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Abstract. Let M= { f (z)= (zm/sinhm z) for z ∈ C | either m or m/2 is an odd natural
number}. For each f ∈M, the set of singularities of the inverse function of f is an
unbounded subset of the real line R. In this paper, the iteration of functions in one-
parameter family S = { fλ(z)= λ f (z) | λ ∈ R \ {0}} is investigated for each f ∈M. It
is shown that, for each f ∈M, there is a critical parameter λ∗ > 0 depending on f such
that a period-doubling bifurcation occurs in the dynamics of functions fλ in S when the
parameter |λ| passes through λ∗. The non-existence of Baker domains and wandering
domains in the Fatou set of fλ is proved. Further, it is shown that the Fatou set of fλ is
infinitely connected for 0< |λ| ≤ λ∗ whereas for |λ| ≥ λ∗, the Fatou set of fλ consists of
infinitely many components and each component is simply connected.

1. Introduction
Let f : C→ Ĉ= C ∪ {∞} be a non-constant transcendental meromorphic function. The
set of points z ∈ Ĉ for which the sequence of iterates { f n(z)}∞n=0 is defined and forms a
normal family is called the Fatou set of f and is denoted by F( f ). The Julia set, denoted
by J ( f ), is the complement of the Fatou set of f in Ĉ. It is well known that the Fatou set
is open and the Julia set is a perfect set. Let sing( f −1) denote the set of finite singularities
of the inverse function f −1 of the function f (also called singular values of f ). Then,
sing( f −1) is the set of critical and finite asymptotic values of f and finite limit points of
these values. Denote by sing( f −p) the set of finite singularities of the inverse function of
f p. Let Ak( f )= {z ∈ C | f k is not analytic at z} and define

Sp( f )=
p−1⋃
k=0

f k(sing( f −1) \ Ak( f )) and P( f )=
∞⋃

p=1

Sp( f ). (1)
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It is easy to see that sing( f −p)⊆ Sp( f )⊆ Sp+1( f ) and the set P( f ) consists of the
forward orbits of all points in sing( f −1) as long as they are defined and finite. Let B
denote the class of all meromorphic functions f for which sing( f −1) is a bounded set.

The existence of Baker domains and wandering domains is one of the important
dynamical aspects of transcendental meromorphic functions and has been investigated
[1, 5, 6, 8, 15, 16, 18, 20, 23]. Rippon and Stallard proved the non-existence of Baker
domains with period p in the Fatou set of transcendental meromorphic functions f
for which the set Sp( f ) is bounded [19]. Non-existence of wandering domains for
meromorphic functions f of finite type (i.e., f for which sing( f −1) is a finite set) is
established by Baker et al [3]. A number of one-parameter families of meromorphic
functions of finite type are investigated by Keen and Kotus [9], Keen et al [14], Jiang [13]
and Prasad et al [11]. Zheng [22, 23] investigated the relations between P( f ) and the
limit functions of iterates { f n

}n>0 in a Fatou component and proved the non-existence
of Baker domains and wandering domains for certain meromorphic functions in the
class B. However, the dynamics of meromorphic functions outside the class B is largely
unexplored.

Let

M=

{
f (z)=

zm

sinhm z
for z ∈ C

∣∣∣∣ m or m/2 is an odd natural number
}
.

For each f ∈M, consider the one-parameter family of functions

S = { fλ(z)= λ f (z) | λ ∈ R \ {0}}.

In this paper, the iteration of functions fλ in the one-parameter family S is investigated.
Observe that fλ(z) is an even function. If λ ∈ R \ {0} then fλ(z)=− f−λ(−z) and

f n
λ (z)=− f n

−λ(−z) for z ∈ C and n ∈ N. It shows that the functions fλ and f−λ are
conformally conjugate and the dynamics of fλ and f−λ are essentially same. Therefore,
we prove the results on the dynamics of the functions fλ ∈ S for λ > 0.

In §2, it is mainly shown that sing( f −1
λ ) is an unbounded subset of the real line. The

dynamics of fλ(x) for x ∈ R is investigated in §3. We show that there is a critical parameter
λ∗ > 0 (depending on f ) such that a period-doubling bifurcation occurs in the dynamics
of functions fλ in S when the parameter |λ| passes through λ∗. In §4, the dynamics of
fλ(z) for z ∈ C is studied. The non-existence of Baker domains and wandering domains in
the Fatou set of fλ is also proved. There is a change in topology of the Fatou components
effectuated by the above mentioned bifurcation which is described in §5.

2. Properties of fλ
The function fλ(z)= λ(zm/sinhm z) is meromorphic with poles at {iπk | k ∈ Z \ {0}}. All
the poles are multiple if m > 1 and simple if m = 1. Further, the function fλ(z) is even and
not periodic. In Proposition 2.1, we prove that the Julia set of fλ is symmetric with respect
to both the real and imaginary axes. The point z = 0 is an omitted value of fλ and hence an
asymptotic value of fλ(z). More importantly, it is shown that sing( f −1

λ ) is an unbounded
subset of the real line in Proposition 2.2.

PROPOSITION 2.1. Let fλ ∈ S . If z ∈ J ( fλ) then −z ∈ J ( fλ) and z ∈ J ( fλ).
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Proof. Let z ∈ J ( fλ). Since fλ(−z)= fλ(z) for all z ∈ C and J ( fλ) is completely
invariant, −z ∈ J ( fλ). Observe that fλ(z)= fλ(z) and consequently, f n

λ (z)= f n
λ (z) for

all z ∈ C and n ∈ N. For z ∈ J ( fλ), the sequence { f n
λ }n>0 is not normal at z. It follows that

{ f n
λ }n>0 is also not normal at z. Therefore, { f n

λ }n>0 is not normal at z and z ∈ J ( fλ). 2

PROPOSITION 2.2. Let fλ ∈ S . Then, the set of all the critical values of fλ is an
unbounded subset of R \ (−|λ|, |λ|) and 0 is the only finite asymptotic value of fλ.

