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ABSTRACT

Purpose: In this work, fatigue crack propagation life of 7020 T7 and 2024 T3 aluminum alloys under the influence 
of load ratio was predicted by using artificial neural network (ANN).
Design/methodology/approach: Numerous phenomenological models have been proposed for predicting 
fatigue life of the components under the influence of load ratio to take into account the mean load effect.
Findings: In current research, an automatic prediction methodology has been adopted to estimate the constant 
amplitude loading fatigue life under the above condition by applying artificial neural network (ANN).
Practical implications: ANNs show great potential for predicting fatigue crack growth rate especially by 
interpolation within the tested range. However, its benefit is lost when the model is needed to extrapolate the 
available experimental data.
Originality/value: The predicted results are found to be in good agreement with the experimental findings when 
tested on two aluminum alloys 7020 T7 and 2024 T3 respectively.
Keywords: Fatigue crack growth rate; Artificial Neural Network; Constant amplitude loading
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1. Introduction 
 

Most load bearing structural components generally contain 
defects / imperfections either as a result of manufacturing, 
fabrications or localized damage in service. Under different 
loading conditions, these defects coalesce and develop into large 
cracks, which propagate to critical size resulting catastrophic 
failure. The mere presence of a crack does not make a component 
or structure to be unreliable. Whatever may be the loading 

condition, whether cyclic or sustained loading, it is necessary to 
know how long a crack would take to grow to a critical size at 
which the component or structure would become unsafe and fail. 
Therefore, the crack growth studies and life prediction procedure 
under fatigue loading is essential in order to extend the life of in-
service sophisticated components so as to provide huge savings. 

It is known that load ratio (R) has a marked effect on fatigue 
crack growth rate. During last four decades, many prediction 
models have been proposed to incorporate the effect of R-ratio 
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including crack closure model [8], models based on residual 
compressive stress [13,15,] two-parameter driving force models 
[6,14] etc. However, automatic life prediction based on soft-
computing methods such as artificial neural network (ANN), 
genetic algorithm (GA) etc is lacking. In the current investigation, 
an attempt has been made to predict fatigue life under the 
influence of R-ratio by using ANN. It is observed that the 
predicted results are in good agreement with the experimental 
findings. 

 
 

2. Experimental procedure 
 
 This research was carried out on 7020 T7 and 2024 T3 
aluminum alloys. A summary of chemical compositions and 
mechanical properties of both the alloys have been presented in 
Tables 1 and 2 respectively. The fatigue crack growth tests were 
performed using single edge notch tension (SENT) specimen 
with a thickness of 6.48 mm. The specimens were made in the 
LT plane, with the loading aligned in the longitudinal direction. 
Fig. 1 illustrates the major dimensions of the SENT samples 
used in the tests.  A servo-hydraulic dynamic testing machine 
(Instron-8502) having a load capacity of 250 KN was used for 
the present investigation. Fatigue pre-cracking was introduced 
under mode I loading condition to an a/w ratio of 0.3 and were 
subjected to constant load amplitude test maintaining six load 
ratios (R) of 0, 0.2, 0.4, 0.6 and 0.8 respectively for both the 
materials.  All fatigue tests were run at a frequency of 6 Hz with 
a sinusoidal wave form under ambient laboratory condition. 
Crack lengths were measured using a compliance method with a 
COD gauge and were also controlled using an optical method 
with a 20X magnification. The stress intensity factors at every 
instant ahead of the crack tip were calculated by using the 
following equations [4]: 
 

wB
aFgK ).(f  (1) 

where,  
f(g) = 1.12-0.231(a/w)+10.55(a/w)2-21.72(a/w)3+30.39(a/w)4 (2) 
 
 

 
 

Fig. 1. Geometry of the SENT specimen (dimensions in mm) 
 
 
Table 1.  
Chemical Composition of 7020 T7 and 2024 T3 aluminum alloys 
Materials Al Cu Mg Mn Fe Si Zn Cr Others 
7020 T7  Main 

constituent 
0.05 1.2 0.43 0.37 0.22 4.6 - - 

2024 T3  90.7– 94.7  3.8 – 4.9 1.2–1.8 0.3 – 0.9 0.5 0.5 0.25 0.1 0.15 

 
 
