Ergod. Th. & Dynam. Sys. (First published online 2009), page 1 of 15* doi:10.1017/S0143385709000364 © 2009 Cambridge University Press *Provisional—final page numbers to be inserted when paper edition is published

Iteration of certain meromorphic functions with unbounded singular values

TARAKANTA NAYAK‡ and M. GURU PREM PRASAD‡

 Department of Mathematics, National Institute of Technology Rourkela, Rourkela 769008, India (e-mail: tarakanta.nayak@nitrkl.ac.in)
Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781039, India (e-mail: mgpp@iitg.ac.in)

(Received 8 October 2008 and accepted in revised form 20 March 2009)

Abstract. Let $\mathcal{M} = \{f(z) = (z^m/\sinh^m z) \text{ for } z \in \mathbb{C} \mid \text{ either } m \text{ or } m/2 \text{ is an odd natural number}\}$. For each $f \in \mathcal{M}$, the set of singularities of the inverse function of f is an unbounded subset of the real line \mathbb{R} . In this paper, the iteration of functions in oneparameter family $\mathcal{S} = \{f_\lambda(z) = \lambda f(z) \mid \lambda \in \mathbb{R} \setminus \{0\}\}$ is investigated for each $f \in \mathcal{M}$. It is shown that, for each $f \in \mathcal{M}$, there is a critical parameter $\lambda^* > 0$ depending on f such that a period-doubling bifurcation occurs in the dynamics of functions f_λ in \mathcal{S} when the parameter $|\lambda|$ passes through λ^* . The non-existence of Baker domains and wandering domains in the Fatou set of f_λ is proved. Further, it is shown that the Fatou set of f_λ is infinitely connected for $0 < |\lambda| \le \lambda^*$ whereas for $|\lambda| \ge \lambda^*$, the Fatou set of f_λ consists of infinitely many components and each component is simply connected.

1. Introduction

Let $f : \mathbb{C} \to \widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ be a non-constant transcendental meromorphic function. The set of points $z \in \widehat{\mathbb{C}}$ for which the sequence of iterates $\{f^n(z)\}_{n=0}^{\infty}$ is defined and forms a normal family is called the Fatou set of f and is denoted by $\mathcal{F}(f)$. The Julia set, denoted by $\mathcal{J}(f)$, is the complement of the Fatou set of f in $\widehat{\mathbb{C}}$. It is well known that the Fatou set is open and the Julia set is a perfect set. Let $\operatorname{sing}(f^{-1})$ denote the set of finite singularities of the inverse function f^{-1} of the function f (also called singular values of f). Then, $\operatorname{sing}(f^{-1})$ is the set of critical and finite asymptotic values of f and finite limit points of these values. Denote by $\operatorname{sing}(f^{-p})$ the set of finite singularities of the inverse function of f^p . Let $A_k(f) = \{z \in \mathbb{C} \mid f^k \text{ is not analytic at } z\}$ and define

$$S_p(f) = \bigcup_{k=0}^{p-1} f^k(\operatorname{sing}(f^{-1}) \setminus A_k(f)) \quad \text{and} \quad P(f) = \bigcup_{p=1}^{\infty} S_p(f).$$
(1)

MBRIDGE JOURNALS

It is easy to see that $sing(f^{-p}) \subseteq S_p(f) \subseteq S_{p+1}(f)$ and the set P(f) consists of the forward orbits of all points in $sing(f^{-1})$ as long as they are defined and finite. Let *B* denote the class of all meromorphic functions *f* for which $sing(f^{-1})$ is a bounded set.

The existence of Baker domains and wandering domains is one of the important dynamical aspects of transcendental meromorphic functions and has been investigated [1, 5, 6, 8, 15, 16, 18, 20, 23]. Rippon and Stallard proved the non-existence of Baker domains with period p in the Fatou set of transcendental meromorphic functions f for which the set $S_p(f)$ is bounded [19]. Non-existence of wandering domains for meromorphic functions f of finite type (i.e., f for which $sing(f^{-1})$ is a finite set) is established by Baker *et al* [3]. A number of one-parameter families of meromorphic functions of finite type are investigated by Keen and Kotus [9], Keen *et al* [14], Jiang [13] and Prasad *et al* [11]. Zheng [22, 23] investigated the relations between P(f) and the limit functions of iterates $\{f^n\}_{n>0}$ in a Fatou component and proved the non-existence of Baker domains and wandering domains for certain meromorphic functions in the class B. However, the dynamics of meromorphic functions outside the class B is largely unexplored.

Let

$$\mathcal{M} = \left\{ f(z) = \frac{z^m}{\sinh^m z} \text{ for } z \in \mathbb{C} \mid m \text{ or } m/2 \text{ is an odd natural number} \right\}.$$

For each $f \in \mathcal{M}$, consider the one-parameter family of functions

$$\mathcal{S} = \{ f_{\lambda}(z) = \lambda f(z) \mid \lambda \in \mathbb{R} \setminus \{0\} \}.$$

In this paper, the iteration of functions f_{λ} in the one-parameter family S is investigated.

Observe that $f_{\lambda}(z)$ is an even function. If $\lambda \in \mathbb{R} \setminus \{0\}$ then $f_{\lambda}(z) = -f_{-\lambda}(-z)$ and $f_{\lambda}^{n}(z) = -f_{-\lambda}^{n}(-z)$ for $z \in \mathbb{C}$ and $n \in \mathbb{N}$. It shows that the functions f_{λ} and $f_{-\lambda}$ are conformally conjugate and the dynamics of f_{λ} and $f_{-\lambda}$ are essentially same. Therefore, we prove the results on the dynamics of the functions $f_{\lambda} \in S$ for $\lambda > 0$.

In §2, it is mainly shown that $sing(f_{\lambda}^{-1})$ is an unbounded subset of the real line. The dynamics of $f_{\lambda}(x)$ for $x \in \mathbb{R}$ is investigated in §3. We show that there is a critical parameter $\lambda^* > 0$ (depending on f) such that a period-doubling bifurcation occurs in the dynamics of functions f_{λ} in S when the parameter $|\lambda|$ passes through λ^* . In §4, the dynamics of $f_{\lambda}(z)$ for $z \in \mathbb{C}$ is studied. The non-existence of Baker domains and wandering domains in the Fatou set of f_{λ} is also proved. There is a change in topology of the Fatou components effectuated by the above mentioned bifurcation which is described in §5.

2. Properties of f_{λ}

The function $f_{\lambda}(z) = \lambda(z^m/\sinh^m z)$ is meromorphic with poles at $\{i\pi k \mid k \in \mathbb{Z} \setminus \{0\}\}$. All the poles are multiple if m > 1 and simple if m = 1. Further, the function $f_{\lambda}(z)$ is even and not periodic. In Proposition 2.1, we prove that the Julia set of f_{λ} is symmetric with respect to both the real and imaginary axes. The point z = 0 is an omitted value of f_{λ} and hence an asymptotic value of $f_{\lambda}(z)$. More importantly, it is shown that $\operatorname{sing}(f_{\lambda}^{-1})$ is an unbounded subset of the real line in Proposition 2.2.

PROPOSITION 2.1. Let $f_{\lambda} \in S$. If $z \in \mathcal{J}(f_{\lambda})$ then $-z \in \mathcal{J}(f_{\lambda})$ and $\overline{z} \in \mathcal{J}(f_{\lambda})$.

Proof. Let $z \in \mathcal{J}(f_{\lambda})$. Since $f_{\lambda}(-z) = f_{\lambda}(z)$ for all $z \in \mathbb{C}$ and $\mathcal{J}(f_{\lambda})$ is completely invariant, $-z \in \mathcal{J}(f_{\lambda})$. Observe that $f_{\lambda}(\overline{z}) = \overline{f_{\lambda}(z)}$ and consequently, $f_{\lambda}^{n}(\overline{z}) = \overline{f_{\lambda}^{n}(z)}$ for all $z \in \mathbb{C}$ and $n \in \mathbb{N}$. For $z \in \mathcal{J}(f_{\lambda})$, the sequence $\{f_{\lambda}^{n}\}_{n>0}$ is not normal at z. It follows that $\{\overline{f_{\lambda}^{n}}\}_{n>0}$ is also not normal at z. Therefore, $\{f_{\lambda}^{n}\}_{n>0}$ is not normal at $\overline{z} \in \mathcal{J}(f_{\lambda})$. \Box

PROPOSITION 2.2. Let $f_{\lambda} \in S$. Then, the set of all the critical values of f_{λ} is an unbounded subset of $\mathbb{R} \setminus (-|\lambda|, |\lambda|)$ and 0 is the only finite asymptotic value of f_{λ} .

