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Abstract— This paper presents combined RLS-Adaline 
(Recursive Least Square and adaptive linear neural network) and 
KF-Adaline (Kalman Filter Adaline) approach for the estimation 
of harmonic components of a power system. The neural estimator 
is based on the use of an adaptive perceptron comprising a linear 
adaptive neuron called Adaline. Kalman Filter and Recursive 
Least Square algorithms carry out the weight updating in 
Adaline. The estimators’ track the signal corrupted with noise 
and decaying DC components very accurately. Adaptive tracking 
of harmonic components of a power system can easily be done 
using these algorithms. The proposed approaches are tested both 
for static and dynamic signal. Out of these two, the KF-Adaline 
approach of tracking the fundamental and harmonic components 
is better.

Keywords-Harmonics Estimation; Adaptive Linear Neural 
Networks(Adaline); Discrete Fourier Transform(DFT); Fast 
Fourier Transform(FFT);  

I. INTRODUCTION 

Due to the introduction of electronically controlled loads, the 
harmonic distortion in power system voltage and current 
waveform is increased. Damped high-frequency transients are 
generated due to frequently switching on and off of power 
semiconductors at   points of voltage and current waveforms. 
So voltage and current waveforms of a distribution or a 
transmission system are not pure sinusoids, but may consist of 
fundamental frequency, harmonics and high frequency 
transients. Also many of power system loads are dynamic in 
nature which implies time varying amplitude of the current 
waveform 

To provide the quality of the delivered power, it is 
important to know the harmonics parameters such as 
amplitude and phase. This is essential for designing filter to 
eliminate or reduce the effects of harmonics in a power system 
[4]. So many algorithms have been proposed to evaluate the 
harmonics [1-2, 4-9, 11-15]. In order to get the voltage and 
current frequency spectrum from discrete time samples, most 
frequency domain harmonic analysis algorithms are based on 
the discrete Fourier Transform (DFT) or on the fast Fourier 
transform (FFT). However, these two methods suffer leakage 
effect [3]. Although other methods, including the proposed 
algorithms in this paper, suffer that problem, and this is due to 
existing high-frequency components in the measured signal, 
but truncation of the sequence of sampled data, when only a 
fraction of the sequence of a cycle exists in the analyzed 
waveform, boost leakage problem of DFT method. So the 

need for new algorithms that process the data, sample-by-
sample, and not a window of data as in DFT and FFT, is of 
importance. Because these methods process data sample-by-
sample, loosing one or more samples creates less leakage 
problems than DFT and FFT.  

Kalman Filter [6, 10, 11, 14-15] is one of the robust 
algorithms for estimating the magnitudes of sinusoids of 
known frequencies embedded in an unknown measurement 
noise. But this algorithm cannot track abrupt or dynamic 
changes of signal and its harmonics. Recently, many 
researchers adopt Artificial Intelligence techniques [1] for 
harmonic estimation. Dash et al. [4] use an algorithm based on 
an adaptive neural network, which shows better tracking 
capability of dynamic amplitude as to that of classic Kalman 
filtering approach. In that algorithm, the weights are updated 
using Widrow-Hoff delta rule. As estimation of harmonic 
parameters is a nonlinear problem, Qidwai and Betayeb [12-
13] use Genetic algorithm (GA), as a heuristic and stochastic 
global searching algorithm for this purpose. This method 
provides excellent results but main disadvantage is that is 
takes more time for convergence.  

II. PROPOSED ALGORITHM
Let us assume the voltage or current waveforms of the known 
fundamental angular frequency �  as the sum of harmonics of 
unknown magnitudes and phases. The general form of the 
waveform is  

�
�

�����
N

n
dcdcnnn ttAtAty

1
)()exp()sin()( ��	�                  (1) 

Where, N is the number of harmonics. 02 fnn 
� � ; is the 

fundamental frequency; 
0f

)(t� is the additive noise; 

)exp( tA dcdc �� is the probable decaying term. 
The discrete time version of Eq. (1) can be represented as  
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Where, is sampling period. sT
Approximating decaying term using first two terms of Taylor 
series as

sdcdcdcdc kTAAy ���                                                      (3) 
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Now Eq. (2) becomes 

�
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1
)()sin()( ��	�          (4) 

The nonlinearity arises in the model is due to phase of the 
sinusoids. Bettayeb and Qidwai used GA for estimating phases 
of the harmonics. Although using GA for estimating phases 
alleviated the mentioned problems but due to introduction of 
GA, the algorithm becomes slow and cannot be used as an 
online estimator. In this paper a fast neural network called 
Adaline is used. The weight of the adaline is updated using 
Recursive Least Square and Kalman Filter algorithm.  