 
Table 2.  
Mechanical Properties of 7020 T7 and 2024 T3 aluminum alloys 
Materials Tensile strength 

 ( ut) 
MPa 

Yield    strength 
( ys) 
MPa 

Young’s modulus 
 (E) 
MPa 

Poisson’s ratio 
  ( ) 

Plane Strain Fracture 
toughness 
 (KIC) 
MPa m

Elongation  

7020 T7  352.14 314.70 70,000 0.33 50.12    21.54 % 
in 40 mm 

2024 T3  469.00 324.00 73,100 0.33 37.00  19 %  
in 12.7 mm  

 

 

3. Artificial neural network approach 
 

Artificial neural network (ANN) is a new class of 
computational intelligence system, useful to handle various 
complex problems with a capacity to learn by examples. It has 
proved to be a powerful and versatile soft-computing method 
which is quite efficient in modeling complex linear and non-linear 
relationships on the basis of experimental data in a number of 
engineering fields [1,3,11,16,18]. In recent years, ANN finds its 
application in the field of fatigue for various purposes 
[2,5,9,12,19,20,22]. It can be categories as feed forward or 
recurrent depending on the processing of data through the 
network. According to the learning rules, it can be further 
classified as supervised, unsupervised or reinforcement ANN. 
Among the various classifications, multi-layer perceptron (MLP) 
is the most popular ANN architecture as far as engineering 
application is concerned. MLPs are generally used with feed 
forward neural networks trained with error-back propagation 
algorithm (error minimization technique). Various non-linear 
activation functions such as sigmoidal, tanh or radial (Gaussian) 
are used to model the neuron activity. 
 
 

4. Design of an ANN model for crack 
growth rate prediction 
 
 In the present investigation, a nine-layer perceptron ANN 
with back-propagation neural controller [10] has been developed. 
It has got one input layer, one output layer and seven hidden 
layers. The input layer has got three neurons, whereas one neuron 
has been associated with output layer. The neurons associated in 
the seven hidden layers are twelve, twenty four, hundred, thirty 
five and eight respectively. The neurons have been chosen 
empirically and taken in order so as to give the neural network a 
diamond shapes (Fig. 2). 
 

 
 

Fig. 2. ANN architecture 

 The input parameters to the neural network controller are as 
follows: 
Stress intensity factor range = “sifr”; Maximum stress intensity 
factor = “msif”; Load ratio = “lr”. 

The output from the controller is:  
Crack growth rate = “cgr” 
 The proposed ANN has been written in the C++ programming 
language and all the training tests have been performed on a 
personal computer. The activation function chosen in this work is 
the hyperbolic tangent function: 

xx

xx
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During training, the network output actual, may differ from the 
desired output desired as specified in the training pattern presented 
to the network. A measure of the performance of the network is 
the instantaneous sum-squared difference (error) between desired 
and actual for the set of presented training patterns:  

2
actualdesiredrr 2

1

patterns
training
all

E

   (4) 
where actual represents crack growth rate (“cgr”) 
 The two crack driving forces: stress intensity factor range 
( K) and maximum stress intensity factor (Kmax) have been 
chosen as the two inputs as per ‘Unified Approach’ [6,7,14,21]. 
The third input is the load ratio (R) as the fatigue crack growth 
rate (da/dN) varies with the load ratio. The crack growth rate has 
been chosen as the output for the present ANN model. As far as 
normalization of input and output parameters are concerned, 
classical normalization, where the range is scaled between 0 and 
1, may not be applicable in every ANN model. To make the input 
amenable for successful learning to minimize the overall sum-
squared error, the two input parameters K and Kmax have been 
normalized between 1 and 4, while the other one, load ratio (R) 
has been normalized between 1 and 3. Similarly the output 

N
a

d
d  

has been normalized between 0 and 3 for network training and 
testing. The inputs and outputs of the training sets (TS) have been 
constituted from 3× 65 experimental values of K, Kmax and 

N
a

d
d data for each of the load ratios 0, 0.2, 0.4, 0.6, and 0.8 for 

both the alloys. 
 