Proof. Observe that

$$f'_{\lambda}(z) = \lambda \frac{mz^{m-1}}{\sinh^{m-1} z} \left\{ \frac{\sinh z - z \cosh z}{\sinh^2 z} \right\} \quad \text{and} \quad \frac{mz^{m-1}}{\sinh^{m-1} z} \neq 0 \quad \text{for } z \in \mathbb{C}.$$

Further, the point z = 0 is the only common zero of $\sinh z - z \cosh z$ and $\sinh^2 z$ and is a zero of $(\sinh z - z \cosh z)/\sinh^2 z$. Therefore, the solutions of $f'_{\lambda}(z) = 0$ are precisely the solutions of $\sinh z - z \cosh z = 0$ i.e., the solutions of $\tanh z = z$. It is easy to see that the set of all the solutions of $\tanh z = z$ is an unbounded subset of the imaginary axis. If $\tanh(iy) = iy$ for some $y \in \mathbb{R}$ then $\tanh(-iy) = -\tanh(iy) = -iy$. Therefore, the set of all the critical points of $f_{\lambda}(z)$ is symmetric with respect to the origin and is an unbounded subset of the imaginary axis. Let $\{iy_k\}_{k>0}$ be the sequence of critical points in the positive imaginary axis arranged in the increasing order of their moduli. Then $-iy_k$ is also a critical point of $f_{\lambda}(z)$ for each k. Since $f_{\lambda}(z)$ is an even function,

$$\lim_{k \to \infty} |f_{\lambda}(iy_k)| = \lim_{k \to \infty} |f_{\lambda}(-iy_k)| = \lim_{k \to \infty} \left| \lambda \frac{i^m y_k^m}{i^m \sin^m y_k} \right| = \infty$$

Therefore, the set of all the critical values of f_{λ} is unbounded. Every critical point iy_k of $f_{\lambda}(z)$ satisfies $tanh(iy_k) = iy_k$ and consequently,

$$\frac{iy_k}{\sinh(iy_k)} = \frac{1}{\cosh(iy_k)}$$

The critical value

$$f_{\lambda}(iy_k) = \lambda \left(\frac{iy_k}{\sinh(iy_k)}\right)^m = \lambda \left(\frac{1}{\cosh(iy_k)}\right)^m = \lambda \left(\frac{1}{\cos y_k}\right)^m$$

is real. Since $|\cos y| \le 1$ for all $y \in \mathbb{R}$, it follows that $|f_{\lambda}(iy_k)| \ge |\lambda|$. Therefore, the set of all the critical values of $f_{\lambda}(z)$ is an unbounded subset of $\mathbb{R} \setminus (-|\lambda|, |\lambda|)$.

In order to determine the asymptotic values of f_{λ} , first we find all the asymptotic values of $(\sinh z/z)$. All the critical points of $(\sinh z/z)$, i.e., the roots of $(z \cosh z - \sinh z)/z^2$ are purely imaginary and form an unbounded set. Since

$$\lim_{|y| \to \infty} \frac{\sinh iy}{iy} = \lim_{|y| \to \infty} \frac{\sin y}{y} = 0,$$

0 is an asymptotic value of $(\sinh z/z)$ and is the only limit point of all the critical values of $(\sinh z/z)$. Since the order of $(\sinh z/z)$ is one, it can have at most two finite asymptotic values. Further, if there are exactly two finite asymptotic values of $(\sinh z/z)$ then both the asymptotic values are indirect singularities of the inverse function of $(\sinh z/z)$ [17]. If *f* is

a meromorphic function of finite order and *a* is an asymptotic value of *f* then, *a* is a limit point of critical values $a_k \neq a$ or all singularities of f^{-1} are logarithmic (a special case of direct singularity) [7]. Therefore, if there is a finite asymptotic value \hat{w} of $(\sinh z/z)$ other than 0 then both 0 and \hat{w} are indirect singularities of inverse function of $(\sinh z/z)$ and the limit points of critical values of $(\sinh z/z)$. Since the critical values of $(\sinh z/z)$ accumulate only at 0, \hat{w} can not be an asymptotic value of $(\sinh z/z)$. Thus, 0 is the only finite asymptotic value of $(\sinh z/z)$. Since $(\sinh z/z)$ is an entire function, ∞ is also an asymptotic value. It implies that the function $(z/\sinh z)$ has only one finite asymptotic value, namely 0. Hence, 0 is the only finite asymptotic value of $f_{\lambda}(z) = \lambda (z^m/\sinh^m z)$ for $m \in \mathbb{N}$.

Remark 2.1. For $z = x + iy \neq 0$,

$$\left|\frac{z^m}{\sinh^m z}\right| = \frac{|z|^m}{|\sinh z|^m} = \left\{ \left(\frac{x^2 + y^2}{\sinh^2 x + \sin^2 y}\right)^{1/2} \right\}^m.$$

If $\gamma : [0, \infty) \to \mathbb{C}$ is a path for which $\{\Im(z) \mid z \in \gamma\}$ is bounded and $\lim_{t\to\infty} |\Re(\gamma(t))| = \infty$ then $\lim_{t\to\infty} f_{\lambda}(\gamma(t)) = 0$. Further, if γ is a path for which $\{\Re(z) \mid z \in \gamma\}$ is bounded and $\lim_{t\to\infty} |\Im(\gamma(t))| = \infty$ then $\lim_{t\to\infty} f_{\lambda}(\gamma(t)) = \infty$.

3. Dynamics of $f_{\lambda}(x)$ for $x \in \mathbb{R}$

In this section, the dynamics of $f_{\lambda}(x)$ for $x \in \mathbb{R}$ is studied. In Theorem 3.1, the existence and nature of real fixed points of f_{λ} are explored. The change in the nature and existence of real periodic points leads to a bifurcation in the dynamics of $f_{\lambda}(x)$ for $x \in \mathbb{R}$ at a critical parameter value and is proved in Theorem 3.2.

Consider the function

$$\phi(x) = xf'(x) + f(x) = x \frac{mx^{m-1}}{\sinh^{m+1} x} (\sinh x - x \cosh x) + \frac{x^m}{\sinh^m (x)}$$
$$= \frac{x^m}{\sinh^{m+1} (x)} ((m+1) \sinh x - mx \cosh x) \quad \text{for } x \ge 0.$$

Let $p(x) = (m + 1) \sinh x - mx \cosh x$. Then $p'(x) = \cosh x - mx \sinh x$ and

$$p''(x) = (1 - m) \sinh x - mx \cosh x.$$

Observe that p''(x) < 0 for $x \in \mathbb{R}^+ = \{x \in \mathbb{R} \mid x > 0\}$, since $m \ge 1$. Therefore, the function p'(x) is decreasing on \mathbb{R}^+ . Since p'(0) = 1 and $\lim_{x \to +\infty} p'(x) = -\infty$, by continuity of p'(x), it follows that there is a unique $\hat{x} > 0$ such that p'(x) > 0 for $0 \le x < \hat{x}$, $p'(\hat{x}) = 0$ and p'(x) < 0 for $x > \hat{x}$. Therefore, p(x) increases in $[0, \hat{x})$, attains its maximum at \hat{x} and decreases thereafter. It follows from the facts p(0) = 0 and $\lim_{x \to +\infty} p(x) = -\infty$ that, there is a unique positive $x^* > \hat{x}$ such that p(x) > 0 for $0 < x < x^*$, $p(x^*) = 0$ and p(x) < 0 for $x > x^*$. Since $(x^m/\sinh^{m+1} x) > 0$ for all x > 0, it follows that

$$\phi(x) = \frac{x^m}{\sinh^{m+1} x} p(x) \begin{cases} > 0 & \text{for } 0 < x < x^*, \\ = 0 & \text{for } x = x^*, \\ < 0 & \text{for } x > x^*. \end{cases}$$
(2)

AMBRIDGE JOURNALS

Define

$$\lambda^*(m) = \lambda^* = \frac{x^*}{f(x^*)} \tag{3}$$

where x^* is the unique positive real root of the equation $\phi(x) = xf'(x) + f(x) = 0$.

Remark 3.1. For the function $f(x) = (x^m/\sinh^m x)$, let $x^*(m)$ denote the positive real root of the equation $\phi(x) = xf'(x) + f(x) = 0$ and let

$$\lambda^*(m) = \frac{x^*(m)}{f(x^*(m))}$$

denote the corresponding critical parameter. For m = 1, 2 and 3, it is numerically computed that $x^*(1) \approx 1.915$, $x^*(2) \approx 1.2878$, $x^*(3) \approx 1.034$ 02 and $\lambda^*(1) \approx 3.3198$, $\lambda^*(2) \approx 2.1772$, $\lambda^*(3) \approx 1.7926$.

The following theorem shows that f_{λ} has a unique real fixed point for each $\lambda > 0$. However, the nature of the fixed point changes when the parameter λ passes through the critical parameter λ^* .

THEOREM 3.1. Let $f_{\lambda} \in S$ and $\lambda > 0$. Then, the function f_{λ} has a unique real fixed point x_{λ} . Furthermore, the following cases hold.

