# **DESIGN FEATURE**

# PREDICTION OF TUBE SIDE HEAT TRANSFER COEFFICIENT FOR COMMON GASES BY NOMOGRAPH

\*Dr.G.KRoy

RANSFER of heat from hot flue or process gases is often encountered in industrial processes e.g. fire-tube boiler operation, waste-heat recovery from flue gas etc. A simplified equation for the calculation of tube side heat transfer coefficient for common gases has been given as (1)

$$h_i = 0.0144 c_p \frac{G^{0.8}}{D^{0.2}}$$
 (1)

Where, h = inside film coefficient for heat transfer, Btu/hr.  $ft^2$ . °F

C<sub>p</sub> = heat capacity, Btu/lb. °F G = mass velocity of gas, lb/hr. ft<sup>2</sup>

D = tube diameter, ft

Equation - 1 has been rewritten in S.I. unit as,

$$h_i = 12.58 c_p \frac{G^{0.8}}{D^{0.2}}$$
 (2)

where  $h_i$  = inside film coefficient for heat transfer,  $\frac{W}{m^2}$  K

$$c_p = \text{heat capacity, } \frac{KJ}{Kg. K}$$

G = mass velocity of gas, Kg/Sec. m<sup>2</sup>

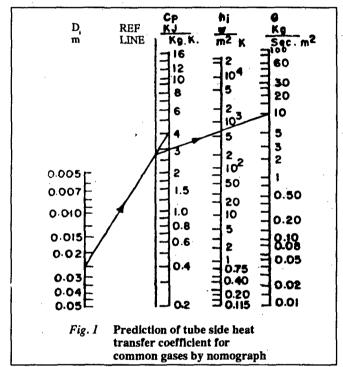
D = tube diameter, m

In order to make the use of equation - (2) more convenient and meaningful for design calculations, a nomographs (figure - 1) has been prepared.

## Range of applicability of the nomograph:

The range of applicability of the nomograph is presented below (table - 1).

| Table       | e - 1 : Range of ap | plicability of t | ie nomograph :                    |
|-------------|---------------------|------------------|-----------------------------------|
| Variable    | e Un                | it R             | ange of applicability             |
| C<br>G<br>D |                     | /Sec. m² 0       | 2-16.0<br>.01-100.0<br>.005-0.050 |


The ranges of variables cover the working range for industrial heat transfer involving common gases.

### Accuracy of the nomograph:

The values of tube side heat transfer coefficient for common gases obtained from figure -1 have been found to agree well with their respective values calculated with the help of equation - 2 which is evident from an example given below:

## Example:

For the following case calculate the tube side heat transfer coefficient for a common gas and compare the value with that obtained from nomograph.



Heat capacity  $(C_p) = 4 \text{ KJ/Kg K}$ Mass velocity of gas (G) = 10 kg/sec. m<sup>2</sup> Tube diameter (D) = 0.025 m

#### Solution:

From equation - 2,

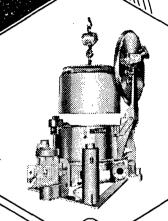
$$\begin{aligned} h_i &= 12.58 \text{ X 4 X} & \frac{10^{0.8}}{(0.025)^{0.2}} \\ &= 664 & \frac{W}{m^2 \text{ K}} \end{aligned}$$

From nomograph (figure - 1)

$$n_1 = 625 \quad \frac{W}{m^2 K}$$

 $\begin{array}{ll} h_i = 625 & \frac{W}{m^2} \\ \text{% deviation of nomograph value from calculated one} \end{array}$ 

$$= \frac{664 - 625}{664} = 5.87$$


#### Reference:

WHMcAdams, "Heat Transmission" Mc Grow Hill Book Co. Inc. Third Edition, P-226.

\* Professor and Head, Department of Chemical Engineering Regional Engineering College Rourkela - 769 008. India.

# RUGGED RELIABLE SAFE BASKET TYPE BATCH CENTRIFUGES





FOR CHEMICAL, DYESTUFF, PHARMACEUTICAL, TEXTILE AND METAL INDUSTRIES TYPES

- 1. TOP DISCHARGE TYPE WITH/WITHOUT HEATING JACKET
- 2. WITH BASKET LIFTING ARRANGEMENT
- 3. WITH CONTROL PANEL FOR AUTOCYCLIC OPERATION

#### **SPECIAL FEATURES**

- \* Self balancing Vibration-free operation
- Cast-iron/M.S. Fabricated or machined triangular foundation – proper alignment of the centrifuge at all times
- \* All-welded construction
- \* Vapour-tight construction
- \* Perforated/Non-perforated baskets as per German standards VDI 2060
- \* Safety requirements meeting ISI or DIN standards
  Electrical and mechanical interlocking
- We also offer centrifuges for operation in hazardous areas with inflammable liquid and solvent vapours.



- \* Plate Heat Exchangers
  - \* Spray Dryers
  - \* Evaporators
  - \* Rotary Drum
  - Vacuum Filters
    \* Reaction Kettles
  - \* Pressure Vessels
  - Distillation/Extraction
  - Distillation/Extraction Columns
    - \* SS/MS Fabricated Equipment



FILTRON ENGINEERS PVT. LTD.

GOKUL, FERGUSSON ROAD, PUNE 411 005. TEL.: 51641 GRAM: NORTLIF TELEX: 0145-323 TRON IN

FILTRON FOR FINE PERFORMANCE

(3)