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Abstract: The present paper describes use of principal
components for drill wear prediction. It also makes a
comparative analysis in using large sensor based technique
in predicting drill wear. In order to reduce the redundancy
of the network, principal component has been fused with
artificial neural network (ANN) for prediction of drill wear.
Large numbers of experiments have been conducted and
sensor signals have been acquired using data acquisition
system. Cutting force, torque, vibrations along with other
process parameters such as spindle speed, feed rate, drill
diameter, chip thickness and surface roughness have been
used as indicative parameters for characterizing the
progressive wear of drill. Principal component of these input
parameters has been derived thereafter and has been used to
predict the flank wear using BPNN
Keywords-component: Neuron; sensor integration; signal
analysis; design of experiment; flank wear; BPNN;PCA

I. INTRODUCTION

The reason for acquiring the drill wear state information
is to enhance the predictive capability to allow the
machine operator to schedule tool change or regrind just
in time to avoid under use or overuse of tools, avoid
shutdown of machines due to damage, and to minimize
scrap or rework. Drill wear also affects the ability of the
hole cutting system to satisfy specified performance
characteristics, such as hole roundness, centering, burr
formation at drill exit, and surface finish. Wearing action
in the tool is an inevitable phenomenon leading to the loss
of dimensional accuracy and possible damage to the work
piece. Hence, online prediction of cutting tool wear
becomes an important issue for today’s manufacturing
industries.

Many early works on deterioration and failure of drill
have been reported in literature. Altogether different types
of drill wear can be recognized as outer corner wear, flank
wear, margin wear, crater wear, chisel wear and chipping
at the lip as reported by Kanai and Kanda [1]. Some of the
previous works (Chungchoo and Saini [2], Haili et al. [3])
reported that average width of crater and maximum depth
of flank wear could be used as to assess tool failure. It is
relatively common to measure only the thrust or axial
component of force for TCM in drilling as suggested by
Thangaraj and Wright [4]. The spindle and feed motor
current are also used as inputs to the TCM system by
(Ramamurthi and Hough [5]; Liu and Chen [6] used eight
indices of thrust force and torque as input parameters for
drill wear monitoring. Stiffness and damping properties of

the drilling system has no effect on wear as suggested by
Abu-Mahfouz [7]. Vibration monitoring techniques
applied to the detection of drill failure have been reported
by several investigators (Wang et al. [8]; Ko and Cho [9];
Li et al. [10]; Liu and Wu [11]). Liu and Anantharaman
[12] used nine features representing drill condition as input
to multi layer perceptron and found 100% accuracy for
correct classification of drill wear. Sanjay et al. [13] used
drill diameter, feed, cutting speed, time, force and torque
as inputs and flank wear was estimated using different
structures of artificial neural network (ANN).

Since wear of drill related to number of direct and
indirect factors and hence can be considered as dimension
reduction problem (Principal component analysis), a
dimension reduction technique to identify the wear on drill.
Rummel [14] used factor analysis using a mathematical
model to study the human ability. Detailed description of
factor analysis can be found in the relevant literature such
as Kleinbaum et al. [15] approach. Fisher [16] had
developed a linear classification algorithm to transform n
dimensions pattern to 2 dimensions. Hong and Yang [17]
have used a method for constructing a classifier on the
optimal discernment plane by using minimal distance
criterion for multi classification problems.

II. BACK PROPAGATION NEURAL NETWORK

The basic structure of a BPNN having input, hidden and
output layers has been considered in the present work.
The input layer receives information from external
sources, and passes this information to the network for
processing. The hidden layer receives information from
the input layer, and does the information processing. The
output layer receives processed information from the
network, and sends the results to an external receptor. The
input signals are modified by the interconnection weights,
known as weight factor jiw , which represents the
interconnection of ith node of the first layer to jth node of
the second layer. The sum of modified signals (total
activation) is then modified by a sigmoid transfer function.
Batch mode type of supervised learning has been used in
the present case. During training, the predicted output has
been compared with the desired output, and the mean
square error has been calculated. If the mean square error
is more than a prescribed limiting value, it is back
propagated from output to input, and weights are further
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modified till the error or number of iteration are within a
prescribed limit.
Mean square error, pE  for pattern p is defined as
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where, piD is the target output, and piO  is the computed
output for the ith pattern.
Weight change at any iteration t, is given by

( ) ( ) ( 1)Δ = − + × Δ −pW t E t W tη α              (2)                                                                                 
where η  is learning rate, andα momentum parameter.
Entire experimental data set is divided into training set,
testing set and validation set. The error on the testing set
is monitored during the training process. The testing error
normally decreases during the initial phase of training, as
does the training set error. However, when the testing
error starts increasing for a specified number of iterations,
the training is stopped; and the weights at the minimum
value of the testing error are returned. With the trained
network, unseen data set (validation set) are verified and
percentage of variation of predicted output (flank wear)
with respect to the actual output is thus evaluated.

