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SUMMARY

The paper presents an intelligent technique for high impedance fault (HIF) detection using combined extended kalman filter (EKF) and support
vector machine (SVM). The proposed approach uses magnitude and phase change of fundamental, 3rd, 5th, 7th, 11th and 13th harmonic
component as feature inputs to the SVM. The Gaussian kernel based SVM is trained with input sets each consists of ‘12’ features with
corresponding target vector ‘1’ for HIF detection and ‘�1’ for non-HIF condition. The magnitude and phase change are estimated using EKF. The
proposed approach is trained with 300 data sets and tested for 200 data sets including wide variations in operating conditions and provides excellent
results in noisy environment. Thus, the proposed method is found to be fast, accurate, and robust for HIF detection in distribution feeders.
Copyright # 2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Faults on power distribution feeders are difficult to detect [1,2] using conventional over current, ground fault relays and some

versions of distance relaying schemes. Diversity, uncertainties, selectivity, suitability and operational constraints introduce

malfunction, limitations and detection errors in case of high impedance faults (HIF). This is notable when remote source loading,

fault resistance non-linearity, capacitive line currents, mutual coupling, and back-feed effects are taken into consideration. HIF

faults [3,4] are usually characterized by the ripple rich current harmonic content due to non-linearity and thus are abnormal events

that frequently occur in distribution feeders. There are two types of HIFs: the active faults and the passive ones. Active faults are

followed by electric arc and present currents below the threshold of the protection relays. Normally, these currents decay with time

until the complete extinction of the arc [5]. The majority of the techniques used to detect active HIFs make use of signals generated

by the electric arc (harmonic and non-harmonic components) [6–9]. However, the arc may vanish even before the detection system

gathers enough information to confirm the fault. Passive faults do not present an electric arc. They are more hazardous to people

since there is no indication of the energization condition of the conductor. Due to presence of low or no current in HIF, the

conventional over-current protection system normally fails to detect the same. Thus, it is a challenging issue to detect the HIF and

isolate the feeder.

A.-R. Sedighi et. al. [10] presented a combined wavelet transform and soft computing application to HIF classification. This work

includes feature extraction using wavelet transform and then classification using soft computing methods. HIF detection using neo-

fuzzy systems [11], uses an artificial neuron set, composed of ‘neo-fuzzy’ neurons, and is trained to recognize the standard

responses. In another work, earth faults with high impedance earthing in electrical distribution networks are characterized [12]. In

the occurrence of disturbances, the traces of phase currents, voltages, neutral currents, and voltages were recorded at two feeders at

two substations. The study dealt with the clearing of earth faults, relation between short circuits and earth faults, arc extinction,
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arcing fault characteristics, appearance of transients, and magnitudes of fault resistances. The above works finds limitations as

wavelet transform is highly prone to noise and provides erroneous results even with noise of SNR 30 [13] dB. The fuzzy-neural

networks are sensitive to system frequency-changes, and require large training sets and training time. Also the HIF detection

technique [14] based on first fourier transform (FFT) and decision tree suffers when subjected noisy environment and subsequently

in real time applications.

This paper presents a new approach for HIF detection using support vector machine (SVM). An SVM [15–19] is a relatively new

machine learning method that optimizes model on training data by solving a quadratic program (QP). In essence, an SVM finds the

maximal separating hyperplane in feature space. It is computationally efficient because the transformation to feature space need not

be done explicitly because dot products in feature space can be represented by kernel functions. The SVM-based classification is a

modern machine learning method that is rarely used in fault classification even if it has given superior results in various classification

and pattern recognition problems such as in text categorization [20] or phoneme recognition [21]. Currently, there exist only a few

publications that concentrate on developing fault diagnostic methods based on SVM techniques [22–25].

