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Abstract

In this paper, we determine the critical time, when a weak discontinuity in the shal-
low water equations culminates into a bore. Invariance group properties of the governing
system of partial differential equations (PDEs), admitting Lie group of point transforma-
tions with commuting infinitesimal operators, are presented. Some appropriate canonical
variables are characterized that transform equations at hand to an equivalent form, which
admits non-constant solutions. The propagation of weak discontinuities is studied in the
medium characterized by the particular solution of the governing system.
Keywords: Shallow water equations: Group theoretic method; Exact solution; Weak
discontinuity

1 Introduction

For nonlinear systems, we do not have the luxury of complete exact solutions; for analytic
work we have to rely on some approximate analytical or numerical methods which may
be useful to set the scene and provide useful information towards our understanding of the
complete physical phenomena involved. Special exact solutions of a system of nonlinear PDEs
are of great interest; these solutions play a major role in designing, analyzing and testing
of numerical methods for solving special initial / or boundary value problems. One of the
most powerful methods in order to determine particular solutions to PDEs is based upon the
study of their invariance with respect to one parameter Lie group of point transformations
[1]. Indeed the invariance reduces the number of independent variables by one. Besides
similarity methods, another use of Lie point symmetries admitted by a given system of
PDEs consists in introducing some invertible point transformations that map the original
system to an equivalent one admitting special solutions [2]. A different approach has been
described by Oliveri and Speciale [3-4] for unsteady equations of perfect gases and ideal
magnetogasdynamic equations using substitution principles. Ames and Donato [5] obtained
solutions for the problem of elastic-plastic deformation generated by torque , and analyzed the
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evolution of weak discontinuities in a state characterized by invariant solutions. In the present
paper, we consider the propagation of weak discontinuities in a medium characterized by the
particular solution, and determine the critical time when a weak discontinuity culminates
into a bore.

2 Lie Group Analysis

The system of equations which governs the one dimensional shallow water equations, can be
written as [6]

ut + uux + 2ccx = 0,

ct + (c/2)ux + ucx = 0, (2.1)

where u is the x-component of fluid velocity and c =
√

gh is the speed of propagation of
surface disturbance in water of variable depth h subjected to an acceleration due to gravity
g. The independent variables t and x denote time and space respectively.

Using a straight forward analysis, it is found that the system (2.1) admits the group Y =
α1X1+α2X2+α3X3, where α1, α2 and α3 are arbitrary constants and X1 = x ∂

∂x +u ∂
∂u +c ∂

∂c ,
X2 = t ∂

∂x + ∂
∂u and X3 = t ∂

∂t−u ∂
∂u−c ∂

∂c . We introduce canonical variables τ , ξ, U and C such
that Y τ = 1, Y ξ = 0, Y U = 0, and Y C = 0. This implies that when α3 6= 0 and α1 6= α3, we
have

τ =
1
α3

ln(t), ξ = (x− α2t

α3 − α1
)t−α1/α3 , C(τ, ξ) = ct(α3−α1)/α3 ,

U(τ, ξ) = (u− α2

α3 − α1
)t(α3−α1)/α3 . (2.2)

In terms of these new canonical variables, the system (2.1) becomes

∂U

∂τ
+ α3(U − α1

α3
ξ)

∂U

∂ξ
+ 2α3C

∂C

∂ξ
+ (α1 − α3)U = 0,

∂C

∂τ
+ α3(U − α1

α3
ξ)

∂C

∂ξ
+

α3C

2
∂U

∂ξ
+ (α1 − α3)C = 0. (2.3)

The system of equations (2.3) satisfies a particular solution of the form

U =
2ξ

3
, C =

ξ

3
. (2.4)

Thus, in view of (2.4) and (2.2), the solution of the system (2.1) is as follows;

u =
2x

3t
+

α2

3(α3 − α1)
, c =

1
3
(
x

t
− α2

(α3 − α1)
). (2.5)

It is interesting to observe that the above solution, in particular for α2 = 0, is identical
with the solution given in Akyildiz [7] using a different approach. It may be remarked that
the state such as this, where the particle velocity exhibits linear dependence on the spatial
coordinate, has been discussed by Pert [8], Sharma et al. [9] and Clarke [10]; Pert has shown
that such a form of velocity distribution is useful in modelling the free expansion of polytropic
fluids, and is attained in the large time limit.
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3 Evolution of Weak Discontinuities

The governing system (2.1) can be written in matrix form

Wt + AWx = 0, (3.1)

where W = (h, u)T is a column vector with superscript T denoting transposition, while A is
a 2 × 2 matrix with elements A11 = A22 = u, A12 = 2c and A21 = c/2. The matrix A has
the eigenvalues