(1) The fixed point x_{λ} is attracting for $0 < \lambda < \lambda^*$.

(2) The fixed point x_{λ} is rationally indifferent for $\lambda = \lambda^*$.

(3) The fixed point x_{λ} is repelling for $\lambda > \lambda^*$.

Proof. Since $f_{\lambda}(x) > 0$ for all $x \in \mathbb{R}$, each real periodic point of f_{λ} is positive. The function

$$f'_{\lambda}(x) = \lambda \frac{mx^{m-1}}{\sinh^{m+1} x} (\sinh x - x \cosh x) < 0 \quad \text{for } x > 0$$

and hence $f_{\lambda}(x)$ is decreasing on \mathbb{R}^+ . Let $g_{\lambda}(x) = f_{\lambda}(x) - x$ for $x \in \mathbb{R}$. Since $f'_{\lambda}(x) < 0$ for x > 0, $g'_{\lambda}(x) = f'_{\lambda}(x) - 1 < 0$ and consequently, $g_{\lambda}(x)$ is decreasing on \mathbb{R}^+ . Now, $g_{\lambda}(0) = \lambda > 0$, $\lim_{x \to +\infty} g_{\lambda}(x) = -\infty$ and $g_{\lambda}(x)$ is continuous on \mathbb{R}^+ . By the intermediate-value theorem, there exists a unique positive x_{λ} such that $g_{\lambda}(x_{\lambda}) = 0$. In other words, $f_{\lambda}(x)$ has a unique positive fixed point x_{λ} and $\lambda = (x_{\lambda}/f(x_{\lambda}))$. Note that the function (x/f(x)) is increasing on \mathbb{R}^+ , since

$$\frac{d}{dx}\left(\frac{x}{f(x)}\right) = \frac{f(x) - xf'(x)}{(f(x))^2} > 0 \quad \text{for } x > 0.$$

(1) For $0 < \lambda < \lambda^*$, $(x_{\lambda}/f(x_{\lambda})) < (x^*/f(x^*))$ which gives $x_{\lambda} < x^*$. By equation (2), $\phi(x_{\lambda}) > 0$. This implies that

$$\frac{\phi(x_{\lambda})}{f(x_{\lambda})} = \frac{xf'(x_{\lambda}) + f(x_{\lambda})}{f(x_{\lambda})} = f_{\lambda}'(x_{\lambda}) + 1 > 0.$$

Since $f'_{\lambda}(x)$ is negative on \mathbb{R}^+ , it follows that $-1 < f'_{\lambda}(x_{\lambda}) < 0$ and the fixed point x_{λ} is attracting for $0 < \lambda < \lambda^*$.

(2) For λ = λ*, it follows that x_λ = x* and φ(x_λ) = 0 by arguments similar to those used in case (1). Now, by equation (2), it follows that (φ(x_λ)/f(x_λ)) = 0 implying f'_{λ*}(x_λ) = -1. Therefore, the fixed point x_λ = x* is rationally indifferent if λ = λ*.

ABRIDGE JOURNALS

(3) For $\lambda > \lambda^*$, it follows that $x_{\lambda} > x^*$ by arguments similar to those used in case (1). Again by equation (2) and by the fact $x_{\lambda} > x^*$, we have $\phi(x_{\lambda}) < 0$. It shows that $(\phi(x_{\lambda})/f(x_{\lambda})) = f'_{\lambda}(x_{\lambda}) + 1 < 0$ and hence $f'_{\lambda}(x_{\lambda}) < -1$. Therefore, x_{λ} is a repelling fixed point of f_{λ} for $\lambda > \lambda^*$.

Now, we investigate the possibility of the real periodic points of f_{λ} with minimal period greater than one. The function $f_{\lambda}(x)$ is decreasing on \mathbb{R}^+ , $f_{\lambda}(\mathbb{R}) = (0, \lambda]$ and f_{λ} has a unique real fixed point x_{λ} by Theorem 3.1. It is easy to see that $f_{\lambda}(0) =$ $\lambda > f_{\lambda}(x) > x_{\lambda}$ for $0 < x < x_{\lambda}$ and $f_{\lambda}(x) < x_{\lambda} < f_{\lambda}(0) = \lambda$ for $x > x_{\lambda} > 0$. In other words, $f_{\lambda}((0, x_{\lambda})) = (x_{\lambda}, \lambda)$ and $f_{\lambda}(x_{\lambda}, \infty) = (0, x_{\lambda})$. It follows that $f_{\lambda}^{n}(x) \neq x$ for any $x \in \mathbb{R}^+ \setminus \{x_\lambda\}$ and odd *n*. Therefore, $f_\lambda(x)$ does not have any real periodic point of odd period other than x_{λ} . Observe that $f_{\lambda}(x) > 0$ and $f'_{\lambda}(x) < 0$ for x > 0 and $\lambda > 0$. So $(f_{\lambda}^2)'(x) = f_{\lambda}'(f_{\lambda}(x))f_{\lambda}'(x) > 0$ and $f_{\lambda}^2(x)$ is increasing on \mathbb{R}^+ . Consequently, if $f_{\lambda}^2(x) > 0$ x (or $f_{\lambda}^2(x) < x$) for some $x \in \mathbb{R}^+$ then $f_{\lambda}^{2n}(x) > f_{\lambda}^{2(n-1)}(x)$ (or $f_{\lambda}^{2n}(x) < f_{\lambda}^{2(n-1)}(x)$) for all n. It shows that the function $f_{\lambda}^2(x)$ does not have any real periodic points of period greater than one, and hence $f_{\lambda}(x)$ has no real periodic point of even period greater than two. Therefore, a real periodic point of f_{λ} other than x_{λ} is of minimal period exactly equal to two, if it exists. Also, each cycle $\{x_{1\lambda}, x_{2\lambda}\}$ of real 2-periodic points satisfies $x_{1\lambda} < x_{\lambda} < x_{2\lambda}$. Let us assume that f_{λ} has two different 2-periodic real cycles $\{a, b\}$ with 0 < a < b and $\{c, d\}$ with 0 < c < d. Since $f_{\lambda}(x)$ is strictly decreasing on \mathbb{R}^+ for $\lambda > 0$, it follows that $c < a < x_{\lambda} < b < d$ or $a < c < x_{\lambda} < d < b$. In the first case $\{c, d\}$ and in the second case $\{a, b\}$ is called the outer cycle. In the first case $\{a, b\}$ and in the second case $\{c, d\}$ is called the inner cycle. The following proposition shows that whenever such a 2-periodic cycle exists, it is attracting or rationally indifferent and all the singular values of $f_{\lambda}(z)$ tend to this cycle under iteration of f_{λ}^2 .

PROPOSITION 3.1. Let $f_{\lambda} \in S$ and $\lambda > 0$. If f_{λ} has a real 2-periodic cycle, then $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = y_{1\lambda}$ or $y_{2\lambda}$ for all $x \in [0, y_{1\lambda}] \cup [y_{2\lambda}, +\infty)$ where $\{y_{1\lambda}, y_{2\lambda}\}$ is the outermost 2-periodic cycle. In particular, the cycle $\{y_{1\lambda}, y_{2\lambda}\}$ is either attracting or rationally indifferent and all the singular values of f_{λ} tend to $\{y_{1\lambda}, y_{2\lambda}\}$ under iteration of f_{λ}^2 .

Proof. It is observed earlier that any periodic point of the function f_{λ} is of minimal period one or two and each 2-periodic cycle $\{a, b\}$ satisfies $a < x_{\lambda} < b$ where x_{λ} is the fixed point of f_{λ} . Since $\{y_{1\lambda}, y_{2\lambda}\}$ is the outermost 2-periodic cycle, $f_{\lambda}^{2}(x) \neq x$ for all $x > y_{2\lambda}$. If possible, let $f_{\lambda}^{2}(x) > x$ for some $x > y_{2\lambda}$. Then, the sequence $\{f_{\lambda}^{2n}(x)\}_{n>0}$ is increasing and bounded above by λ , and hence $f_{\lambda}^{2n}(x)$ converges to l, say. Obviously, $l > y_{2\lambda}$. By the continuity of f_{λ}^{2} it follows that the point l must be a periodic point of f_{λ} of period at most two. This contradicts the fact that $\{y_{1\lambda}, y_{2\lambda}\}$ is the outermost 2-periodic cycle. Therefore, we conclude that $f_{\lambda}^{2}(x) < x$ for all $x > y_{2\lambda}$. Since $f_{\lambda}^{2}(x)$ is increasing, the sequence $\{f_{\lambda}^{2n}(x)\}_{n>0}$ is decreasing and bounded below by $y_{2\lambda}$ and consequently, $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = y_{2\lambda}$ for $x > y_{2\lambda}$. Similarly, it can be proved that $f_{\lambda}^{2}(x) > x$ and $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = y_{1\lambda}$ for all $0 \le x < y_{1\lambda}$. Therefore, $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = y_{1\lambda}$ or $y_{2\lambda}$ for all $x \in [0, y_{1\lambda}] \cup [y_{2\lambda}, +\infty)$.