III. PRINCIPAL COMPONENT ANALYSIS

Principal component analysis is a statistical technique
which generated uncorrelated linear combinations of
original variables and account for the total variance and
original data so that adequate information of original data
can be extracted.
In principle, each of the principal components is a linear
combination of the original Y values for the p variables;
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Where, ca,b is the component score coefficient for variable
b on PC axis Za, and Yb is the Y score for variable b.
Principal Component Analysis transforms a multivariate
set of variables (Y1, Y2, ... , Yp) to new variables (Z1,
Z2, ... , Zp) , which are uncorrelated. The first principal
component consists of a principal component coefficient
(αi) for each variable (p) such that there is maximal
variance in the calculated score for each case (n); the
factor score for each case is calculated as α1.Y1 + α2.Y2

+ … + αi.Yi + … αp.Yp where Yi is the centered value for
the ith (Yi - mean Y for the ith variable). The first principal
component axis for the raw variables Y1 is the new axis Z1.
The second principal component consists of the next set
of principal component coefficients (αi) such that there is
a maximal remaining variance in the calculated score for
each case (n), and there is no correlation of the second
principal component with the first. Z2 is the second

principal component axis for Y2. Further sets of principal
components (third, fourth, etc) can be calculated until no
statistical significance can be attributed to that component
(e.g. by χ2 test) or all m principal components are
computed.

IV. EXPERIMENTAL SET-UP

In the present work, a radial drilling machine (Batliboi
Limited, BR618 model) has been used for the drilling
operation. Uncoated HSS drills with different diameters
have been used for drilling holes in mild steel work piece
at different cutting conditions. Different sensory devices
such as dynamometer and vibration analyzer are used for
sensing thrust force signals, torque signals and vibration
signals in the experiments is shown in fig. 1.
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Figure 1 Schematic diagram of the experimental set-up
HSS drill bits with different diameters have been used for
drilling in mild steel work-piece at different cutting
conditions in dry state. Chips are collected during each
cutting condition and average thickness is measured.
Similarly, after each cutting operation surface roughness
of drill hole is measured with help of pocket surface
roughness tester (make Mahr) with maximum roughness
depth 0.2 mμ to 25.3 mμ and maximum stylus force 15.0
mN. In all the drilling operations performed in the present
work, no coolant has been used. Root mean square (RMS)
values of thrust force and torque signal are recorded
through a piezo- electric dynamometer (Kistler, 9272).
Signals from the dynamometer were passed through low
pass filter, amplified through charge amplifier (Kistler,
type 5015 model), and stored in the computer through a
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data acquisition system (Advantech, PCL 818 HG, 16
channel analog to digital (A/D) converter in 16 bit digital
time-discrete, and 100 kHz sampling rate). Two piezo
electric accelerometers (model Bruel & Kjaer, type 4396)
have been used to capture vibration signals. One
accelerometer has been attached on the top surface of the
mild steel specimen to extract feed vibration and other on
the side surface of the mild steel specimen to extract
radial vibration. Signals from accelerometer were passed
through vibration analyzer (Bruel & Kjaer, type 3560 D)
in the frequency range 7 Hz-25.6 kHz. RMS of maximum
amplitude of vibration both in feed and radial direction
were collected through Bruel & Kjaer pulse software
(version 7) and is stored in the computer through data
acquisition system through data recorder (type Bruel &
Kjaer, Type 7701). The optical microscopes along with
Carl-Zeiss software interfacing have been used to
measure flank wear. The maximum flank wear has been
used as the criterion to characterize the drill condition,
and is obtained by measuring the wear at different points
on either of the cutting edges.

V. RESULTS AND DISCUSSION

Drilling operations have been conducted over a wide a
range of cutting condition. Spindle speed has been varied
in the range 315 rpm to 1000 rpm in four steps. Feed rate
has been varied from 0.13 to 0.36 mm/rev in four steps.
High-speed steel (HSS) drills of four different diameters
of (9mm, 10mm, 11mm and 12mm) have been used for
drilling 64 numbers of through holes of 15mm depth for
various combination of spindle speed, feed rate and drill
diameter in mild steel plates.

VI. WEAR PREDICTION BY PCA FUSED NN
In order to extract the principal component, a test
statistics of different variable of sample size of 64 have
been studied. XLSTAT version 6 has been used for
finding of principal components. Table 1 provides the
Eigen values for all nine principal components, with the
percentage of the variance which they explain and their
cumulative percentage of variation explained.
Cumulatively Eigen values one, two and three explain
98.11% of the total variance. Rest of the component
explains only about 1.89% of cumulative variance. Total
3 principal component axes have been considered from
the present work is gauged from the fig. 2 as these three
components explain about 98.11% of the total variance.
Taking consideration of these three principal component
(PCA1, PCA2 and PCA3) which is having all the
variables at different score coefficient. So these three
principal components is now acting as input to neural
network and output is drill flank wear. Now network has
been trained at different condition of learning rate,
momentum coefficient and number of neuron in hidden
layer. Large numbers of runs were given for selecting the
best architecture and table 2 shows only the best and the

