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Differential evolution computation applied to
parameter estimation of induction motor

BIDYADHAR SUBUDHI and DEBASHISHA JENA

Control of induction motor drive system requires an exact knowledge of its parameters.
Efficient parameter estimation techniques are essential to obtain the parameters such as stator
and rotor resistances, leakage and magnetizing inductances, because any mismatch between the
actual and computed parameter values may lead to detoriation of control performance of the
induction motor drive. In this paper, the differential evolution (DE) strategy - a global opti-
mizer has been exploited for estimation of the above parameters of the induction motor. The
main focus of the paper is on the application of the DE strategies to parameter estimation of an
induction machine drive system based on the information of its input and output data, where
input data comprises the stator voltages and the output data comprises the stator currents. Five
different DE strategies were employed for implementing the induction motor parameter estima-
tion schemes. Comparison of the results obtained through an extensive simulation studies on
parameter estimations provide an idea how to choose an efficient estimator and to use them for
efficiently control the drive.
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1. Introduction

Modeling the dynamical properties of a system is an important step in analysis and
design of a control systems. Modeling often results in a parametric model of the system
which contains several unknown parameters. Experimental data are needed to estimate
the unknown parameters.

A rich variety of estimation procedures were reported in literature for induction mo-
tor parameter estimation [1-3]. The simultaneous estimation of induction machine pa-
rameters and states are presented in [4-6]. The use of linear techniques based on the
dynamic model of the induction motor is proposed in [7]. The use of ANNs and neuro-
fuzzy methods for induction motor parameter estimation were proposed respectively in
[8] and [9]. The extended Kalman filter has been employed to accomplish the joint es-
timation of the state variables and the machine parameters [10, 11]. The on-line tuning
of the stator resistance, stator inductance, transient inductance, and rotor resistance has
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been discussed in [12-14]. An interesting approach for tuning the rotor resistance is
proposed in [15] based on model reference adaptive system schemes. All these investi-
gations demonstrate that the performance of the drive can be improved through accurate
estimation of the machine parameters. Generally, induction motor parameter estimation
methods can be classified into five different categories, depending on the data availability
and the way they are used.

The method of calculating parameters of the motor from the manufacture data of the
motor requires a detailed knowledge of the machine’s construction, such as geometry
and material parameters. It is the most accurate procedure, since it is closely related
to the physical reality but is an expensive method since it is based on field calculation
methods, such as the finite element method [16].

Parameter estimation based on steady-state motor models uses iterative solutions
based on induction motor steady-state network equations [17-19]. This is the most com-
mon type of parameter estimation for system studies since the data needed for this is
usually available.

The frequency-domain method of parameter estimation is basically a stand-still fre-
quency response method that is based on measurements that are performed at standstill.
The motor parameters are estimated from the resulting transfer function. This method
cannot be used very often because of its high computational cost in the process of trans-
formation from time domain to frequency domain. In fact, stand-still tests are not com-
mon in industry practice.

In the time-domain parameter estimation method, the time-domain motor measure-
ments are performed and model parameters are adjusted to match the measurements.
Since not all parameters can be observed using measurable quantities, the motor models
need to be simplified [20]. The method is costly, and the required data is usually not
available.

The real-time parameter estimation method is concerned with the tuning of the con-
trollers of induction motor drive systems. This requires real-time parameter estimation
techniques, using simplified induction motor models that are fast enough to continuously
update the motor parameters and therefore prevent the detuning of induction machine
controllers [21, 22].

The objective of the parameter estimation of induction motor is to determine a math-
ematical model of the motor with sufficient accuracy. To develop robust methods for
parameter estimation, it is important to quantify the information content about machine
parameters on measured signals. This is of particular importance when we restrict only
to electrical terminal quantities, such as stator voltages and currents. Most of the existing
parameter estimation methods such as Least Mean Square (LMS) and Recursive Least
Square (RLS) methods use the regressor equation i.e.