SVM has advantages over traditional approaches such as neural networks for the following reasons.
Co
1. G
pyri
ood generalization performance – once it is presented with a training set, it is able to learn a rule, which can correctly classify

a new object quite often.
2. C
omputational efficiency – it is efficient in terms of speed and complexity.
3. R
obust in high dimensions – in general, dealing with high-dimensional data is difficult for a learning algorithm because of

over-fitting. One of the major reasons for attracting much attention is that SVMs are more robust to this over-fitting than other

algorithms.
Apart from above advantages over conventional techniques for classification, SVM is highly suitable for classifying overlapping

data sets close to each other by constructing a suitable optimal hyperplane. Thus, in the proposed study SVM is selected for

classifying HIF signals from non-HIF signals.

This paper proposes HIF detection using SVM based on statistical learning theory. The SVM uses amplitude and phase change of

fundamental, 3rd, 5th, 7th, 11th, and 13th harmonic component of the HIF current (as High impedance faults generate high

frequency [3] signals superimposed on the fundamental 50Hz frequency), extracted using extended kalman filter (EKF), as feature

inputs to result ‘1’ for HIF detection and ‘�1’ for non-HIF condition. The parameters of the SVM kernel function are selected after

five-fold cross validation process. The SVM is tested for HIF detection with wide variations in operating conditions including load

switching, capacitor switching, and transformer inrush currents.
2. EXTENDED KALMAN FILTER (EKF) FOR HARMONIC ESTIMATION

The EKF is a nonlinear time domain stochastic estimator that provides an efficient estimation of the harmonic components of fault

currents during a high impedance fault, characterized by the ripple rich current harmonic content due to non-linearity. Due to the

nature of the filter, the Kalman gain is independent to the measurements, thus as the filter approaches steady state, it becomes less

sensitive to parameter variations and begins to lose its ability of tracking time varying parameters. For optimum filtering results the

a priori knowledge of the process noise covariance matrixQ and measurement noise covariance matrix R are required. However, in

actual practice these matrices are unknown and hence by trial and error these matrices are chosen for optimal tracking results.

Besides during dynamic changes that occur during a fault, both Q and R are updated by formulas given in the following section.

The advantage of EKF is that it is a recursive means to estimate the state of a process, in a way that minimizes the mean of the

squared error. The filter is very powerful in several aspects and supports estimations of past, present, and even future states, and it

can do so even when the precise nature of the modeled system is unknown. The FFT method, which is non-recursive technique,

cannot handle signals with partial disturbances (noise), nor can these methods be applied to nonuniformly sampled signals.

Let the discrete signal which contains fundamental and harmonics along with a decaying DC component is represented by the

model (such components are generated during a high impedance fault) given below

Zk ¼ A1 sinðkwTs þ ’Þ þ A2 sinð3kwTs þ ’Þ þ A3 sinð5kwTs þ ’Þ þ A4 sinð7kwTs þ ’Þ þ A5 sinð11kwTs þ ’Þ

þ A6 sinð13kwTs þ ’13Þ þ A0e
�akTS (1)
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The discrete signal can be represented in state space as

xkþ1 ¼ Fk xk (2)

Where

xkð1Þ ¼ A1 cosf; xkð2Þ ¼ A1 sinf;
xkð3Þ ¼ A2 cosf; xkð4Þ ¼ A2 sinf;
xkð5Þ ¼ A3 cosf; xkð6Þ ¼ A3 sinf;
xkð7Þ ¼ A4 cosf; xkð8Þ ¼ A4 sinf;
xkð9Þ ¼ A5 cosf; xkð10Þ ¼ A5 sinf;

xkð11Þ ¼ A6 cos f; xkð12Þ ¼ A6 sinf

xkð13Þ ¼ e�TS ; xkð14Þ ¼ A0e
�kTS

(3)

and the state transition matrix is given by

Fk ¼

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 e�kTs

2
66666666666666666666664

3
77777777777777777777775

(4)