second best network in terms of the validation error and
the number of iteration.
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Figure 2 Screen plot
The optimum network architecture in the present case has
been observed to be 3-3-1 with η = 0.1 and α = 0.3.
Variation of mean square error in training and testing with
number of iteration for the optimum network is shown in
fig. 3. After the network has been trained, it has been
validated with unknown data sample. Fig. 4 shows
percentage of error between actual value and the predicted
value and it can be observed that present neural network
of 3-3-1 with η = 0.1 and α = 0.3 predicts the results
within 6.42± % error.
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Figure 3 Variation of mean square error with number of
iteration of 3-3-1 with η = 0.1 and α = 0.3
This optimum network is later on used for classifying the
new set of pattern of low wear and high wear. Hence in
the same experimental environment another 64 test data
(32 data in low range of wear and 32 data in high range of
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Table 1 Variance of Eigen values

Value PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 PC 8 PC 9
Eigen value 0.302 0.149 0.096 0.006 0.003 0.002 0.000 0.000 0.000
Variance (%) 54.127 26.799 17.189 1.056 0.523 0.271 0.024 0.009 0.003
Cumulative
variance (%)

54.127 80.926 98.115 99.170 99.694 99.964 99.988 99.997 100.00

Table 2 Optimum network architectures for PCA based BPNN

Architecture
L-M-N η α Iteration

MSE
training

MSE
testing

Maximum
Validation error (%)

0.1 0.3 13010 0.000664 0.000631 6.42
0.1 0.7 5578 0.000666 0.000631 6.44
0.3 0.3 4336 0.000665 0.000631 6.43
0.3 0.7 1868 0.000668 0.000631 6.46
0.5 0.1 2426 0.000871 0.000944 8.51

3-3-1

0.5 0.5 1861 0.000667 0.000631 6.45
0.1 0.1 13665 0.000469 0.000479 9.45
0.1 0.5 7685 0.000465 0.000477 9.43
0.1 0.9 1486 0.000506 0.000529 7.06
0.3 0.1 4614 0.000464 0.000477 9.42
0.3 0.3 3596 0.000469 0.000476 9.44
0.5 0.7 938 0.000486 0.000498 8.03
0.5 0.9 327 0.000516 0.000676 7.8
0.7 0.5 1114 0.000493 0.000497 7.59

3-5-1

0.7 0.7 564 0.000545 0.000591 6.78
0.1 0.1 11773 0.000406 0.000512 7.39
0.1 0.7 3921 0.000407 0.000514 7.39
0.1 0.9 1343 0.000399 0.000535 7.22
0.3 0.1 3944 0.000402 0.000512 7.36
0.3 0.3 3045 0.000408 0.000513 7.4
0.5 0.1 2124 0.000525 0.000518 7.9
0.5 0.3 1756 0.000518 0.00055 7.45
0.7 0.3 1192 0.000452 0.000483 8.638785
0.7 0.5 838 0.000531 0.000523 7.845272
0.7 0.7 509 0.000529 0.000522 7.834434

3-8-1

0.9 0.7 392 0.000381 0.00053 8.833469
0.1 0.1 11084 0.00045 0.000523 7.261126
0.1 0.5 6151 0.000451 0.000522 7.262812
0.1 0.7 3681 0.000454 0.000519 7.265948
0.3 0.3 2868 0.000452 0.000517 7.230488
0.3 0.5 2061 0.000449 0.000511 7.15226
0.5 0.3 1613 0.000497 0.000454 7.957349
0.5 0.5 1158 0.000534 0.00048 7.74159
0.7 0.5 829 0.000515 0.000452 8.904967

3-12-1

0.9 0.5 650 0.000484 0.000443 8.814713
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wear) were selected. The classification accuracy of the
network was calculated by taking the number of correctly
classified sample by the network and divided by the total
number of sample into the test data is represented as
confusion matrix in table 3. Table 3 shows that
classification accuracy of the network on average is
approximately 90%.
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Figure 4 Comparison of Predicted value with actual value
of 3-3-1 with η = 0.1 and α = 0.3
Table 3 Confusion matrix for wear classification

VII. CONCLUSION

From the present study following conclusions have been
made.
Generalized Conclusions:
(i) Direct process parameters such as spindle speed,
feed rate, and drill diameter, has definitive effect on
progressive flank wear of the drill.
(ii) Wear on the drill (condition of the drill) affects the
sensor signals such as thrust force, torque, vibration and
hence these could be used in the drill wear prediction,
(iii) Drill wear (condition of the drill) also affects the
chip thickness as well as the surface roughness and hence
thickness of the chip and the surface roughness could also
be used as indicative parameters for prediction of drill
condition.
Derived Conclusions:

(iv) Nine input variable could be better represented by
three principal component
(v) PCA based BPNN architectures took approximately
13000, iteration to predict the drill flank wear within
± 6.5% error band.
(vi) Network could able to classify low wear and high
wear within an accuracy of 90%.
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