λ(1) = u− c, λ(2) = u + c (3.2)

with the corresponding left and right eigenvectors

l(1) = (1,−2), r(1) = (2,−1)T ,

l(2) = (1, 2), r(2) = (2, 1)T . (3.3)

The evolution of weak discontinuity for a hyperbolic quasilinear system of equations satisfying
the Bernoulli’s law has been studied quite extensively in the literature (see, [11-13]). The
transport equation for the weak discontinuities across the ith characteristic of a hyperbolic
system of n equations of the type (3.1) is given by (see, [13])

l
(i,k)
0 (

dΛi

dt
+ (W0x + Λi)(∇λi)0Λ) + ((∇l(i,k))0Λi)T dW0

dt

+(l(i,k)
0 Λi)((∇λi)0W0x + λi

0x) = 0, (3.4)

where the coefficient matrix possesses q distinct eigenvalues λi, i = 1, 2, 3, ..., q, assumed to
be ordered so that λ(1) < λ(2) < λ(3) < .. < λ(q−1) < λ(q) with multiplicities mi, such that∑q

i=1 = n, together with n linearly independent left and right eigenvectors l(i,k) and r(i,k),
k = 1, 2, 3, ..,mi, corresponding to the eigenvalues λ(i). Here, the subscript 0 refers to the
state ahead of the ith characteristic curve, and

Λi =
mi∑

k=1

αi
k(t)r

(i,k)
0 (3.5)

is the jump in Wx across the ith characteristic curve with α
(i)
k being the amplitude of the

weak discontinuity wave propagating along dx/dt = λ(i). For the system under consideration,
Λ2 = αr(2) denotes the jump in Wx across the weak discontinuity wave with amplitude α,
propagating along the curve determined by dx/dt = λ(2) originating from the point (x0, t0).
Then, on using (3.1), (3.3) and (3.5) in (3.4), we obtain the following Bernoulli type equation
for the amplitude α

dα

dt
+ 3α2 + (

11
4

ux +
7
2
cx)α = 0. (3.6)

In view of the particular solution (2.5), the above equation becomes

dα

dt
+ 3α2 +

3
t
α = 0, (3.7)
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which yields on integration

α =
α0

η((1 + k)η2 − k)
, (3.8)

where α0 is the value of α at t = t0, k = (3t0α0)/2 and η = t/t0. Eqn (3.8) shows that if
α0 > 0 then α → 0 as η →∞, implying thereby that the wave decays and dies out eventually;
the corresponding situation is illustrated by the curve in Fig.1. However, if α0 < 0 it follows
from (3.8) that there are two possibilities:
(a) Let |α0| ≤ 2

3t0
. Then α is finite and nonzero for η < ∞ and α → 0 as η → ∞ implying
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Figs. (1-3): Variation of amplitude with η for different values of α0

thereby that the wave decays, the corresponding situation is illustrated by the curve in Fig.2
with − 2

3t0
≤ α0 < 0.

(b) Let |α0| > 2
3t0

. Then there exists a finite time ηc > 1, given by ηc =
√

k
1+k , such that

α is finite, nonzero and continuous on [1, ηc) and |α| → ∞ as η → ηc. This signifies the
appearance of a bore at an instant ηc; indeed, weak discontinuity wave culminates into a bore
in a finite time only when the initial discontinuity associated with the wave exceeds a critical
value. The corresponding situation is illustrated by the curve in Fig.3 with α0 < − 2

3t0
< 0.

4 Conclusions

Lie group analysis is used to obtain an exact solution of partial differential equations that
describe one dimensional shallow water equations. The particle velocity described by the
exact solution is useful in modelling the free expansion of polytropic fluids, and is attained in
the large time limit (see, [8-10]). The evolution of weak discontinuities in a state characterized
by the exact solution is studied. It is shown that a weak discontinuity wave culminates into
a bore after a finite time, only if the initial discontinuity associated with it exceeds a critical
value i.e., α0 < − 2

3t0
< 0 (see, Fig. 3). However, when − 2

3t0
< α0 < 0 or α0 > 0, in both the

cases the wave decays eventually (see, Figs. 1-2).
To our knowledge, an analytical description towards achieving a detailed comprehension

of the wave interaction problem involving bores and weak discontinuity waves has not been
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studied. In order to study this problem, we need to know an exact solution of the system
(2.1) satisfying the Rankine-Hugoniot jump conditions that hold on the bore; a search for
such a solution using the approach outlined in this paper is currently under way.
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