The observation matrix is given by

Gk ¼ ½sinðkwTsÞ cosðkwTsÞ;
sinð3kwTsÞ cosð3kwTsÞ;
sinð5kwTsÞ cosð5kwTsÞ;
sinð7kwTsÞ cosð7kwTsÞ;
sinð11kwTsÞ cosð11kwTsÞ;
sinð13kwTsÞ cosð13kwTsÞ; 0; 1�

(5)

Literalizing the above system, the AEKF algorithm is obtained as follows

_
xk=k ¼

_
xk=k þ KkðZk �Hkxk=k�1Þ (6)

Zk ¼ Hk xk (7)

Where Hk ¼
@G

dx

����
k;k�1

¼

xð1ÞkTs cosðwkTsÞ � xð2ÞkTs sinðwkTsÞ
xð3ÞkTs cosð3wkTsÞ � xð4ÞkTs sinð3wkTsÞ
xð5ÞkTs cosð5wkTsÞ � xð6ÞkTs sinð5wkTsÞ
xð7ÞkTs cosð7wkTsÞ � xð8ÞkTs sinð7wkTsÞ
xð9ÞkTs cosð11wkTsÞ � xð10ÞkTs sinð11wkTsÞ
xð11ÞkTs cosð13wkTsÞ � xð12ÞkTs sinð13wkTsÞ

0

1

2
66666666664

3
77777777775

(8)
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The Kalman filter gain Kk is obtained as

Kk ¼
_
PK=K�1H

T
k Hk

_
Pk=k�1H

T þ R
� ��1

(9)

_
Pk=k ¼ Pk=k�1 � KkHk

_
Pk=k�1 (10)

_
Pkþ1=k ¼ Pk=k þQ (11)

where Q is the covariance matrix and R is the measurement noise covariance.

To improve the performance of the EKF, the measurement error covariance is updated in the followingmanner. The expression for

R is obtained as the error between observed and estimated values of xk as

R ¼ ðzk �Hk
_
xkÞT ðzk �Hk

_
xkÞ (12)

The error covariance R is recursively updated as

Rk ¼ lkRk�1 þ ð1� lkÞe2k (13)

where lk is forgetting factor given by

lk ¼
1

1þ RðkÞ=R0j j (14)

where R0 is the initial error covariance R

Further, the model error covariance matrix Q is adapted by using a covariance function ce as

cek ¼ lq � cek�1 þ ð1� lqÞ � ek � ek�1 (15)

If ce(k)> ceth, Q¼Q1, and ce(k)< ceth, Q¼Q0

where Q0 is the model error covariance and Q1 is a new value of Q and Q1 > aQ0;a > 1, and ceth is the threshold value of error

covariance.

Another possible adaptation Qk is obtained as

Qk ¼ ð1� aqÞ �Qk�1 þ aq � Pk�1 � PT
k�1 � cek (16)
3. SUPPROT VECTOR MACHINE FOR CLASSIFICATION

The SVM is firmly grounded in the framework of statistical learning theory, which characterizes the properties of learning machines

enabling them to generalize well to unseen data. In SVM, original input space is mapped into a high-dimensional dot product space

called a feature space, and in the feature space the optimal hyperplane is determined to maximize the generalization ability of the

classifier. SVMs have the potential to handle very large feature spaces, because training of SVM is carried out so that the dimension

of classified vectors does not have as distinct an influence on the performance of SVM as it has on the performance of conventional

classifiers. That is why it is noticed to be especially efficient in large classification problems. Also, SVM-based classifiers are

claimed to have good generalization properties compared to conventional classifiers, because in training the SVM classifier, the so-

called structural misclassification risk is to be minimized, whereas traditional classifiers are usually trained so that the empirical risk

is minimized. SVM is compared to the RBF neural network in an industrial fault classification task [23], and it has been found to give

better generalization.