Each interval containing $y_{1\lambda}$ contains points tending to $y_{1\lambda}$ under iteration of f_{λ}^2 . Therefore, $y_{1\lambda}$ cannot be a repelling periodic point of f_{λ}^2 and is either attracting or

rationally indifferent. Thus, $\{y_{1\lambda}, y_{2\lambda}\}$ is either attracting or rationally indifferent. As $(-y_{2\lambda}, y_{2\lambda}) \subset (-\lambda, \lambda)$ and f_{λ} is an even function, $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = y_{1\lambda}$ or $y_{2\lambda}$ for all $x \in \mathbb{R} \setminus (-\lambda, \lambda)$. Since all the critical values of f_{λ} are in $\mathbb{R} \setminus (-\lambda, \lambda)$ and the finite asymptotic value 0 is mapped to λ by f_{λ} , it is concluded that all the singular values of f_{λ} tend to $\{y_{1\lambda}, y_{2\lambda}\}$ under iteration of f_{λ}^2 .

The dynamics of $f_{\lambda}(x)$ for $x \in \mathbb{R}$ is determined in the following theorem.

THEOREM 3.2. Let $f_{\lambda} \in S$ and $\lambda > 0$.

- (1) If $\lambda < \lambda^*$ then $\lim_{n\to\infty} f_{\lambda}^n(x) = a_{\lambda}$ for all $x \in \mathbb{R}$ where a_{λ} is the unique real attracting fixed point of f_{λ} .
- (2) If $\lambda = \lambda^*$ then $\lim_{n \to \infty} f_{\lambda}^n(x) = x^*$ for all $x \in \mathbb{R}$ where x^* is the unique real rationally indifferent fixed point of f_{λ} .
- (3) If $\lambda > \lambda^*$ then $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = a_{1\lambda}$ or $a_{2\lambda}$ for all $x \in \mathbb{R} \setminus \{r_{\lambda}, -r_{\lambda}\}$ where r_{λ} is the unique real repelling fixed point of f_{λ} and $\{a_{1\lambda}, a_{2\lambda}\}$ is the real attracting or rationally indifferent 2-periodic cycle.

Proof. All the singular values of $f_{\lambda}(z)$ are in $(\mathbb{R} \setminus (-\lambda, \lambda)) \cup \{0\}$ by Proposition 2.2. If there is a 2-periodic cycle then the cycle is in $(0, \lambda)$ and by Proposition 3.1, all the singular values tend to the outermost 2-cycle under iteration of f_{λ}^2 .

(1) Let $f_{\lambda}^2(x) > x$ (or $f_{\lambda}^2(x) < x$) for some x > 0. Since $f_{\lambda}^2(x)$ is increasing on \mathbb{R}^+ , the sequence $\{f_{\lambda}^{2n}(x)\}_{n>0}$ is increasing and bounded above by λ (or decreasing and bounded below by 0). Therefore, $f_{\lambda}^{2n}(x)$ converges to \hat{x} , say. Now, by continuity of f_{λ} , the point \hat{x} is a periodic point of $f_{\lambda}(x)$ of period one or two. If possible, let \hat{x} be a periodic point of f_{λ} with prime period two. Then, there is an outermost 2-periodic cycle of f_{λ} and all the singular values of f_{λ} tend to the outermost 2-periodic cycle under iteration of f_{λ}^2 which is a contradiction to the fact that the basin of attraction of a_{λ} must contain at least one singular value of f_{λ} . Therefore, \hat{x} is not a 2-periodic point and is a fixed point. Since f_{λ} has only one real fixed point a_{λ} for $0 < \lambda < \lambda^*$, $\hat{x} = a_{\lambda}$ and $\lim_{n \to \infty} f_{\lambda}^{2n}(x) = a_{\lambda}$ for all $x \in \mathbb{R}^+$. By continuity of f_{λ} , it follows that $\lim_{n\to\infty} f_{\lambda}^{n}(x) = a_{\lambda}$ for all $x \in \mathbb{R}^+$.

$$f_{\lambda}(\mathbb{R}^- \cup \{0\}) \subset \mathbb{R}^+, \quad \lim_{n \to \infty} f_{\lambda}^n(x) = a_{\lambda} \quad \text{for all } x \in \mathbb{R}.$$

(2) Let $f_{\lambda}^2(x) > x$ (or $f_{\lambda}^2(x) < x$). Since $f_{\lambda}^2(x)$ is increasing on \mathbb{R}^+ , the sequence $\{f_{\lambda}^{2n}(x)\}_{n>0}$ is increasing and bounded above by λ (or decreasing and bounded below by 0). Proceeding as in case (1), it is easy to see that $\{f_{\lambda}^{2n}(x)\}_{n>0}$ converges to x^* for all $x \in \mathbb{R}^+$. By continuity of f_{λ} , it follows that $\lim_{n\to\infty} f_{\lambda}^n(x) = x^*$ for all $x \in \mathbb{R}^+$. Since

$$f_{\lambda}(\mathbb{R}^- \cup \{0\}) \subset \mathbb{R}^+, \quad \lim_{n \to \infty} f_{\lambda}^n(x) = x^* \text{ for all } x \in \mathbb{R}.$$

(3) If $\lambda > \lambda^*$, then the unique real fixed point of f_{λ} is repelling. Therefore, we can find a real number x sufficiently close to the fixed point r_{λ} such that $f_{\lambda}^2(x) > x$. Since $f_{\lambda}^2(x)$ is increasing on \mathbb{R}^+ , the sequence $\{f_{\lambda}^{2n}(x)\}_{n>0}$ is increasing and bounded above by λ . Therefore, $\{f_{\lambda}^{2n}(x)\}_{n>0}$ converges to \hat{x} , say. By continuity of f_{λ}^2 , it follows that \hat{x} is a 2-periodic point of f_{λ} . If possible, let there be more than one 2-periodic cycle of periodic points. If $\{i_{1\lambda}, i_{2\lambda}\}$ is the innermost real cycle of 2-periodic points of f_{λ} then $i_{1\lambda} < r_{\lambda} < i_{2\lambda}$ and, $f_{\lambda}(x) \in (r_{\lambda}, i_{2\lambda})$ for all $x \in (i_{1\lambda}, r_{\lambda})$ and $f_{\lambda}(x) \in (i_{1\lambda}, r_{\lambda})$

for all $x \in (r_{\lambda}, i_{2\lambda})$. Furthermore, the sequence $\{f_{\lambda}^{2n}(x)\}_{n>0}$ converges either to $i_{1\lambda}$ or to $i_{2\lambda}$ for $x \in (i_{1\lambda}, i_{2\lambda}) \setminus r_{\lambda}$ by the same arguments as used in the previous cases. Therefore, $\{i_{1\lambda}, i_{2\lambda}\}$ is either an attracting or a rationally indifferent cycle and at least one singular value of f_{λ} tends to this cycle under iteration of f_{λ}^2 . But all the singular values of f_{λ}^2 tend to the outermost 2-cycle under iteration of f_{λ} by Proposition 3.1 leading to a contradiction. Hence, f_{λ} has exactly one 2-periodic cycle. Let it be $\{a_{1\lambda}, a_{2\lambda}\}$. By Proposition 3.1, $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = a_{1\lambda}$ or $a_{2\lambda}$ for all $x \in [0, a_{1\lambda}] \cup [a_{2\lambda}, +\infty)$. If $x \in (r_{\lambda}, a_{2\lambda}]$, then $f_{\lambda}^2(x) > x$ and $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = a_{2\lambda}$. Similarly, it is easily seen that $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = a_{1\lambda}$ or $a_{2\lambda}$ for all $x \in \mathbb{R} \setminus \{-r_{\lambda}\}$. Therefore, if $\lambda > \lambda^*$ it is concluded that $\lim_{n\to\infty} f_{\lambda}^{2n}(x) = a_{1\lambda}$ or $a_{2\lambda}$ for all $x \in \mathbb{R} \setminus \{r_{\lambda}, -r_{\lambda}\}$ where r_{λ} is the repelling fixed point of f_{λ} and $\{a_{1\lambda}, a_{2\lambda}\}$ is the attracting or rationally indifferent 2-periodic cycle.

The above theorem exhibits the occurrence of a period-doubling bifurcation at $\lambda = \lambda^*$ in the dynamics of functions f_{λ} in the one-parameter family S.

Remark 3.2. All the singular values of f_{λ} , $\lambda > 0$ are in \mathbb{R} and tend to either an attracting or a rationally indifferent periodic point under iteration of f_{λ}^2 . Therefore, the set $P(f_{\lambda})$ is contained in the Fatou set of f_{λ} for $\lambda > 0$. In particular, the point 0 is in the Fatou set $\mathcal{F}(f_{\lambda})$ for $\lambda > 0$.