For estimation amplitudes and phases Eq.(4) can be rewritten 
as
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              (5) 

Fig.1 Block diagram of Adaline 

This equation gives an idea of using an adaptive linear 
combiner comprising a neural network called ‘Adaline’ to 
estimate the phases of the harmonics. 
The block diagram of the Adaline is shown in fig.1 
The input to the Adaline is 

T
NN ttttttx ]1)cos()sin(...)cos()[sin()( 11 �� ����              (6) 

The weight vector of the Adaline 
T

NNNN kWkWkWkWkWkWkW )]()()()(...)()([)( 221221221 ����                (7) 
is updated using Recursive Least Square Algorithm as 

)1()1()()1( �����
��

kkKkWkW �                             (8) 
Error in measurement is 

)()1()1()1( kWkxkyk T
�

������                                 (9) 
The gain K is related with covariance of parameter vector  

1)]1()()1(1)[1()()1( ������� kxkPkkxkPkK T	     (10) 
The updated covariance of parameter vector using matrix 
inversion lemma 

)(])1()1([)1( kPkxkKIkP T�����                        (11) 
Taking some initial values for the estimate at instant t 
initializes these equations. As the choice of initial covariance 
matrix is large it is taken P=�I where � is a large number and I
is a square identity matrix. 
The weight vector of the Adaline is updated using Kalman 
Filter Algorithm as 

1))()1/()(()()1/()( ����� QkxkkPkxkxkkPkG TT     (12) 
G  is the Kalman gain, x  is the observation vector, P  is the 
covariance matrix, is the noise covariance of the signal. Q
So the covariance matrix is related with Kalman gain with the 
following equation. 

)1/()()()1/()/( ���� kkPkxkGkkPkkP                     (13) 
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So the updated estimated state is related with previous state 
with the following equation. 

))1/()()()(()1/()/( �����
���

kkWkxkykGkkWkkW            (14) 
After the updating of weight vector using RLS or KF 
algorithm, amplitudes, phases of the fundamental and nth 
harmonic parameters and dc decaying parameters are derived 
as

)( 2
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Because
T

dcdcdcnnnn AAAAAAW ])sin()cos(...)sin()cos([ 1111 �				�        (19) 

III. SIMULATION RESULTS AND DISCUSSIONS 
A. Static signal corrupted with random noise and decaying DC 
component. 

The power system signal used for the estimation, 
besides the fundamental frequency, contains higher harmonics 
of the 3rd, 5th, 7th, 11th and a slowly decaying DC component 
[2]. This kind of signal is typical in industrial load comprising 
power electronic converters and arc furnaces [2].

)()5exp(5.0)3011sin(1.0
)367sin(15.0)455sin(2.0

)603sin(5.0)80sin(5.1)(
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The signal is corrupted by random noise 
)(05.0)( trandt ��  having normal distribution with zero 

mean and unity variance. Fig. 2 and 3 show actual vs. 
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estimated signal using rls-adaline and kf-adaline method 
respectively. It is seen from the fig. that actual and estimated 
signal almost matches with each other in both the cases. Fig. 4 
shows the comparative estimation of fundamental amplitude 
of signal using both rls-adaline and kf-adaline method. In case 
of rls-adaline, estimated amplitude oscillates between 1.47 p.u. 
to 1.51p.u. but kf-adaline estimates fundamental amplitude as 
1.5 p.u. Fig. 5 provides a comparative estimation of third 
harmonic component of signal using the above two methods. 
In the estimation using rls-adaline, during first few initial 
times period estimation is 0.535 p.u. after that it settles around 
0.515 p.u. KF-Adaline estimates third harmonics amplitude as 
0.502 p.u. Fig.6 shows the estimated result of 5th harmonic 
amplitude using both the algorithms. RLS-adaline estimates it 
between 0.19 to 0.22 p.u. having more oscillations during 
initial time period. But the estimated value of fifth harmonic 
component using KF-Adaline is 0.202 p.u. Fig. 7 gives the 
estimated result of 7th harmonic component of signal using the 
two algorithms. RLS-Adaline estimates it around 0.155 p.u. 
but oscillation varies from 0.145 to 0.16 p.u. KF-Adaline 
estimates 7th harmonic component as 0.149 p.u. which is more 
accurate. Fig. 8 provides a comparative estimation of 11th

harmonic component of signal using both the algorithms. 
RLS-Adaline estimates it between 0.09 to 0.13 p.u. with it’s 
oscillations around 0.11 p.u. but KF-Adaline estimates it as 
0.101p.u.  
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Fig.2 Actual and Estimated value of signal using rls-adaline 
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Fig.3 Actual and Estimated value of signal using kf-adaline 
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Fig.4 Estimation of amplitude of fundamental component of signal 
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Fig. 5 Estimation of amplitude of third harmonic component of signal 
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Fig. 6 Estimation of amplitude of fifth harmonic component of signal 
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Fig. 7 Estimation of amplitude of seventh harmonic component of signal 
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Fig. 8 Estimation of amplitude of eleventh harmonic component of signal 
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Fig. 9 Estimation of amplitude of dc component of signal 
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Fig. 10 Estimation of amplitude of alphadc of signal 