Considering the n-dimensional input xi (i¼ 1. . .. . .M,M is the number of samples) belong to class I or II and associated labels be

yi¼ 1 for Class I and yi¼�1 for Class II, respectively. For linearly separable data, we can determine a hyperplane f(x)¼ 0 that
Copyright # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power (2009)
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Figure 1. f(x) as a separating hyperplane lying in a high-dimensional space. Support vectors are inside the circles.

HIGH IMPEDANCE FAULT DETECTION IN DISTRIBUTION
separates the data

f ðxÞ ¼ wTxþ b ¼
Xn
k¼1

wkxk þ b ¼ 0 (17)

where ‘w’ is an n-dimensional vector and ‘b’ is a scalar. The vector ‘w’ and the scalar ‘b’ determine the position of the separating

hyperplane. Function sign ( f(x)) is also called the decision function. A distinctly separating hyperplane satisfies the constraints

f ðxiÞ � 1 if yi ¼ þ1 and results in

yi f ðxiÞ ¼ yiðwT xi þ bÞ � 1 for i ¼ 1 . . . . . .M (18)

The optimal separating hyperplane decides the maximum margin, the maximum distance between the plane and the nearest data.

An example of the optimal separating hyperplane of two datasets is presented in Figure 1. From the geometry, the geometrical

margin is found to be jjwjj�2
. Taking into account the noisewith slack variables ji and error penaltyC, the optimal hyperplane can be

found by solving the following convex quadratic optimization problem,

minimize

1
2

wk k2þC
PM
i¼1

ji

subject to

yi w
Txi þ bð Þ � 1� ji; for i ¼ 1:::::::M

ji � 0; for all i

(19)

where ji is measuring the distance between the margin and the examples xi lying on the wrong side of the margin. The calculations

can be simplified by converting the problemwith Kuhn–Tucker conditions into the equivalent Lagrange dual problem, which will be

maximize

WðaÞ ¼
PM
i¼1

ai � 1
2

PM
i;k¼0

aiakyiykx
T
i xk

subject to PM
i¼1

yiai ¼ 0;C � ai � 0; i ¼ 1::::;M

(20)

The number of variables of the dual problem is the number of training data. Let us denote the optimal solution of the dual problem

with a� andw�. According to the Karush–Kuhn–Tucker theorem, the inequality condition in (18) holds for the training input–output
Copyright # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power (2009)
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(feature and label) pair xi, yi only if the associated a
�
is not 0. In this case, the training example xi is a support vector (SV). Usually,

the number of SVs is considerably lower than the number of training samples making SVM computationally very efficient. The

value of the optimal bias b
�
is found from the geometry

b� ¼ � 1

2

X
SVs

yia
�
i s�1xi þ sT1xi
� �

(21)

where s1 and s2 are arbitrary support vectors (SVs) for class I and II, respectively. Only the samples associated with the SVs are

summed, because the other elements of optimal Lagrange multiplier a
�
are equal to zero.

The final decision function will be given by

f ðxÞ ¼
X
SVs

aiyix
T
i xþ b� (22)

Then unknown data example ‘x’ is classified as follows:

x 2 Class � I if f ðxÞ � 0

Class � II Otherwise

�
(23)

SVM can also be used in nonlinear classification tasks with application of kernel functions. The data to be classified is mapped

onto a high-dimensional feature space, where the linear classification is possible. Using a nonlinear vector function

fðxÞ ¼ ðf1ðxÞ � � �fmðxÞÞ;m >> n to map the ‘n’-dimensional input vector ‘x’ into the ‘m’ dimensional feature space, the linear

decision function in dual form is given by

f ðxÞ ¼
X
SVs

aiyif
TðxiÞfðxÞ (24)

Working in the high-dimensional feature space enables the expression of complex functions, but it also generates problems.

Computational problems occur due to the large vectors and the danger of overfitting also exists due to the high dimensionality. The

latter problem is solved with application of the maximal margin classifier, and so-called kernels give solution to the first problem.