Y = XT θ+ ε

where Y is the output vector, X is the regressor matrix, θ is the parameters to be estimated
and ε is the system noise. However, difficulties are encountered in the above regression
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equation and in turn this method may be a viable choice for all situations in induction
motor parameter estimation problems. Therefore, we explore an alternative way of solv-
ing the parameter estimation problem by using evolutionary method i.e. the DE which
does not require the description of regression equation for parameter estimation.

The differential evolution [23, 24] is a population based stochastic optimization
method that finds an increasing interest in the recent year for optimization techniques
in the science and engineering communities due to its achievement of a global mini-
mum. Therefore, it attracts the attention of the present work for neural network training.
In this work a differential evolution has been applied as a global optimization method for
feed-forward neural networks. In comparison to a gradient based methods such as gra-
dient descent, Levenberg Marquardt algorithm differential evolution seems to provide
advantage in terms of better optimal search.

The main contributions of this paper are as follows.

• Instead of being confronted with difficulties in finding expressions to represent the
system by Y = XT θ+ ε, the DE method estimates the parameters directly.

• An extensive study on finding of an efficient DE strategy with a view of obtaining
faster convergence for parameter estimation of induction motor has been pursued.

The rest paper is organized as follows. Section II includes a brief review on dynamics
of induction motor. Section III gives an overview of the DE algorithm and its variants,
In Section IV results are included to verify the effectiveness of the proposed DE based
estimation method. Finally a brief conclusion is presented in section VI.

2. A brief review of induction motor dynamics

Although there are many models to describe induction motors, most of them highly
complex and not suitable to be used in control. Also, since modern induction motor con-
trol is field oriented, d-q models will be analyzed. An excellent presentation on available
model types can be found in [34]. The classical induction motor model (used in most
control schemes) has identical d and q axis circuits. Since the classical model is a fourth
order system with 6 elements of storage (inductances) the model can be reduced to a
simpler model without any loss of information [34].

The following notations are used throughout the paper:

vds, vqs – stator voltages in stationary reference frame,
ids, iqs – stator currents in stationary reference frame,
λdr, λqr – rotor fluxes in stationary reference frame,
Lls, Lms – leakage and magnetizing inductance for stator,
Llr, Lmr – leakage and magnetizing inductance for rotor,
Rs, Rr – stator and rotor resistances.
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Figure 1. (a) Equivalent circuit in d-q stationary frame. (b) Equivalent circuit in d-q stationary frame.

Figure 2. (a) Reduced equivalent circuit in d-q stationary frame. (b) Reduced equivalent circuit in d-q
stationary frame.

Fig. 1 shows the classical induction motor model (used in most control schemes)
has identical d and q axis circuits. Fig. 2 shows the reduced induction motor model used
in this work in stationary reference frame. Since the core loss resistance is much larger
than the rotor resistance, it is neglected in this part of modeling. The following basic
equations of induction machine can be derived

dλqr

dt
= npωrλdr−ηλqr +ηLmiqr (1)

dλqr

dt
= npωrλdr−ηλqr +ηLmiqr (2)

dλdr

dt
=−npωrλqr−ηλdr +ηLmidr (3)
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diqs

dt
= −βnpωrλdr +ηβλqr− γiqs +

1
σLs

vqs (4)

dids

dt
= βnpωrλqr +ηβλdr− γids +

1
σLs

vds (5)

where:
η = 1

TR
= Rr

Lm
– is inverse of the rotor time constant,

σ = 1− Lm
Ls

– leakage coefficient,
β = 1

Ll
– inverse of leakage inductance,

γ = Rs+Rr
Ll

– inverse of stator time constant,
np – number of poles pairs.

Equation (1)-(5) can be written in state variable form as

Ẋ = AX +BU (6)

and the output equation is
Y = CX (7)

where
X = [iqs ids λqr λdr] ,

A =




−Rs+Rr
Ll

0 Rr
LlLm

− ωr
Ll

0 − Rs+Rr
Ll

ωr
Ll

Rr
LlLm

−Rr 0 − Rr
Lm

ωr

0 Rr −ωr − Rr
Lm




,

B =
1
Ll




1 0
0 1
0 0
0 0




, C =

[
1 0 0 0
0 1 0 0

]
,

U =

[
vds

vqs

]
.