Remark 3.3. Note that $f_{\lambda}(iy) = (y^m/\sin^m y)$ and the image of any point on the imaginary axis is either infinity or a real number. By Theorem 3.2, each of the real numbers except at most two are in an attracting or a parabolic domain of f_{λ} corresponding to a real periodic point. Therefore, any Fatou component U of f_{λ} other than an attracting or parabolic domain (and their pre-images) intersects neither the real nor the imaginary axis. Thus, such a Fatou component U is contained completely in one of the four quadrants of the complex plane.

4. Dynamics of $f_{\lambda}(z)$ for $z \in \mathbb{C}$

The dynamics of $f_{\lambda}(z)$ for $z \in \mathbb{C}$ is studied in this section. The non-existence of Baker domains and wandering domains in the Fatou set of $f_{\lambda} \in S$ for $\lambda > 0$ is proved in Theorem 4.1 and Theorem 4.2 respectively. The dynamics of $f_{\lambda}(z)$ for $z \in \mathbb{C}$ is described in Theorem 4.3.

THEOREM 4.1. Let $f_{\lambda} \in S$ and $\lambda > 0$. Then, the Fatou set of f_{λ} has no Baker domain.

Proof. Suppose, on the contrary that the Fatou set of f_{λ} has a Baker domain *B* of minimal period *p*. All the singular values of f_{λ} are real by Proposition 2.2 and $f_{\lambda}(\mathbb{R}) = (0, \lambda]$. Therefore, $S_p(f_{\lambda})$ is bounded for each p > 1 and the Fatou set of f_{λ} cannot have a Baker domain of minimal period greater than one [**19**]. Therefore, p = 1. That is, *B* is an invariant Baker domain. By the definition of an invariant Baker domain, there is a point z^* in the boundary of *B* such that $\lim_{n\to\infty} f_{\lambda}^n(z) = z^*$ for all $z \in B$ and $f_{\lambda}(z^*)$ is not defined. Since the point at infinity is the only point in $\widehat{\mathbb{C}}$ where the function $f_{\lambda}(z)$ is not defined, $z^* = \infty$. Now, $\lim_{n\to\infty} f_{\lambda}^n(z) = \infty$ and $f_{\lambda}^n(z) \in B$ for $z \in B$ and $n \in \mathbb{N}$ gives that the domain *B* is unbounded. Since $f_{\lambda}(\overline{z}) = \overline{f_{\lambda}(z)}$ for all $z \in \mathbb{C}$ and *B* is contained in one of

the four quadrants by Remark 3.3, $\overline{B} = \{\overline{z} \in \mathbb{C} \mid z \in B\}$ is also an invariant Baker domain of f_{λ} . Clearly, one of *B* and \overline{B} contains points with positive imaginary parts. Let it be *B*, i.e., $\Im(z) > 0$ for each $z \in B$.

We assert that the set $\{\Im(z) \mid z \in B\}$ is unbounded. To see it, suppose on the contrary that $\{\Im(z) \mid z \in B\}$ is bounded. Then $\{\Re(z) \mid z \in B\}$ must be unbounded as *B* is itself unbounded. Now, let $\{z_k\}_{k>0}$ be a sequence in *B* such that $\lim_{k\to\infty} |\Re(z_k)| = \infty$. Then

$$f_{\lambda}(z_k) = \frac{\lambda 2^m z_k^m}{(e^{z_k} - e^{-z_k})^m} \to 0 \quad \text{as } k \to \infty$$

by Remark 2.1. The point 0 is in the attracting or parabolic domain for each $\lambda > 0$ by Remark 3.2. Let N(0) be a neighbourhood of z = 0 completely lying in the Fatou set. Then, there is a natural number \hat{k} such that $f_{\lambda}(z_k) \in N(0)$ for all $k > \hat{k}$. Consequently, z_k is in a Fatou component U such that $f_{\lambda}(U)$ is contained in an attracting domain or a parabolic domain and hence, not in B for $k > \hat{k}$. It contradicts the invariance of B. Thus the set $\{\Im(z) \mid z \in B\}$ is unbounded.

Let *B* be in the first quadrant of the plane. If *B* is in the second quadrant, the proof follows similarly. For $\theta \in (0, (\pi/2))$, let $S_{\theta} = \{z \in \mathbb{C} \mid \theta < \operatorname{Arg}(z) < \pi/2\}$ and $S_{\theta'} = \{z \in \mathbb{C} \mid 0 < \operatorname{Arg}(z) \le \theta\}$ where $0 < \operatorname{Arg}(z) < 2\pi$. Let $L_k = \{z \in \mathbb{C} \mid \Im(z) = \pi k\}$ and $L_k^+ = \{z \in L_k \mid \Re(z) > 0\}$ for $k \in \mathbb{Z}$. We now show that the set $\{\Im(z) \mid z \in B \cap S_{\theta}\}$ is unbounded for each $\theta \in (0, \pi/2)$. In view of the conclusion obtained in the previous paragraph, it is sufficient to prove that the set $\{\Im(z) \mid z \in B \cap S_{\theta'}\}$ is bounded. Suppose the set $\{\Im(z) \mid z \in B \cap S_{\theta'}\}$ is unbounded for some θ . Then a sequence $\{s_n\}_{n>0}$ of points can be found in $B \cap S_{\theta'}$ such that $\Im(s_n) \le (\tan \theta) \Re(s_n)$ for all $n \in \mathbb{N}$ and $\Im(s_n) \to \infty$ as $n \to \infty$. Consequently, $\Re(s_n) \to \infty$ and

$$\left|\frac{s_n}{\sinh(s_n)}\right| \le 2\frac{|\Re(s_n) + i\Im(s_n)|}{e^{\Re(s_n)} - e^{-\Re(s_n)}} \le 2\frac{|(1 + \tan\theta)\Re(s_n)|}{e^{\Re(s_n)} - e^{-\Re(s_n)}} \to 0 \quad \text{as } n \to \infty$$

It follows that there is an $n_0 \in \mathbb{N}$ such that $f_{\lambda}(s_n) \in N(0)$ for $n > n_0$. Consequently, the set $\{s_n \mid n > n_0\}$ is not in the Baker domain, which is a contradiction. Therefore, the set $\{\Im(z) \mid z \in B \cap S_{\theta'}\}$ is bounded, and hence the set $\{\Im(z) \mid z \in B \cap S_{\theta}\}$ is unbounded. Furthermore, $B \cap S_{\theta}$ has an unbounded connected subset. In particular, there exists an integer k_0 such that the set $B \cap S_{\theta}$ intersects L_k^+ for all $k \ge k_0$. Choose θ in such a way that for all $\delta, \beta \in (\theta, \pi/2), |m(\delta - \beta)| < (\pi/4)$ where $f_{\lambda}(z) = \lambda(z^m/\sinh^m z)$.

Case 1. m is odd.

Note that

$$f_{\lambda}(x+i\pi k) = \lambda \frac{(x+i\pi k)^m}{\sinh^m (x+i\pi k)} = \begin{cases} -\lambda \frac{(x+i\pi k)^m}{\sinh^m x} & \text{for odd } k, \\ \lambda \frac{(x+i\pi k)^m}{\sinh^m x} & \text{for even } k. \end{cases}$$
(4)

Let $z_1 = x_1 + i\pi k$, $z_2 = x_2 + i\pi(k+1) \in B \cap S_{\theta}$ for some $k \ge k_0$. If $\operatorname{Arg}(z_1) = \theta_1$ and $\operatorname{Arg}(z_2) = \theta_2$ then $\theta_1, \theta_2 \in (\theta, \pi/2)$ and $|\operatorname{Arg}(z_1^m) - \operatorname{Arg}(z_2^m)| = |m(\theta_1 - \theta_2)| < \pi/4$. Therefore, the two points z_1^m and z_2^m belong either to the same quadrant or to two consecutive quadrants. This means either the real parts or the imaginary parts of z_1^m

CAMBRIDGE JOURNALS

and z_2^m have same sign. Let the first possibility hold i.e., $(\Re(z_1^m)/\Re(z_2^m)) > 0$. One of k and k + 1 is even and the other is odd. Also note that $(\lambda/\sinh^m x) > 0$ for x > 0. Using equation (4), we have $\Re(f_{\lambda}(z_1))/\Re(f_{\lambda}(z_2)) < 0$. In other words, $\Re(f_{\lambda}(z_1))$ and $\Re(f_{\lambda}(z_2))$ have opposite sign. Thus $f_{\lambda}(B) = B$ intersects the imaginary axis which contradicts Remark 3.3. For $\Re(z_1^m)/\Re(z_2^m) > 0$, arguing similarly, we can get $\Re(f_{\lambda}(z_1))/\Re(f_{\lambda}(z_2)) < 0$, which also results in a similar contradiction to Remark 3.3.