Notice that in (24) as well as in the optimization problem (19), the data occur only in inner products. A function that returns a dot

product of the feature space mappings of original data points is called a kernel,Kðx; zÞ ¼ fTðxÞ fðzÞ. Applying a kernel function, the
learning in the feature space does not require explicit evaluation of f. Using a kernel function, the decision function will be

f ðxÞ ¼
X
SVs

ai
�yiKðxi xÞ (25)

and the unknown data example is classified as before. The values of Kðxi; xjÞ over all training samples i, j¼ 1. . .M from the kernel

matrix, which is a central structure in the kernel theory. Mercer’s theorem [26] states that any symmetric positive-definite matrix can

be regarded as a kernel matrix. The radial basis function (RBF)machines have the inner product kernel which maps the data from the

original input space into a potentially higher dimensional feature space where linear methods may then be used. The RBF kernel

which returns the dot product of two arguments ‘x’ and ‘z’ is given as

Kðx; zÞ ¼ exp � x� zj j2

2s2

( )
(26)

Where ‘s’ is the width of the Gaussian function.
4. SYSTEM STUDIED

The system studied in the proposed research is shown in Figure 2a. The feeders are from 138/25 kV substation transformer which is

connected from a 138 kV transmission line of 100 km line length. The loads (lagging pf of 0.8) and shunt capacitors are also

connected as shown in the figure. The HIF faults are created on the distribution feeder as shown in the figure. The HIF model is
Copyright # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power (2009)
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Figure 2. a) System studied. b) High-impedance fault model. c) Typical HIF current.

HIGH IMPEDANCE FAULT DETECTION IN DISTRIBUTION
developed using anti-parallel diodes with non-linear resistance and DC source connected together for each phase as shown in

Figure 2b. Both linear and rectifier loads are connected for load switching purpose. The simulation models are developed using

Power System Blokset (SIMULINK) and the sampling rate chosen is 960Hz on a 60Hz base frequency. The typical HIF fault

current is shown in Figure 2c.

The different simulation conditions taken into considerations are as follows
Co
� T
py
hree-phase load change from 20–60%, 30–70%, 60–110%, 20–110% in forward and reverse way.
� O
ne-phase load change 30–70%, 20–50%, 40–80%, 40–110%, 20–100% in forward and reverse way.
� T
ransformer enrgization at different timings in the cycle slot (16 instances in one cycle).
� T
he above changes are made with change in infinite source phase angle of 0 to 1208, with a span of 108.

� S
hunt capacitors are switched on and off.
� T
he above changes are made under varying conditions in the HIF model by varying the DC source voltages by �25–25% in a

step of 5%. The central voltage also varies from 2000 to 10 000 V with a step of 1000 V.
right # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power (2009)
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From the above operating conditions 500 test cases are simulated, out of which 300 cases are used for training the SVM and rest

200 cases are used for testing purpose.

The proposed technique is also tested with a standard mesh type distribution network as shown in Figure 4, supplied from two

separate three-phase sources through transmission line and transformers. The transmission lines are 138 kVand the transformers are

50MVA supplying at138/25 kV to the distribution network. The distribution feeders (pi sections of 20 km each) work at 25 kVand

connected with shunt capacitors, linear loads, and 2MVA 6-pulse rectifier load (non-linear load). The resistance, inductance and

capacitance of positive and zero sequence of transmission lines are R1¼ 0.01273 ohm/km; X1¼ 0.9337mH/km; C1¼ 0.0012mF/

km, and R0¼ 0.3864 ohm/km; X0¼ 4.1264mH/km; C0¼ 0.0075mF/km, respectively. The resistance, inductance and capacitance

of distribution lines (pi-section) are R1¼ 0.2568 ohm/km; X1¼ 2.0mH/km; C1¼ 0.0086, respectively. The total impedance

percentage of the transformers is 6.75% and the frequency of the system is 60Hz. Total number of HIF and non-HIF conditions are