3. Problem formulation

The induction motor given in equations (7, 8) can be written in compact form as:

Ẋ = f (θ , X , u), y = g(X , θ) (8)
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where f and are nonlinear functions

θ =
[

Rs Rr L1 Lm

]T
, u = [v1 v2 v3]T

X = [iqs ids λqr λdr]
T , y = [i1 i2 i3]T

In Fig.3, we present the parameter scheme of the induction motor drive system,
where the optimization is to be performed using the DE algorithm.

Figure 3. Parameter estimation scheme for induction motor drive system.

The error e between model and measurements can be calculated as

e =

√
N

∑
k=1

(
∧
ids(k)− ids(k)

)2

+
(
∧
iqs(k)− iqs(k)

)2

(9)

where ∧ stands for estimated values. The objective of the estimation problem is to de-
termine θ such that the error given in equation (9) is minimized.

Assumptions: In our model, we assume that the load torque TL is zero, which elimi-
nates the load torque as an additional input.

4. A brief review on differential evolution considered for parameter estimation

In a population of potential solutions to an optimization problem within an n-
dimensional search space, a fixed number of vectors are randomly initialized, then
evolved over time to explore the search space and to locate the minima of the objec-
tive function.

DE uses a greedy and less stochastic approach to problem solving than the other
evolutionary algorithms. DE combines simple arithmetical operators with the classical
operators of recombination, mutation and selection to evolve from a randomly gener-
ated starting population to a final solution. The fundamental idea behind DE is a scheme
whereby it generates the trial parameter vectors. In each step, the DE mutates vectors
by adding weighted, random vector differentials to them. If the cost of the trial vector
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is better than that of the target, the target vector is replaced by the trial vector in the
next generation. There are several variants of DE [25]which can be classified using the
notation DE/x/y/z, where x specifies the vector to be mutated, y is the number of differ-
ence vectors used and z denotes the crossover scheme. x can be ’rand’ (randomly chosen
population vector) or ’best’ (the best vector from the current population). y will be equal
to 1, for one difference vector and will be equal to 2 for two difference vector. z is ’exp’
for exponential crossover and ’bin’ for binomial crossover. Using this notation, the basic
DE-strategy can be written as follows.

• DE/best/1/exp

• DE/rand/1/exp

• DE/rand-to-best/1/exp

• DE/best/2/exp

• DE/rand/2/exp

Next we explain the working steps involved in employing a DE cycle as follows.

Step 1: Parameter setup
The user chooses the parameters of population size, the boundary constraints of opti-
mization variables, the mutation factor (F), the crossover rate (CR), and the stopping
criterion of maximum number of iterations (generations), G.

Step 2: Initialization of the population
Set generation G = 0. Initialize a population of i = 1, NP individuals (real-valued
D-dimensional solution vectors) with random values generated according to a uniform
probability distribution in the D dimensional problem space. These initial values are
chosen randomly within user defined bounds.

Step 3: Evaluation of the population
Evaluate the fitness value of each individual of the population.

Step 4: Mutation operation (or differential operation)
Mutation is an operation that adds a vector differential to a population vector of individ-
uals. For each target vector a mutant vector is produced using the following formula

vi,G = xr1,G + F(xr2,G− xr3,G ) (10)

where i,r1,r2,r3 ∈ {1,2, . . . ,NP} are randomly chosen and must be different from each
other. In equation (10), is the mutation factor, which controls the amplification of the
difference between two individuals so as to avoid search stagnation and is usually taken
from the range [0,1].
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Step 5: Recombination operation
Following the mutation operation, recombination is applied to the population. Recom-
bination is employed to generate a trial vector by replacing certain parameters of the
target vector with the corresponding parameters of a randomly generated donor (mutant)
vector. There are two methods of recombination in DE, namely, binomial recombina-
tion and exponential recombination. In binomial recombination, a series of binomial
experiments are conducted to determine which parent contributes which parameter to
the offspring. Each experiment is mediated by a crossover constant, CR, (0 ¬CR ¬ 1).
Starting at a randomly selected parameter, the source of each parameter is determined
by comparing CR to a uniformly distributed random number from the interval [0,1). If
the random number is greater than CR, the offspring gets its parameter from the target
individual; otherwise, the parameter comes from the mutant individual. In exponential
recombination, a single contiguous block of parameters of random size and location is
copied from the mutant individual to a copy of the target individual to produce an off-
spring. A vector of solutions are selected randomly from the mutant individuals when
rand j, (rand j ∈ [0,1] is a random number) is less than CR.