 

5. Results 
 
 
5.1 Experimental results 
 

The experimental values of crack length versus number of 
cycles for various load ratios (R) have been illustrated in Figs. 3 and 
4 respectively for both the materials. The crack growth rate, 

N
a

d
d has been calculated by incremental polynomial method as 

per ASTM1. The results have been plotted against stress intensity 
factor ( K) in Figs. 5 and 6. 

2.	� Experimental procedure
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Fig. 3. Comparison of a ~ N curves for different load ratios  
(7020 T7 alloy) 
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Fig. 4. Comparison of a ~ N curves for different load ratios  
(2024 T3 alloy) 
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Fig. 5. Comparison of da/dN ~ K curves for different load ratios 
(7020-T7 alloy) 
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Fig. 6. Comparison of da/dN ~ K curves for different load ratios 
(2024-T3 alloy) 
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Figure 7. Comparison of predicted (ANN) and experimental crack 
growth rate with stress intensity range ( K) for load ratio 0.5 
(7020 T7 alloy) 
 

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

1.60E-02

1.80E-02

2.00E-02

8.5 13.5 18.5 23.5 28.5 33.5
Stress intensity factor range(del.K),Mpa.m 1̂/2

C
ra

ck
 g

ro
w

th
 ra

te
(d

a/
dN

),m
m

/c
yc

le

Predicted
Experimental

 
 
Fig. 8.Comparison of predicted (ANN) and experimental crack 
growth rate with stress intensity range ( K) for load ratio 0.5 
(2024 T3 alloy) 

 

Table 3.  
Load scenarios and model results of the tested specimens 
Test specimen Fmax 

(KN) 
Fmin 
(KN) 

R ai 
(mm) 

af 
(mm)  N f

A
 

Kcycle 
 

N f
E

 
Kcycle 
 

% 
error in  
N f

A
 

% 
error in  
N f

E
 

7020 T7 7.944 
 

3.972 0.5 18.3 35.1 75.344 78.265 -4.365 -0.658 

2024 T3 7.204 
 

3.602 0.5 18.3 35.4 110.920 112.879 -2.099 -0.370 
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Fig. 9. Comparison predicted (ANN) and experimentally obtained 
crack length with number of cycle (N) for load ratio 0.5 (7020 T7 
alloy) 
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Fig. 10. Comparison of predicted (ANN) and experimentally 
obtained crack length with number of cycle (N) for load ratio 0.5 
(2024 T3 alloy) 
 
 
5.2 Prediction by ANN model 

 
Out of six experimental sets of load ratios (R = 0, 0.2, 0.4, 

0.5, 0.6, 0.7. 0.8), the data set of load ratio 0.5 was left as 
validation set (VS). The adopted nine-layer perceptron (MLP) 
neural network model was applied to simulate the crack growth 
rate of the validation set for both the cases. The numbers of 

hidden neurons, minimum error and number of iterations were 
chosen empirically as 7, 6101 and 4, 48, 000. The input 
parameters, stress intensity factor range ( K), maximum stress 
intensity factor (Kmax) and load ratio have been fed to the trained 
ANN model in order to predict the corresponding crack growth 

rate 
N
a

d
d for the validation set. The predicted crack growth 

rate results have been presented in Figs. 7 and 8 respectively 
along with experimental findings for comparison. It is observed 
that the simulated da/dN ~ K points follow the experimental 
ones quite well. The number of cycles has been calculated from 

the simulated 
N
a

d
d values by taking the first experimental ‘a’ 

and ‘N’ values of 0.5 load ratio data set as the initial values and 
assuming an incremental crack length of 0.05mm in steps. The 
predicted a ~ N value of the ANN model has been compared 
with the experimental data in Figs. 9 and 10 respectively and a 
quantitative comparison of the prediction results have been 
presented in Table 3 for both the materials.  
 