Case 2. m/2 is odd.

Note that

$$\sinh^m\left(x+i\left(\frac{\pi}{2}+2\pi k\right)\right) = -\cosh^m x \quad \text{for } k \in \mathbb{N}.$$

Since the line

$$L_{(\pi/2)+2\pi k} = \left\{ z \in \mathbb{C} \mid \Im(z) = \frac{\pi}{2} + 2\pi k \right\}$$

intersects $B \cap S_{\theta}$ for all sufficiently large k, there is an even $k' \in \mathbb{N}$ such that the points $z_3 = x_3 + i((\pi/2) + 2\pi k')$ and $z_4 = x_4 + i(2\pi k')$ are in $B \cap S_{\theta}$ for some x_3 , $x_4 > 0$ where θ is so chosen that $|\operatorname{Arg}(z_3^m) - \operatorname{Arg}(z_4^m)| < \pi/4$. Now,

$$f_{\lambda}(z_3) = -\lambda \frac{(x_3 + i((\pi/2) + 2\pi k'))^m}{\cosh^m x_3} \quad \text{and} \quad f_{\lambda}(z_4) = \lambda \frac{(x_4 + i2\pi k')^m}{\sinh^m x_4}.$$

Arguing exactly in the same manner as in Case 1, it is found that either

$$\frac{\Re(f_{\lambda}(z_3))}{\Re(f_{\lambda}(z_4))} < 0 \quad \text{or} \quad \frac{\Im(f_{\lambda}(z_3))}{\Im(f_{\lambda}(z_4))} < 0.$$

Both of these possibilities contradict Remark 3.3.

Therefore, the Fatou set of f_{λ} does not contain any Baker domain.

THEOREM 4.2. Let $f_{\lambda} \in S$ and $\lambda > 0$. Then, the Fatou set of f_{λ} has no wandering domain.

Proof. By Remark 3.2, the set $P(f_{\lambda}) \setminus \{\infty\}$ is in the Fatou set of f_{λ} . Since ∞ is in the derived set $P(f_{\lambda})'$ of $P(f_{\lambda})$, we have $\mathcal{J}(f_{\lambda}) \cap P(f_{\lambda})' = \{\infty\}$. If a point z_0 is in a wandering domain of f_{λ} then, every limit point of $\{f_{\lambda}^n(z_0)\}_{n>0}$ is infinity [22]. Since $S_2(f_{\lambda})$ is bounded, $f_{\lambda}^{2n}(z_0)$ does not tend to infinity as $n \to \infty$. Then, we can find a subsequence $\{n_k\}_{k>0}$ of $\{2n\}_{n>0}$ such that $\{f_{\lambda}^{n_k}(z_0)\}_{k>0}$ is bounded. Let us consider $\{f_{\lambda}^{n_k}\}_{k>0}$. Since $\{f_{\lambda}^n\}_{n>0}$ is normal at z_0 , there is a subsequence $\{f_{\lambda}^{n_{k,m}}\}_{m>0}$ of $\{f_{\lambda}^{n_k}\}_{k>0}$ such that $\lim_{m\to\infty} f_{\lambda}^{n_{k,m}}(z_0) = \infty$. However, it is not possible because $\{n_{k,m}\}_{m>0}$ is a subsequence of $\{n_k\}_{k>0}$. Therefore, the Fatou set of f_{λ} does not contain any wandering domain.

THEOREM 4.3. Let $f_{\lambda} \in S$ and $\lambda > 0$.

- (1) For $\lambda < \lambda^*$, the Fatou set $\mathcal{F}(f_{\lambda})$ of f_{λ} is the basin of attraction of the unique real attracting fixed point a_{λ} of f_{λ} .
- (2) For $\lambda = \lambda^*$, the Fatou set $\mathcal{F}(f_{\lambda})$ of f_{λ} is the parabolic basin corresponding to the unique real rationally indifferent fixed point x^* of f_{λ} .
- (3) For $\lambda > \lambda^*$, the Fatou set $\mathcal{F}(f_{\lambda})$ of f_{λ} is the basin of attraction or parabolic basin corresponding to a cycle of real 2-periodic points $\{a_{1\lambda}, a_{2\lambda}\}$ of f_{λ}

AMBRIDGE JOURNALS

Proof. We know that the boundary of any rotational domain of a meromorphic function f

is contained in the closure of the set P(f) [4]. Thus, the Fatou set of f_{λ} does not contain any rotational domain. By Theorems 4.1 and 4.2, the Fatou set of f_{λ} also does not contain any Baker domain and wandering domain for $\lambda > 0$.

If U is an attracting domain or parabolic domain of period p and z_u is the corresponding attracting or rationally indifferent periodic point of f_{λ} , then there is a singular value s of f_{λ} such that $f_{\lambda}^{np}(f_{\lambda}^k(s)) \rightarrow z_u$ as $n \rightarrow \infty$ for some k, $0 < k \le p$. Since all the singular values and their forward orbits (whenever defined) are in \mathbb{R} , z_u is real. Therefore, any attracting or parabolic domain of f_{λ} corresponds to a real attracting or rationally indifferent periodic point.

- (1) For $0 < \lambda < \lambda^*$, f_{λ} has only one real periodic point which is the attracting fixed point a_{λ} . Therefore, $\mathcal{F}(f_{\lambda})$ is the basin of attraction of a_{λ} .
- (2) For $\lambda = \lambda^*$, f_{λ} has only one real periodic point which is the rationally indifferent fixed point x^* . Therefore, $\mathcal{F}(f_{\lambda})$ is the parabolic basin corresponding to x^* .
- (3) For $\lambda > \lambda^*$, f_{λ} has a repelling fixed point r_{λ} and a cycle of real 2-periodic points $\{a_{1\lambda}, a_{2\lambda}\}$ which is either attracting or rationally indifferent. Therefore, $\mathcal{F}(f_{\lambda})$ is the attracting basin or parabolic basin corresponding to $\{a_{1\lambda}, a_{2\lambda}\}$.

Since f_{λ} and $f_{-\lambda}$ are conformally conjugate, the dynamics of f_{λ} for $\lambda < 0$ is as follows.

COROLLARY 4.1. Let $f_{\lambda} \in S$ and $\lambda < 0$.

- (1) For $-\lambda^* < \lambda < 0$, the Fatou set $\mathcal{F}(f_{\lambda})$ of f_{λ} is the basin of attraction of the unique real attracting fixed point of f_{λ} .
- (2) For $\lambda = -\lambda^*$, the Fatou set $\mathcal{F}(f_{\lambda})$ of f_{λ} is the parabolic basin corresponding to the unique real rationally indifferent fixed point of f_{λ} .
- (3) For $\lambda < -\lambda^*$, the Fatou set $\mathcal{F}(f_{\lambda})$ of f_{λ} is the basin of attraction or parabolic basin corresponding to a cycle of real 2-periodic points of f_{λ} .

5. Topology of Fatou components

Topology of the Fatou components of f_{λ} , $\lambda > 0$ is investigated in this section. It is observed from Theorem 4.3 that the Fatou set of f_{λ} contains components with period one and two. The connectivity of a periodic Fatou component of a meromorphic function is either one, two or infinity whereas the connectivity of a pre-periodic Fatou component can be any finite number [2]. In Theorem 5.1, it is proved that the Fatou set of f_{λ} , $0 < \lambda < \lambda^*$ is infinitely connected. The existence of pre-periodic Fatou components is established and the connectivity of all the Fatou components of f_{λ} is determined for $\lambda > \lambda^*$ in Theorem 5.2.

THEOREM 5.1. Let $f_{\lambda} \in S$ and $0 < \lambda < \lambda^*$. Then, the Fatou set $\mathcal{F}(f_{\lambda})$ of f_{λ} is connected. Furthermore, the Fatou set $\mathcal{F}(f_{\lambda})$ is infinitely connected.

Proof. By Theorem 3.2(1), $\lim_{n\to\infty} f_{\lambda}^n(x) = a_{\lambda}$ for $x \in \mathbb{R}$ and $0 < \lambda < \lambda^*$ where a_{λ} is the attracting fixed point of f_{λ} . The Fatou set of f_{λ} is the attracting basin

$$A(a_{\lambda}) = \{ z \in \mathbb{C} \mid f_{\lambda}^{n}(z) \to a_{\lambda} \text{ as } n \to \infty \} \text{ for } 0 < \lambda < \lambda^{*}.$$

Let $I(a_{\lambda})$ be the immediate basin of attraction of a_{λ} . By definition, $I(a_{\lambda})$ is a forward invariant connected subset of the Fatou set $\mathcal{F}(f_{\lambda})$. Note that $A(a_{\lambda}) = I(a_{\lambda})$ if $I(a_{\lambda})$ is backward invariant. Since $I(a_{\lambda})$ is connected, in order to prove the connectedness of $\mathcal{F}(f_{\lambda})$, it is sufficient to show that $I(a_{\lambda})$ is backward invariant.