t j,i,G =

{
v j,i,G if (rand j ¬ CR) or j = jrand

x j,i,G otherwise

j = 1,2, · · · ,D, where D is the number of parameters to be optimized.

Step 6: Selection operation
Selection is the procedure of producing better offspring. If the trial vector ti,G has an
equal or lower value than that of its target vector, xi,G it replaces the target vector in the
next generation; otherwise the target retains its place in the population for at least one
more generation.

xi,G+1 =

{
ti,G if f (ti,G)¬ f (xi,G)
xi,G otherwise

Once new population is installed, the process of mutation, recombination and se-
lection is replaced until the optimum is located, or a specified termination criterion is
satisfied, e.g., the number of generations reaches a preset maximum Gmax.

At each generation, new vectors are generated by the combination of vectors ran-
domly chosen from the current population (mutation). The upcoming vectors are then
mixed with a predetermined target vector. This operation is called recombination and
produces the trial vector. Finally, the trial vector is accepted for the next generation if it
yields a reduction in the value of the objective function. This last operator is referred to
as a selection.

Fig.4 shows a two dimensional objective function that illustrates the different vec-
tors, on which differential evolution is applied. It shows the process of generating trial
vector for the scheme explained in equation (10).

Fig.5 provides a simple pseudo-code for the implementation of a differential evolu-
tion strategy.
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Figure 4. Two dimensional objective functions.

Figure 5. Pseudo code for Differential Evolution Algorithm.

5. Results and discussion

Simulation Setup
The parameter estimation schemes as described in Section 4 have been applied to the
induction motor by using the input-output data i.e. the stator voltage (transformed d-q
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axis, equation) and the stator current (d-q transformed, equation) to estimate motor
resistance and inductance.

Table 1. Parameters of the induction motor drive

Voltage 220 V

Power 5 Hp

Frequency 50 Hz

Stator resistance 0.39 W

Rotor resistance 0.22 W

Leakage inductance 0.006 H

Magnetizing inductance 0.068 H

RPM 1750 rpm

All the five variants of the DE schemes (described in Section 4) for identifying the
motor parameters, RS, Rr, Ll and Lm have been implemented using the common set-up
for DE given in Table 2.

Table 2. Parameters for DE simulation

Total sampling number, T 500

Population size, S 20

Upper and lower bound of stator resistance [0,1]
Upper and lower bound of rotor resistance [0,1]
Upper and lower bound of leakage inductance [0,1]
Upper and lower bound of magnetizing inductance [0,1]
Mutation constant factor, F 0.6

Cross over constant, CR 0.5

Estimation of stator resistance
Figures 6-10 present the estimation results obtained with using five different DE strate-
gies as mentioned earlier. The actual and the estimated stator resistances are shown in
Fig. 6, Fig. 7, Fig.8, Fig.9 and Fig.10 for Strategy 1; Strategy 2; Strategy 3; Strategy 4;
and Strategy 5 respectively. In all the cases, the estimated value of the stator resistance
approaches to its actual value (0.39W), but the time of convergence was different for
these five strategies.
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Figure 6. Stator resistance estimation performance by Strategy-1.

Figure 7. Stator resistance estimation performance by Strategy-2.

Figure 8. Stator resistance estimation performance by Strategy-3.
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Figure 9. Stator resistance estimation performance by Strategy-4.

Figure 10. Stator resistance estimation performance by Strategy-5.

