Prediction of Fluctuation Ratio for Binary Mixtures of Non-Spherical Particles in Conical Beds

R. K. SINGH, G. K. ROY AND A. SURYANARAYANA
Regional Engineering College,
Rourkela = 769 008

Based on experimental investigations a correlation has been developed for the prediction of fluctuation ratio for conical gas-solid fluidized beds of mixed particles. Values computed from the developed correlation compare well with the experimental ones.

The advantages of a conical fluidized bed have been detailed in the literature. Significant amongst these is the adaptability of the bed to mixed-size fluidization which is of relevance to the gas-solid catalysed reactions of chemical process industries.

Static and dynamic characteristics of conical conduits differ significantly from the cylindrical ones. It is imperative to be well-acquainted with the system' characteristics prior to its application in actual processes. Although some information for gas-solid fluidization of mono-size particles is available very little work relating to mixed particle systems in a conical bed has been reported. The present experimental investigation has been undertaken for the prediction of the fluctuation ratio in conical fluidized beds of mixed particle systems.

Fluctuation Ratio

It is the ratio of the highest to the lowest levels which the top of the fluidized bed occupies for any gas flow rate and is a quantification of the so-called fluidization quality. A lower value of fluctuation ratio is indicative of improved fluidization quality with less fluctuation at the top of the bed in fluidized condition. Biswal, et al., have presented empirical equations for the prediction of the fluctuation ratio in conical fluidized beds of mono-sized regular and irregular particles. Equations for the fluctuation ratio have been developed by Agarwal for cylindrical, baffled-cylindrical and conical beds of regular particles with a view to project a comparative picture of their fluidization quality.

Mixed Particle Fluidization in Conical Beds

The only work in mixed particle fluidization in conical beds is that of Biswal, et al. It presents the following correlations for bed fluctuation in the case of homogeneous and heterogeneous binary mixtures of spherical particles. For homogeneous mixtures:

\[r = 9.8 \times 10^2 \left(\frac{G_f}{G_{ef}} \right)^{1.06} \left(\frac{D_t}{d_{pm}} \right)^{-1.97} \left(\frac{h_s}{D_o} \right)^{-0.25} \left(\tan \alpha \right)^{-0.25} \]

For heterogeneous mixtures:

\[r = 0.44 \left(\frac{G_f}{G_{ef}} \right)^{0.58} \left(\frac{d_p}{D_o} \right)^{-0.06} \left(\frac{\rho_m}{\rho_t} \right)^{-0.10} \left(\tan \alpha \right)^{-0.17} \]

In this communication a relation has been proposed for bed fluctuation in conical fluidized beds of both heterogeneous and homogeneous binaries involving irregular particles.
Experimental

The experimental set-up used in the present study has been detailed elsewhere. A weighed amount of material was charged to the fluidizer and the slant static bed height was recorded. Air flow rate was gradually increased and the expanded slant bed heights were noted. As the bed fluctuated between two limits, typical of gas-solid fluidization, heights of the upper and the lower surfaces of the fluctuating bed were recorded for each fluid velocity higher than the minimum fluidizing ones. The fluctuation ratio was then calculated. This procedure was repeated for different bed heights of varying particle sizes and different cone angles. Investigations have been made with different cone angles, static bed heights and mixture proportions (with respect to both particle size and particle density). The ranges of variables studied are presented in Table-I. In case of homogeneous mixtures the size ratio of particles used was 1.08 while for the heterogeneous mixture density range was 2614 to 4948 kg/m³.

The shape factor factor was determined by equation

\[(1 - \epsilon)/\phi_s = 0.231 \log D_p + 1.417,\]

where \(D_p\) is the diameter of the particle in feet and \(\epsilon\) is the void fraction of the bed. The range of \(\phi_s\) was found to be 0.69 to 0.93 in the present case.

| TABLE I |
| RANGES OF EXPERIMENTAL VARIABLES |
(\(\alpha\))	\(d_p\)	\(h_s\)	\(\rho_{m,n}\)
degree	\(m \times 10^4\)	\(\text{mX}10^2\)	kg, m\(^3\)
8.86	5.765	6.0	2751
14.77	5.345	6.3	3336
19.62	4.980	7.0	3853
32.00	4.666	7.2	3887
43.20	4.387	7.7	4050
	8.4	4570	
	8.5		
	9.5		
	10.5		

Results and Discussion

The fluctuation ratio is found to be a function of the sialic properties: particle size, inlet diameter of conduit, static bed height, particle and fluid density, and the dynamic properties: the fluid velocities at the onset of fluidization and fluidized conditions.

From dimensional analysis the following correlation has been developed for the prediction of fluctuation ratio,

\[r = 3.42 \left(\frac{D_o}{d_{pm}} \right)^{-0.180} \left(\frac{h_s}{D_o} \right)^{0.033} \left(\frac{\rho_{m,n}}{\rho_f} \right)^{-0.023} \left(\frac{G_f - G_{mf}}{G_{mf}} \right)^{0.02} \]

Out of the two Do terms in equation (3) one accounts for the particle size effect while the other with \(h_s\) accounts for the cone angle effect.

The values of the fluctuation ratio have been calculated by using the above equation and compared with experimental values (Figure 1).

Mean and standard deviations for fifty cases have been found to be 5.17 per cent and 7.04 per cent respectively,

\[\text{Fig. 1 Comparison of } \tau' \text{ Values} \]
indicating thereby a fairly good agreement between the calculated values (with equation 3) and the experimental ones. The fluctuation ratio was plotted against reduced mass velocity. It was observed that the behaviour is different from a cylindrical bed having mono-size particles. It was observed that the fluctuation ratio increases for low values of reduced mass velocity and then decreases to a constant value. The fluctuation ratio values, calculated using an empirical equation, given in Fluidization by Leva, are more than the observed ones by about 30 per cent. The probable reason for this deviation may be particle - particle interaction.

Two different correlations (equations 1 and 2) were developed by one of the authors for homogenous and heterogenous mixtures of spherical particles in conical beds. The present correlation is for irregular binaries of both a homogeneous and a heterogeneous nature where the cone-angle effect has been incorporated in the dimensionless group of $\frac{h_s}{D_o}$. The correlation is more akin to equation 2 with the angle effect of $\tan \alpha$ being replaced by $\frac{h_s}{D_o}$ and the homogeneity being incorporated by the group D_o/d_{pm} in place of d_p/D_o of the earlier equation 2. Thus, the developed correlation becomes more versatile with respect to its use for different binaries of non-spherical particles. This equation is valid for well-fluidized beds ($G_f > G_{mf}$).

Prediction of fluctuation ratio is of significance for gas-solid fluidization as its numerical value quantifies the fluidization quality. In addition, a knowledge of bed fluctuation fixes the bed height in the case of the design of a gas-solid fluidized system.

Greek Letters

- α: apex angle of cone, degree
- ε: porosity
- ϕ_s: sphericity factor
- ρ_f: density of fluid, ML$^{-3}$
- ρ_{pm}: Mean particle density for mixture, ML$^{-3}$ ($\Sigma \rho_{x_i} x_i$)

REFERENCES