Fig. 9 shows the comparative estimation of dc component of 
signal using both the algorithms. Estimated value of signal 
using KF-Adaline is 0.496 p.u. but it’s value using RLS-
Adaline varies from 0.492 to 0.525 p.u. and it settles at 0.495 
p.u. Fig.10 gives the estimated result of alphadc using both the 
algorithms and it shows that estimation using KF-Adaline is 
more accurate. 
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Fig.11 Estimation of phase of fundamental component of signal 
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Fig.12 Estimation of phase of third harmonic component of signal 
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Fig.13 Estimation of phase of fifth harmonic component of signal 
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Fig.14 Estimation of phase of seventh harmonic component of signal 
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Fig.15 Estimation of phase of eleventh harmonic component of signal 
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Fig.16 Estimation of MSE of static signal 
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Fig. 17 Estimation of 3rd harmonic component of signal during amplitude 
change
  Fig. 11-15 show the tracking of the fundamental, 3rd, 5th, 7th

and 11th harmonic component of signal in presence of random 
noise and decaying DC component using RLS-Adaline and 
KF-Adaline methods. In the above estimation process, KF-
Adaline is tuned optimally by properly choosing the 
covariance and noise covariance matrices. The time required 
for trapping the fundamental and harmonic is approximately 
0.02 sec. (20 samples) for RLS-Adaline method but KF-
Adaline traps the fundamental and harmonic components 
initially with more correct estimation. 
  Fig.16 shows the comparative estimation of Mean Square 
Error (MSE) of signal using the two algorithms. From the 
figure, it is found that, MSE performance in case of KF-
Adaline is comparatively better than RLS-Adaline method. 
Fig.17 shows the tracking of 3rd harmonic component of 
signal, when it’s amplitude suddenly changes from 0.5 p.u. to 
0.6 p.u. at 0.05 sec. From the fig., it is seen that both the 
methods track the 3rd harmonic component but tracking by 
KF-Adaline is comparatively better.  

B. Harmonic Estimation of a Dynamic Signal 
To examine the performance of RLS-Adaline 

algorithm in tracking harmonics and its robustness in rejecting 
noise, a time-varying signal of the form  
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is used where: 
tftfa 511 2sin05.02sin15.0 

 ��                              (22) 

tftfa 533 2sin02.02sin05.0 

 ��                              (23) 

tftfa 515 2sin005.02sin025.0 

 ��                         (24) 

0.11 �f Hz Hz. Hz. 0.33 �f 0.65 �f
and random noise )(t� is same as in the case of static 
signal.Fig.18 and 19 show the actual vs. estimated value of 
signal using RLS-Adaline and KF-Adaline respectively. In 
both the cases actual and estimated value closely matches with 
each other. Fig. 20-22 show the tracking of fundamental, 3rd

and 5th harmonic component of amplitude of a dynamic signal 
using both RLS-Adaline and KF-Adaline methods. In all the 
three cases RLS-Adaline provides oscillatory estimation but 
KF-Adaline provides more accurate and consistent 

performance. Fig 23 and 24 show the tracking of fundamental 
and 3rd harmonic component of phases of a dynamic signal 
using both the methods. Both the methods estimates correctly 
but KF-Adaline performance is better having negligible 
oscillations. Fig.25 provides a comparative performance of 
Mean Square Error (MSE) of signal. KF-Adaline performance 
is slightly better in MSE analysis.     
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Fig.18 Actual and Estimated waveforms of dynamic signal using rls-adaline 
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Fig.19 Actual and Estimated waveforms of dynamic signal using kf-adaline 
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Fig.20 Estimation of amplitude of fundamental component of dynamic signal 

0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1
0 . 5 3 3

0 . 5 3 3 5

0 . 5 3 4

0 . 5 3 4 5

0 . 5 3 5

0 . 5 3 5 5

T i m e  i n  s e c .

A
m

pl
itu

de
 in

 p
.u

.

r l s - a d a l i n e
k f- a d a l i n e

Fig.21 Estimation of amplitude of third harmonic component of dynamic 
signal
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Fig.22 Estimation of amplitude of fifth harmonic component of dynamic 
signal
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Fig.23 Estimation of phase of fundamental component of dynamic signal 
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Fig.24 Estimation of phase of third harmonic component of dynamic signal 
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Fig.25 Estimation of MSE of dynamic signal 
The performances of the proposed hybrid algorithms 

are very dependent on the initial choice of weight vector W
and Covariance matrix P . By using an optimal choice of 
weight vector, faster convergence to the true value of signal 
parameter can be achieved. After the optimization of the 
weight vector, online tracking of the changes in amplitudes 
and phases of the fundamental and harmonic components in 
presence of noise and decaying dc components can be carried 

out. Both the algorithms track the fundamental and harmonic 
signals very well for both static and dynamic signal but the 
performance of tracking using KF-Adaline is better than RLS-
Adaline. Both the static and dynamic signals are generated in 
MATLAB platform. The used PC had a 1.46 GHz CPU and 
1GB RAM. The same algorithms can be applied to other areas 
such as communication channels, telephones and other 
encrypted signals. 

     IV. CONCLUSIONS 
This paper presents two new approaches for adaptive 

estimation of amplitudes and phase angles of harmonics in a 
power system. The approaches are based on weight vector 
estimation of an Adaline using Recursive Least Square and 
Kalman Filter algorithms. Comparing with RLS-Adaline, 
simulation results reveal improvement in the performance of 
proposed KF-Adaline in tracking harmonic parameters even in 
presence of white noise and decaying dc components.  
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