simulated on distribution feeders are 500, out of which 300 are used for training and 200 for testing purpose (100 for HIF and 100 for

non-HIF).
5. PROPOSED HIF DETECTION SCHEME

5.1. Harmonic component extraction using EKF

The proposed scheme is shown as in Figure 3a. The HIF current is processed through EKF and required components are extracted. In

this case magnitude and phase change of fundamental, 3rd, 5th, 7th, 11th, and 13th harmonic component are estimated using EKF. In

the proposed study, theQ (Covariance matrix) andR (Measurement noise covariance) are selected as 0.001 and 0.05 respectively for

estimating harmonic components. As seen in Figure 3b, the harmonics are estimated within almost one cycle (16 samples). Thus, the

estimated values of magnitude and phase change at the end of one cycle (17th sample) are considered as inputs to the SVM. The

estimated harmonic components are in per unit (pu) system and shown with respect to samples. Thus, there are 12 features selected

to be used as input features against one target output for one case. There are 500 cases simulated under various operating conditions

of the distribution network. Out of which 300 cases are used to train and 200 cases are used to test the designed SVM. In the training

set, 100 HIF conditions and 200 are non-HIF conditions are taken in to consideration. Like wise in the testing data set, 100 cases are

of HIF conditions and 100 cases are of non-HIF conditions are considered.
5.2. HIF detection using SVM

In the proposed study, Gaussian kernel based SVM is used for designing the HIF detector. The bound on the Lagrangian multipliers

‘C’ is selected 5.0 and the conditioning parameter for QP method, lambda is chosen as 1.0 � e-5. The value of width of the Gaussian
function ‘s’ is selected as 1.5. All the above parameters are selected after cross validation process [27,28]. In this study five-fold

cross validation technique is used to get the final parameter selection. In the training 300 data sets are divided into 5 sub sets each

having 60 data sets for cross validation process. Thus, it is 5-fold cross validation process used in the proposed study for parameter

selection.

The results from the proposed approach for radial distribution feeder is depicted in Table I. In testing, 200 cases are considered,

out of which 100 are HIF and rest 100 are non-HIF conditions. It is found that the proposed SVM is able to classify 98% in case of

HIF testing and 100% for non-HIF testing cases. Also the SVM is tested in noisy conditions with SNR up to 20 dB. In case of noisy

data, the classification rates are 96 and 99% for HIF and non-HIF testing conditions, respectively. The results for HIF detection for

the mesh distribution network are depicted on Table III. The HIF detection rate is 96% and for non-HIF is 100. For noisy conditions

with SNR 20 dB, the classification rates for HIF and non-HIF are 94 and 98%, respectively. Thus, the proposed scheme is able to

detect HIF for a standard mesh distribution network with possible HIF and non-HIF conditions.

Similar comparisons are made with other existing techniques such as FFTwith Decision tree (FFTþDT) andWavelet Transform

with Radial Basis Function Neural Network (RBFNN) (WAVELETþRBFNN) as shown in Table II. While comparing the results

with the above techniques it is found that the earlier approaches suffer in case of data sets with and without noise. In all cases 100

HIF cases are considered for testing purposes. It is found that EKFþ SVM provide 98% classification accuracy, while FFTþDT

and WAVELETþRBFNN provide 92% and 89% classification accuracy, respectively. In case of noisy environment, the
Copyright # 2009 John Wiley & Sons, Ltd. Euro. Trans. Electr. Power (2009)
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Figure 3. a) Proposed HIF detection scheme. b) Harmonic components from Extended Kalman Filter.

HIGH IMPEDANCE FAULT DETECTION IN DISTRIBUTION
classification accuracy suffers to a larger extent for other two approaches. For testing data with SNR up to 20 dB, the proposed

EKFþ SVM provides 96% classification accuracy, while FFTþDTandWAVELETþRBFNN provide 87% and 82% classification

accuracy, respectively. Thus, it is observed that the performance of other approaches is degraded heavily in presence of noise.