Let, if possible, *V* be a component of $f_{\lambda}^{-1}(I(a_{\lambda}))$ different from $I(a_{\lambda})$. Since 0 is an omitted value of f_{λ} , each singularity of f_{λ}^{-1} lying over 0 is transcendental. It means that *V* contains an asymptotic path γ corresponding to the asymptotic value 0 and by Remark 2.1, the set $\{\Re(z) \mid z \in \gamma\}$ is unbounded. Therefore, the set $\{\Re(z) \mid z \in V\}$ is unbounded. The function f_{λ} is even and $f_{\lambda}(\overline{z}) = \overline{f_{\lambda}(z)}$ for all $z \in \mathbb{C}$. In view of Remark 3.3, it is assumed without loss of generality that, the set *V* is in the upper half plane $\{z \in \mathbb{C} \mid \Re(z) > 0\}$. Let $\{w_n\}_{n>0}$ be a sequence on γ such that $\Re(w_n) \to \infty$ as $n \to \infty$. Then $\lim_{n\to\infty} f_{\lambda}(w_n) = 0$. Each of the vertical lines $l_n = \{z \in \mathbb{C} \mid \Re(z) = \Re(w_n) \text{ and } 0 \leq \Re(z) < \Re(w_n)\}$ joins a point of *V* and a point of $\mathbb{R} \cap I(a_{\lambda})$ and we get that l_n intersects the boundary ∂V of *V* for each *n*. Let $z_n \in l_n \cap \partial V$. Then $z_n \in \mathcal{J}(f_{\lambda})$ and $\Re(z_n) < \Re(w_n)$ for all *n*. Furthermore,

$$|f_{\lambda}(z_n)| = \lambda \left\{ \left(\frac{\Re(z_n)^2 + \Im(z_n)^2}{\sinh^2 \Re(z_n) + \sin^2 \Im(z_n)} \right)^{1/2} \right\}^m \\ < \lambda \left\{ \left(\frac{\Re(w_n)^2 + \Im(w_n)^2}{\sinh^2 \Re(w_n) + \sin^2 \Im(z_n)} \right)^{1/2} \right\}^m.$$
(5)

Since the sequence $\{\sin^2(\Im(z_n))\}_{n>0}$ is bounded, the right-hand side of equation (5) is equal to $|f_{\lambda}(w_n)|$ when $n \to \infty$. Therefore, $\lim_{n\to\infty} f_{\lambda}(z_n) = 0$. Let $D_r(0) = \{z \in \mathbb{C} : |z| < r\} \subset I(a_{\lambda})$. Then, there exists an n_0 such that $f_{\lambda}(z_n) \in D_r(0)$ for all $n > n_0$. It means that z_n is in the Fatou set of f_{λ} for $n > n_0$, which is a contradiction. Therefore, each component of $f_{\lambda}^{-1}(I(a_{\lambda}))$ intersects $I(a_{\lambda})$ and hence is a subset of $I(a_{\lambda})$. Thus $I(a_{\lambda})$ is backward invariant.

Since $\mathcal{F}(f_{\lambda})$ is connected and contains an attracting fixed point, it is invariant. The connectivity of any invariant Fatou component of a meromorphic function is one, two or infinity, two being the case when the component is an Herman ring. Since the Fatou set $\mathcal{F}(f_{\lambda})$ is an attracting domain for $0 < \lambda < \lambda^*$, the connectivity of $\mathcal{F}(f_{\lambda})$ is either one or infinity. If possible, let $\mathcal{F}(f_{\lambda})$ be simply connected. Then, the Julia set $\mathcal{J}(f_{\lambda})$ is connected. As the point at infinity and a pole w^* lying on the imaginary axis are in $\mathcal{J}(f_{\lambda})$, there is an unbounded connected subset J_{w^*} of the Julia set containing w^* . Now, $\overline{-J_{w^*}} = \{z \in \mathbb{C} \mid -\overline{z} \in J_{w^*}\}$ is also in the Julia set by Proposition 2.1. Thus $J = J_{w^*} \cup \overline{-J_{w^*}}$ is in the Julia set and the set $\widehat{\mathbb{C}} \setminus J$ has at least two components each intersecting the Fatou set of f_{λ} . This contradicts the fact that $\mathcal{F}(f_{\lambda})$ is connected. Therefore, $\mathcal{F}(f_{\lambda})$ is infinitely connected for $0 < \lambda < \lambda^*$.

Remark 5.1. Since the Fatou set is connected with connectivity greater than three for $0 < \lambda < \lambda^*$, singleton components of $\mathcal{J}(f_{\lambda})$ are dense in $\mathcal{J}(f_{\lambda})$ [10].

It is seen in Theorem 5.1 that the Fatou set of f_{λ} is connected and hence unbounded for $0 < \lambda < \lambda^*$. The next proposition shows that there are at least three Fatou components of f_{λ} , two of which are unbounded for $\lambda > \lambda^*$.

PROPOSITION 5.1. Let $f_{\lambda} \in S$ and $\lambda > \lambda^*$. If U^+ , U^- and U_0 denote the Fatou components containing $(a_{2\lambda}, +\infty)$, $(-\infty, -a_{2\lambda})$ and 0 respectively where $\{a_{1\lambda}, a_{2\lambda}\}$ is the 2-cycle of real periodic points of f_{λ} , then the Fatou components U^+ , U^- and U_0 are mutually disjoint. Further, the components U^+ and U^- are unbounded.

Proof. Observe that both U^+ and U^- are mapped into U_0 and U_0 is mapped into U^+ by f_{λ} for $\lambda > \lambda^*$. Since U_0 and U^+ form a cycle of 2-periodic Fatou components, $U_0 \neq U^+$. If U_0 intersects U^- then $U_0 = U^-$ will become invariant, which is not true. Therefore, U_0 is different from U^+ and U^- . If U^+ and U^- are the same component of $\mathcal{F}(f_{\lambda})$ then $U^+ = U^-$ intersects the imaginary axis. Then, since all the points in the imaginary axis are mapped onto $\mathbb{R} \setminus (-\lambda, \lambda) \subset (-\infty, -a_{2\lambda}) \cup (a_{2\lambda}, +\infty)$, the points of the set $U^+ \cap \{iy \mid y \in \mathbb{R}\}$ are mapped into U^+ and consequently, U^+ is invariant, leading to a contradiction. Therefore, U_0, U^+ and U^- are mutually disjoint components of $\mathcal{F}(f_{\lambda})$ for $\lambda > \lambda^*$. The components U^- and U^+ are unbounded by definition. \Box

THEOREM 5.2. Let $f_{\lambda} \in S$ and $\lambda > \lambda^*$. Then, the Fatou set $\mathcal{F}(f_{\lambda})$ of f_{λ} contains infinitely many pre-periodic components and each component of $\mathcal{F}(f_{\lambda})$ is simply connected.

Proof. It is clear from Theorem 3.2 that the point $0 \in \mathcal{F}(f_{\lambda})$ for all λ . Let U_0 be the Fatou component containing 0. If $\lambda > \lambda^*$ and $\{a_{1\lambda}, a_{2\lambda}\}$ is the 2-cycle of real periodic points of f_{λ} then by Theorem 3.2, $(-\infty, -a_{2\lambda})$ and $(a_{2\lambda}, +\infty)$ are in the Fatou set of f_{λ} . Let U^- and U^+ be the Fatou components of f_{λ} containing $(-\infty, -a_{2\lambda})$ and $(a_{2\lambda}, +\infty)$ respectively. If a pre-image of a point of U^- lies in U^- then $U^- \cap f_{\lambda}(U^-) \neq \emptyset$ which shows that $U^- = f_{\lambda}(U^-)$ since $f_{\lambda}(U^-)$ is connected. It means that U^- is forward invariant. But it is already known that U^- is not forward invariant. Therefore, no pre-image of any point of U^- lies in U^- . In other words, U^- is not backward invariant. Since none of U_0 and U^+ is mapped into U^- by f_{λ} , each component of $f_{\lambda}^{-1}(U^-)$ is different from U_0 and U^+ , and consequently is a pre-periodic Fatou component. Repeating the same arguments for each component of $f_{\lambda}^{-1}(U^-)$ and continuing the process, we can find infinitely many pre-periodic Fatou components.

