGORITHM FOR NON-LINEAR SYSTEM 

IDENTIFICATION

In this section, we describe how a memetic differential 
evolution (DE) is applied for training neural network in the 
frame work of system identification (see Algorithm-1). DE 
can be applied to global searches within the weight space of a 
typical feed-forward neural network. Output of a feed-forward 
neural network is a function of synaptic weights w and input 
values , i.e. .The role of BP in the proposed 
algorithm has been described in section I. In the training 
process, both the input vector x and the output vector y are 
known and the synaptic weights in w are adapted to obtain 
appropriate functional mappings from the input x to the 
output  Generally, the adaptation can be carried out by 
minimizing the network error function E which is of the 
form . In this work we have taken E as mean 

squared error i.e.
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number of data considered. The optimization goal is to 
minimize the objective function E  by optimizing the values of 
the network weights, .1( ,.....,

ALGORITHM-1: Differential Evolution Back-Propagation 
(DEBP) Identification Algorithm: 

Step 1. 
Initialize population pop: Create a population from 
randomly chosen object vectors with dimension , where 

 is the number of population 
P

P
1, , max( ,......, ) , 1,......,T

g g P g g g� �P w w

, 1, , , ,( ,......, ) , 1,.......,i g i g d i gw w i� �w P
where  is the number of weights in the weight vector. In 

, i  is index to the population and g is the generation 
to which the population belongs. 

d
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Step 2. 
Evaluate all the candidate solutions inside the pop for a 
specified number of iterations. 

Step 3.  
For each candidate in pop, select the random population 
members, 

thi
� 	1 2 3, , 1, 2,......r r r P


Step 4. 
Apply a mutation operator to each candidate in a population 
to yield a mutant vector i.e. 

� 	
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where “F” denotes the mutation factor. 

Step 5. 
Apply crossover i.e. each vector in the current population is 
recombined with a mutant vector to produce trial vector.  
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Step 6. 

Apply Local Search (back propagation algorithm) i.e. each 
trial vector will produce a lst-trial vector 

� �, , 1 , , 1j i g j i gls t b p t� ��
Step 7. 

Apply selection i.e. between the local search trial (lst-trial) 
vector and the target vector. If the lst-trial vector has an 
equal or lower objective function value than that of its target 
vector, it replaces the target vector in the next generation; 
otherwise, the target retains its place in the population for at 
least one more generation  
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Step 8. 

Repeat steps 1 to 7 until stopping criteria (i.e. maximum 
number of generation) is reached  

III.PROPOSED DIFFERENTIAL EVOLUTION BACK-PROPAGATION 
TRAINING ALGORITHM FOR NON-LINEAR SYSTEM 

IDENTIFICATION

Fig. 1 The laboratory set-up: TRMS system 

The TRMS used in this work is supplied by Feedback 
Instruments designed for control experiments. This TRMS 
setup serves as a model of a helicopter. It consists of two rotors 
placed on a beam with a counterbalance. These two rotors are 
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driven by two d.c motors. The main rotor produces a lifting 
force allowing the beam to rise vertically making the rotation 
around the pitch axis. The tail rotor which is smaller than the 
main rotor is used to make the beam turn left or right around 
the yaw axis. Both the axis of either or both axis of rotation can 
be locked by means of two locking screws provided for 
physically restricting the horizontal and or vertical plane of the 
TRMS rotation. Thus, the system permits both 1 and 2 DOF 
experiments. In this work we have taken only the 1 DOF 
around the pitch axis and identified the system using proposed 
method discussed in section II. The model has three inputs and 
eleven neurons in the hidden layer. The inputs are the main 
rotor voltage at the present time v(t), main rotor voltage at 
previous time v(t-1) and the pitch angle of the beam at previous 
time instant’s(t-1).  