In another comparison, performance of FFTþ SVM and EKFþRBFNN is also found out, and compared with FFTþDT and

EKFþ SVM, respectively. While comparing, it is found that, EKFþRBFNN provides HIF detection rate of 95% compared to 98%

by EKFþ SVM. Similarly, FFTþ SVM provide HIF detection rate of 93% compared to 92% by FFTþDT. Similar observations are

made for noisy environment. The comparison results of HIF detection for mesh distribution network are depicted in Table IV. It is

found from the above observation that EKF and SVM provide better results in feature extraction and classification compared to

existing conventional techniques.
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Table I. Testing Results for radial distribution network.

Actual
class

No. of
cases

No. of cases for
HIF detection
Class-I (1)

No. of cases for
non-HIF detection

Class-II (�1)

No. of
misclassification

Classification rate %

Data from simulation without noise
I 100 98 2 2 98
II 100 0 100 0 100

Data from simulation with SNR 20 dB
I 100 96 4 4 96
II 100 1 99 1 99
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Figure 4. 25 kV meshed power distribution network.

Table II. Performance comparison with the existing methods.

Methods No. of cases No. of cases for HIF detection No. of misclassification Classification rate %

Data from simulation without noise
EKFþ SVM 100 98 2 98
EKFþRBFNN 100 95 5 95
FFTþDT 100 92 8 92
FFTþ SVM 100 93 7 93
WAVELETþRBFNN 100 89 11 89

Data from simulation with SNR 20 dB
EKFþ SVM 100 96 4 96
EKFþRBFNN 100 93 7 93
FFTþDT 100 87 13 87
FFTþ SVM 100 89 11 89
WAVELETþRBFNN 100 82 18 82
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Table III. Testing Results for meshed distribution network.

Actual
class

No. of
cases

No. of cases for
HIF detection
Class-I (1)

No of cases for non-HIF
detection Class-II (�1)

No. of
misclassification

Classification
rate %

Data from simulation without noise
I 100 96 4 4 96
II 100 0 100 0 100

Data from simulation with SNR 20 dB
I 100 94 6 6 94
II 100 2 98 2 98

Table IV. Performance comparison with the existing methods for meshed distribution network.

Methods No. of cases No. of cases for HIF detection No. of misclassification Classification rate %

Data from simulation without noise
EKFþ SVM 100 96 4 96
EKFþRBFNN 100 94 6 94
FFTþDT 100 90 10 90
FFTþ SVM 100 91 9 91
WAVELETþRBFNN 100 87 13 87

Data from simulation with SNR 20 dB
EKFþ SVM 100 94 6 94
EKFþRBFNN 100 92 8 92
FFTþDT 100 86 14 86
FFTþ SVM 100 87 13 87
WAVELETþRBFNN 100 80 20 80

HIGH IMPEDANCE FAULT DETECTION IN DISTRIBUTION
6. CONCLUSIONS

The proposed study provides a new technique for HIF detection using EKF and Support Vector Machine. The magnitude and phase

change are extracted using EKF, which are used as input features to the designed SVM. The results obtained from the proposed

technique were compared with the existing techniques and provides excellent results under noisy conditions also. The SVM based

technique has been tested under wide variations in network operating conditions including load change, in rush and switching conditions

and found to be accurate and robust for HIF detection, and thus can be extended for HIF detection in large power distribution network.

7. LIST OF SYMBOLS
F(x) O
Copyright #
ptimal separating hyperplane
ji S
lack variable
C E
�

rror penalty
b O
ptimal bias
K(x, z) K
ernel function
Fk S
tate transition matrix
Gk O
bservation matrix
Kk K
alman filter gain
Q C
ovariance matrix
R M
easurement noise covariance
lk F
orgetting factor
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