Let U be any Fatou component of f_{λ} . Suppose, on the contrary that U is multiply connected. Let γ be a simple closed curve in U such that the bounded component $B(\gamma^c)$ of $\gamma^c = \widehat{\mathbb{C}} \setminus \gamma$ intersects the Julia set $\mathcal{J}(f_{\lambda})$. Set $B_j = f_{\lambda}^j(B(\gamma^c))$ for $j \in \mathbb{N}$. If $B(\gamma^c)$ does not contain a pole of f_{λ} then $f_{\lambda}(z)$ is analytic on $\overline{B(\gamma^c)}$, the closure of $B(\gamma^c)$, and $B_1 = f_{\lambda}(B(\gamma^c))$ is bounded. Further, the function $f_{\lambda}(z)$ maps the interior of $B(\gamma^c)$ (which intersects the Julia set) into the interior of B_1 and, by the complete invariance of $\mathcal{J}(f_{\lambda})$, it follows that $B_1 \cap \mathcal{J}(f_{\lambda}) \neq \emptyset$. If B_1 does not contain any pole of f_{λ} then consider $B_2 = f_{\lambda}(B_1)$ and repeat the above arguments. Since the pre-images of all the poles of f_{λ} are dense in $\mathcal{J}(f_{\lambda})$, $B(\gamma^{c})$ contains a point \tilde{w} such that $f_{\lambda}^{n}(\tilde{w})$ is a pole of f_{λ} for a natural number n. Let n^* the minimum of all such natural numbers, minimum being taken over all points in the backward orbit of ∞ which lie in $B(\gamma^c)$. Then, the set B_{n^*} contains a pole. Since all the poles of f_{λ} are on the imaginary axis, the boundary of B_{n^*} intersects the imaginary axis. Therefore, the set $B_{n^*+1} = f_{\lambda}(B_{n^*})$ contains a neighbourhood of ∞ and the unboundedness of U^+ and U^- gives that B_{n^*+1} intersects both U^+ and U^- . Since $f_{\lambda}(iy) \in \mathbb{R}$ and $|f_{\lambda}(iy)| \ge \lambda$ for all $y \in \mathbb{R}$, the f_{λ} -image of ∂B_n^* intersects at least one of U^+ or U^- . Note that $\partial B_{j+1} \subseteq f_{\lambda}(\partial B_j)$ for $j = 1, 2, 3, \ldots, n^*$.

14

TABLE 1. Comparison between	the dynamics	of $\lambda \tanh(e^{z})$	and $\lambda(z^m/\sinh^m z)$.
-----------------------------	--------------	---------------------------	--------------------------------

Dynamics of $g_{\lambda}(z) = \lambda \tanh(e^z), \lambda \neq 0$	Dynamics of $f_{\lambda}(z) = \lambda z^m / \sinh^m z$, $\lambda \neq 0$, where <i>m</i> or <i>m</i> /2 is an odd natural number
g_{λ} is periodic with period $2\pi i$.	f_{λ} is not periodic.
g_{λ} is neither even nor odd.	f_{λ} is even.
g_{λ} has no critical values.	f_{λ} has infinitely many critical values.
g_{λ} has three (finite) asymptotic values 0, λ	f_{λ} has only one (finite) asymptotic value 0.
and $-\lambda$.	
The set of all singular values of g_{λ} is finite.	The set of all singular values of f_{λ} is unbounded.
Bifurcation in the dynamics of g_{λ} occurs at	Bifurcation in the dynamics of f_{λ} occurs
one critical parameter $\lambda^* \approx -3.2946$.	at two critical parameters $\pm \lambda^*(m)$ whose
	values depend on f .
The Fatou set of g_{λ} has infinitely many	The Fatou set of f_{λ} has infinitely many
components and each component is simply	components and each component is simply
connected for $\lambda \leq \lambda^*$.	connected for $ \lambda \ge \lambda^*(m)$.
The Fatou set of g_{λ} is infinitely connected	The Fatou set of f_{λ} is infinitely connected
for $\lambda > \lambda^*$.	for $ \lambda < \lambda^*(m)$.

Therefore, $\partial B_{n^*+1} \subseteq f_{\lambda}(\partial B_{n^*}) \subseteq \cdots \subseteq f_{\lambda}^{n^*+1}(\gamma) \subset \mathcal{F}(f_{\lambda})$ and consequently, ∂B_{n^*+1} lies either in U^+ or in U^- . Since neither U^+ nor U^- intersects the imaginary axis, ∂B_{n^*+1} cannot wind around U_0 . Now, U_0 is a subset of B_{n^*+1} and each singularity of f_{λ}^{-1} lying over 0 is transcendental. This means that B_{n^*} contains an asymptotic path corresponding to the asymptotic value 0 which contradicts the boundedness of B_{n^*} . Therefore, U is simply connected.

Remark 5.2. Theorem 5.2 is true for $\lambda = \lambda^*$ and the proof is similar.

The function $\lambda(z^m/\sinh^m z)$ differs in many fundamental properties from the meromorphic function $\lambda \tanh(e^z)$, but these functions exhibit similar bifurcations in their dynamics. The iteration of $\lambda \tanh(e^z)$ is studied in [11]. Table 1 provides a comparison between the dynamical properties of these two functions.

Acknowledgement. This work was carried out at IIT Guwahati and was supported by CSIR Senior Research Fellowship Grant No. 9/731(31)2004-EMR-I for the first author.

REFERENCES

- I. N. Baker, J. Kotus and L. Yinian. Iterates of meromorphic functions II: examples of wandering domains. J. London Math. Soc. (2) 2(42) (1990), 267–278.
- [2] I. N. Baker, J. Kotus and L. Yinian. Iterates of meromorphic functions III: preperiodic domains. *Ergod. Th. & Dynam. Sys.* 11 (1991), 603–618.

- [3] I. N. Baker, J. Kotus and L. Yinian. Iterates of meromorphic functions IV: critically finite functions. *Results Math.* 22 (1992), 651–656.
- [4] W. Bergweiler. Iteration of meromorphic functions. Bull. Amer. Math. Soc. (N.S.) 29(2) (1993), 151–188.
- [5] W. Bergweiler. Newton's method and a class of meromorphic functions without wandering domains. Ergod. Th. & Dynam. Sys. 13 (1993), 231–247.
- [6] W. Bergweiler. Singularities in Baker domains. Comput. Methods Funct. Theory 1(1) (2001), 41–49.
- [7] W. Bergweiler and A. E. Eremenko. On the singularities of the inverse to a meromorphic function of finite order. *Rev. Mat. Iberoam.* 11 (1995), 355–373.
- [8] W. Bergweiler, M. Haruta, H. Kriete, H. Meier and N. Terglane. On the limit functions of iterates in wandering domains. Ann. Acad. Sci. Fenn. Math. Ser. A. I. Math. 18 (1993), 369–375.
- [9] R. L. Devaney and L. Keen. Dynamics of tangent. *Dynamical Systems (Lecture Notes in Mathematics, 1342)*. Springer, Berlin, 1988, pp. 105–111.
- [10] P. Domínguez. Dynamics of transcendental meromorphic functions. Ann. Acad. Sci. Fenn. Math. 23 (1998), 225–250.
- [11] M. G. P. Prasad and T. Nayak. Dynamics of $\lambda \tanh(e^z)$. Discrete Contin. Dyn. Syst. 19(1) (2007), 121–138.
- [12] M. E. Herring. Mapping properties of Fatou components. Ann. Acad. Sci. Fenn. Math. 23 (1998), 263–274.
- [13] W. H. Jiang. Dynamics of $\lambda \tan z$. *PhD Thesis*, Graduate Center of the City University of New York, CUNY, 1991.
- [14] L. Keen and J. Kotus. Dynamics of the family $\lambda \tan z$. Conform. Geom. Dyn. 1 (1997), 28–57.
- [15] H. König. Conformal conjugacies in Baker domains. J. London Math. Soc. (2) 59(2) (1999), 153–170.
- [16] S. Morosowa. An example of cyclic Baker domains. Mem. Fac. Sci. Kochi. Univ. Ser. A Math. 20 (1999), 123–126.
- [17] R. Nevanlinna. Analytic Functions. Springer, Berlin, 1970.
- [18] P. J. Rippon and G. M. Stallard. Singularities of meromorphic functions with Baker domains. *Math. Proc. Cambridge Philos. Soc.* 141 (2006), 371–382.
- [19] P. J. Rippon and G. M. Stallard. Iteration of a class of hyperbolic meromorphic functions. *Proc. Amer. Math. Soc.* 127(11) (1999), 3251–3258.
- [20] G. M. Stallard. A class of meromorphic functions with no wandering domains. Ann. Acad. Sci. Fenn. Ser. Math. 16 (1991), 211–226.
- J. H. Zheng. On transcendental meromorphic functions which are geometrically finite. J. Aust. Math. Soc. 72 (2002), 93–107.
- [22] J. H. Zheng. Singularities and limit functions in iteration of meromorphic functions. J. London Math. Soc. (2) 67(1) (2003), 195–207.
- [23] J. H. Zheng. Singularities and wandering domains in iteration of meromorphic functions. *Illinois J. Math.* 44(3) (2000), 520–530.