 
6. Conclusions 
 
 In this work, fatigue crack propagation life of 7020 T7 and 
2024 T3 aluminum alloys under the influence of load ratio was 
predicted by using artificial neural network (ANN). A data base 
consisting of six sets (R = 0, 0.2, 0.4, 0.6, 0.7. 0.8) of 
experimental data for each of the above alloys were used to train 
the ANN model. It was subsequently applied to predict the fatigue 
life for the unknown data set of R = 0.5. The model results were 
found to be in good agreement with the experimental findings. 

ANNs show great potential for predicting fatigue crack 
growth rate especially by interpolation within the tested range. 
However, its benefit is lost when the model is needed to 
extrapolate the available experimental data. 
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Fig. 6. Comparison of da/dN ~ K curves for different load ratios 
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Figure 7. Comparison of predicted (ANN) and experimental crack 
growth rate with stress intensity range ( K) for load ratio 0.5 
(7020 T7 alloy) 
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Fig. 8.Comparison of predicted (ANN) and experimental crack 
growth rate with stress intensity range ( K) for load ratio 0.5 
(2024 T3 alloy) 

 

Table 3.  
Load scenarios and model results of the tested specimens 
Test specimen Fmax 

(KN) 
Fmin 
(KN) 

R ai 
(mm) 

af 
(mm)  N f

A
 

Kcycle 
 

N f
E

 
Kcycle 
 

% 
error in  
N f

A
 

% 
error in  
N f

E
 

7020 T7 7.944 
 

3.972 0.5 18.3 35.1 75.344 78.265 -4.365 -0.658 

2024 T3 7.204 
 

3.602 0.5 18.3 35.4 110.920 112.879 -2.099 -0.370 
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Fig. 9. Comparison predicted (ANN) and experimentally obtained 
crack length with number of cycle (N) for load ratio 0.5 (7020 T7 
alloy) 
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Fig. 10. Comparison of predicted (ANN) and experimentally 
obtained crack length with number of cycle (N) for load ratio 0.5 
(2024 T3 alloy) 
 
 
5.2 Prediction by ANN model 

 
Out of six experimental sets of load ratios (R = 0, 0.2, 0.4, 

0.5, 0.6, 0.7. 0.8), the data set of load ratio 0.5 was left as 
validation set (VS). The adopted nine-layer perceptron (MLP) 
neural network model was applied to simulate the crack growth 
rate of the validation set for both the cases. The numbers of 

hidden neurons, minimum error and number of iterations were 
chosen empirically as 7, 6101 and 4, 48, 000. The input 
parameters, stress intensity factor range ( K), maximum stress 
intensity factor (Kmax) and load ratio have been fed to the trained 
ANN model in order to predict the corresponding crack growth 

rate 
N
a

d
d for the validation set. The predicted crack growth 

rate results have been presented in Figs. 7 and 8 respectively 
along with experimental findings for comparison. It is observed 
that the simulated da/dN ~ K points follow the experimental 
ones quite well. The number of cycles has been calculated from 

the simulated 
N
a

d
d values by taking the first experimental ‘a’ 

and ‘N’ values of 0.5 load ratio data set as the initial values and 
assuming an incremental crack length of 0.05mm in steps. The 
predicted a ~ N value of the ANN model has been compared 
with the experimental data in Figs. 9 and 10 respectively and a 
quantitative comparison of the prediction results have been 
presented in Table 3 for both the materials.  
 
 
6. Conclusions 
 
 In this work, fatigue crack propagation life of 7020 T7 and 
2024 T3 aluminum alloys under the influence of load ratio was 
predicted by using artificial neural network (ANN). A data base 
consisting of six sets (R = 0, 0.2, 0.4, 0.6, 0.7. 0.8) of 
experimental data for each of the above alloys were used to train 
the ANN model. It was subsequently applied to predict the fatigue 
life for the unknown data set of R = 0.5. The model results were 
found to be in good agreement with the experimental findings. 

ANNs show great potential for predicting fatigue crack 
growth rate especially by interpolation within the tested range. 
However, its benefit is lost when the model is needed to 
extrapolate the available experimental data. 
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