A. Differential Evolution (DE) and Differential Evolution 
Back propagation (DEBP) Identification 

Figure 2-6 shows the identification performance of 1 degree 
of freedom (DOF) vertical DE and DEBP based model. Figure 
2 compares the actual output ,  and identified plant output 

 within the time step of 0 to 500. As the identification 
performances shown in  Figure 2 are overlapping each other, in 
Figure 3 we have shown the results within the time step of 88 
to96. From this it is clear that the proposed DEBP exhibits 
better identification ability compared to DE approach. Fig.4 
and 5 shows the error between the actual and identified model. 
Fig.6 gives the sumsquared error (SSE) where it is found that 
the value of SSE for DEBP is 0.0036 whereas for DE 
identification is 0.0110 
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Figure 2 DE and DEBP identification performance 
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Figure 3 DE and DEBP identification performance 
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Figure 4 Error in modeling (DEBP identification) 
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Figure 6 A comparisons on   the convergence on the sum 
squared error (SSE) (DE, DEBP) 

B. Genetic algorithm (GA) and Genetic algorithm Back 
propagation (GABP) Identification 

Figure 7-11 shows the identification performance of 1 
degree of freedom (DOF) vertical GA and GABP based model. 
Figure 7 compares the actual output ,  and identified plant 
output  within the time step of 0 to 500. As the 
identification performances shown in  Figure 7 are overlapping 
each other, in Figure 8 we have shown the results within the 
time step of 208 to 218. From this it is clear that the GABP 
identification approach exhibits better identification ability 
compared to GA approach. Fig.9 gives the sumsquared error 
(SSE) where it is found that the value of SSE for GABP is 
0.0.0197 whereas for GA identification is 0.0327. Fig.10 and 
11 shows the error between the actual and identified model for 
both the identification scheme.  
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Figure 7 GA and GABP identification performance 
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Figure 8 GA and GABP identification performance 
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Figure 9 A comparisons on   the convergence on the sum 
squared error (SSE) (GA, GABP) 
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Figure 10 Error in modeling (GA identification) 
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Figure 11 Error in modeling (GABP identification) 

C. Particle Swarm Optimization (PSO) and Particle Swarm 
Optimization (PSOBP) Identification 

Figure 12-16 shows the identification performance of 1 
degree of freedom (DOF) vertical PSO and PSOBP based 
model. Figure 12 compares the actual output ,  and 
identified plant output  within the time step of 0 to 500. 
As the identification performances shown in  Figure 12 are 
overlapping each other, in Figure 13 we have shown the results 
within the time step of 87 to 96. From this it is clear that the 
PSOBP approach exhibits better identification ability compared 
to PSO approach. Fig.14 gives the sumsquared error (SSE) 
where it is found that the value of SSE for PSOBP is 0.0235 
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whereas for PSO identification is 0.0505. Fig.15 and 16 shows 
the error between the actual and identified model for both the 
identification scheme.  
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Figure 12 PSO and PSOBP identification performance 
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Figure 13 PSO and PSOBP identification performance 
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Figure 14 A comparisons on   the convergence on the sum 
squared error (SSE) (PSO, PSOBP) 
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Figure 15 Error in modeling (PSOBP identification) 

0 50 100 150 200 250 300 350 400 450 500
-0.06

-0.04

-0.02

0

0.02

0.04

Time step

E
rro

r P
S

O

Figure 16 Error in modeling (PSO identification) 

Finally it has been seen that among all the methods the 

proposed DEBP method is having lowest SSE i.e. 0.0036 

amongst all the methods disused.  

IV. CONCLUSIONS

In this paper we have provided an extensive study of memetic 
algorithms (MAs) applied to nonlinear system identification. 
From the results presented in this paper it has been found that 
the proposed DEBP memetic algorithm applied to neural 
network learning exhibits better result in terms of faster 
convergence and lowest mean squared error (MSE) amongst 
all the six  methods (i.e. GA, GABP, PSO, PSOBP, DE. and 
DEBP). The proposed method DEBP exploits the advantages 
of both the local search and global search. It is interesting to 
note that the local search pursued after the mutation and 
crossover operation that helps in intensifying the region of 
search space which leads to faster convergence. We 
investigated the performance of the proposed version of the 
DEBP algorithm using a  real time multi input multi output 
highly nonlinear TRMS system. The simulation studies 
showed that the proposed algorithm of DEBP outperforms in 
terms of convergence velocity among all the discussed 
algorithms. This shows it is advantageous to use DEBP over 
other evolutionary computation such as GA and PSO in 
nonlinear system identification. 
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