Estimation of rotor resistance
Figures 11-15 show rotor estimation performances obtained with five different strate-
gies. In all the cases, the value of the estimated rotor resistance approaches to the actual
rotor resistance, 0.22 W but with different time of convergence as shown in Table 3.

Estimation of leakage inductance
Figures 16-20 show the estimated and actual leakage inductances for all the five variants
of DE discussed previously.

Estimation of magnetizing inductance
Figures 21-25 show the estimated and actual leakage inductance curves for five DE
strategies considered as above.
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Figure 11. Rotor resistance estimation performance by Strategy-1.

Figure 12. Rotor resistance estimation performance by Strategy-2.

Figure 13. Rotor resistance estimation performance by Strategy-3.
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Figure 14. Rotor resistance estimation performance by Strategy-4.

Figure 15. Rotor resistance estimation performance by Strategy-5.

Figure 16. Estimation performance for leakage inductance by Strategy-1.
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Figure 17. Estimation performance for leakage inductance by Strategy-2.

Figure 18. Estimation performance for leakage inductance by Strategy-3.

Figure 19. Estimation performance for leakage inductance by Strategy-4.
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Figure 20. Estimation performance for leakage inductance by Strategy-5.

Figure 21. Estimation performance for magnetizing inductance by Strategy-1.

Figure 22. Estimation performance for magnetizing inductance by Strategy-2.
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Figure 23. Estimation performance for magnetizing inductance by Strategy-3.

Figure 24. Estimation performance for magnetizing inductance by Strategy-4.

Figure 25. Estimation performance for magnetizing inductance by Strategy-5.
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Comparison of Squared Errors with Different DE Strategies
In Figures 26-30, we present squared error versus time curves for the five DE variants
considered. It is clear from Figs. 26-30 that out of the five schemes, i.e. DE/best/1/exp
scheme has the lowest MSE and achieves faster parameter convergence. Hence this
scheme is considered as the best amongst the five DE schemes for estimating the motor
parameters.

Table 3 shows the comparison of the performance of all the five strategies of dif-
ferential evolution considered in this paper in terms of time of convergence, number
of function evaluation and no of iterations. The maximum number of iteration taken
was 150 where as different strategies reached to particular stopping criteria at different
iterations. The first strategy i.e. DE/best/1/exp converged at the minimum number of
iteration and function evaluation.

Figure 26. Squared error Strategy-1.

Figure 27. Squared error Strategy-2.
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Figure 28. Squared error Strategy-3.

Figure 29. Squared error Strategy-4.

Figure 30. Squared error Strategy-5.



24 B. SUBUDHI, D. JENA

Table 3. Comparison of performance of five strategies

Strategy Time of convergence No of No of function
(in seconds) iteration evaluation

DE/best/1/exp 117.408 80 1600

DE/rand/1/exp 317.826 140 2800

DE/rand-to-best/1/exp 197.091 87 1740

DE/best/2/exp 324.045 140 2800

DE/rand/2/exp 330.37 150 3000

6. Conclusion

The main purpose of this work was to determine the suitability of the evolutionary
computation (EC) approach to overcome the difficulties encountered in employing the
conventional parameter estimation techniques such as LMS and RLS (see the description
made in the introduction section). The success of DE on this problem certainly under-
lines that it is a promising approach to estimate the parameters of the induction motor
drive using real motor data. The approach can be easily extended to similar problems.

In the paper, we have demonstrated the application of the differential evolution algo-
rithm for efficiently solving the identification problem of an induction motor. We have
considered five different DE formulations towards estimating the parameters i.e. stator
and rotor resistances, leakage inductance and magnetizing inductance of the Induction
Motor Drive System. The problem of expressing the induction motor parameter estima-
tion system by the regressor equation Y = XT θ + ε has been rightly resolved by using
the DE method and estimate of parameters obtained directly.

From the results presented in Section 5 it is pertinent that for a given induction motor,
the unknown parameters can be successively evolved accurately using the DE approach
proposed in the paper. After having studied the performances of the five different DE
variants we conclude that the strategy, DE/best/1/exp gives the better result in terms of
faster convergence time and accuracy in estimating parameters.
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