Proof. Observe that

f ′λ(z)= λ
mzm−1

sinhm−1 z

{
sinh z − z cosh z

sinh2 z

}
and

mzm−1

sinhm−1 z
6= 0 for z ∈ C.

Further, the point z = 0 is the only common zero of sinh z − z cosh z and sinh2 z and is
a zero of (sinh z − z cosh z)/sinh2 z. Therefore, the solutions of f ′λ(z)= 0 are precisely
the solutions of sinh z − z cosh z = 0 i.e., the solutions of tanh z = z. It is easy to see that
the set of all the solutions of tanh z = z is an unbounded subset of the imaginary axis. If
tanh(iy)= iy for some y ∈ R then tanh(−iy)=−tanh(iy)=−iy. Therefore, the set of
all the critical points of fλ(z) is symmetric with respect to the origin and is an unbounded
subset of the imaginary axis. Let {iyk}k>0 be the sequence of critical points in the positive
imaginary axis arranged in the increasing order of their moduli. Then−iyk is also a critical
point of fλ(z) for each k. Since fλ(z) is an even function,

lim
k→∞

| fλ(iyk)| = lim
k→∞

| fλ(−iyk)| = lim
k→∞

∣∣∣∣λ im ym
k

im sinm yk

∣∣∣∣=∞.
Therefore, the set of all the critical values of fλ is unbounded. Every critical point iyk

of fλ(z) satisfies tanh(iyk)= iyk and consequently,

iyk

sinh(iyk)
=

1
cosh(iyk)

.

The critical value

fλ(iyk)= λ

(
iyk

sinh(iyk)

)m

= λ

(
1

cosh(iyk)

)m

= λ

(
1

cos yk

)m

is real. Since |cos y| ≤ 1 for all y ∈ R, it follows that | fλ(iyk)| ≥ |λ|. Therefore, the set of
all the critical values of fλ(z) is an unbounded subset of R \ (−|λ|, |λ|).

In order to determine the asymptotic values of fλ, first we find all the asymptotic values
of (sinh z/z). All the critical points of (sinh z/z), i.e., the roots of (z cosh z − sinh z)/z2

are purely imaginary and form an unbounded set. Since

lim
|y|→∞

sinh iy

iy
= lim
|y|→∞

sin y

y
= 0,

0 is an asymptotic value of (sinh z/z) and is the only limit point of all the critical values of
(sinh z/z). Since the order of (sinh z/z) is one, it can have at most two finite asymptotic
values. Further, if there are exactly two finite asymptotic values of (sinh z/z) then both the
asymptotic values are indirect singularities of the inverse function of (sinh z/z) [17]. If f is
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a meromorphic function of finite order and a is an asymptotic value of f then, a is a limit
point of critical values ak 6= a or all singularities of f −1 are logarithmic (a special case
of direct singularity) [7]. Therefore, if there is a finite asymptotic value ŵ of (sinh z/z)
other than 0 then both 0 and ŵ are indirect singularities of inverse function of (sinh z/z)
and the limit points of critical values of (sinh z/z). Since the critical values of (sinh z/z)
accumulate only at 0, ŵ can not be an asymptotic value of (sinh z/z). Thus, 0 is the only
finite asymptotic value of (sinh z/z). Since (sinh z/z) is an entire function, ∞ is also an
asymptotic value. It implies that the function (z/sinh z) has only one finite asymptotic
value, namely 0. Hence, 0 is the only finite asymptotic value of fλ(z)= λ(zm/sinhm z)
for m ∈ N. 2

Remark 2.1. For z = x + iy 6= 0,∣∣∣∣ zm

sinhm z

∣∣∣∣= |z|m

|sinh z|m
=

{(
x2
+ y2

sinh2 x + sin2 y

)1/2}m

.

If γ : [0,∞)→ C is a path for which {=(z) | z ∈ γ } is bounded and limt→∞ |<(γ (t))| =
∞ then limt→∞ fλ(γ (t))= 0. Further, if γ is a path for which {<(z) | z ∈ γ } is bounded
and limt→∞ |=(γ (t))| =∞ then limt→∞ fλ(γ (t))=∞.

3. Dynamics of fλ(x) for x ∈ R
In this section, the dynamics of fλ(x) for x ∈ R is studied. In Theorem 3.1, the existence
and nature of real fixed points of fλ are explored. The change in the nature and existence
of real periodic points leads to a bifurcation in the dynamics of fλ(x) for x ∈ R at a critical
parameter value and is proved in Theorem 3.2.

Consider the function

φ(x) = x f ′(x)+ f (x)= x
mxm−1

sinhm+1 x
(sinh x − x cosh x)+

xm

sinhm(x)

=
xm

sinhm+1(x)
((m + 1) sinh x − mx cosh x) for x ≥ 0.

Let p(x)= (m + 1) sinh x − mx cosh x . Then p′(x)= cosh x − mx sinh x and

p′′(x)= (1− m) sinh x − mx cosh x .

Observe that p′′(x) < 0 for x ∈ R+ = {x ∈ R | x > 0}, since m ≥ 1. Therefore, the
function p′(x) is decreasing on R+. Since p′(0)= 1 and limx→+∞ p′(x)=−∞, by
continuity of p′(x), it follows that there is a unique x̂ > 0 such that p′(x) > 0 for
0≤ x < x̂ , p′(x̂)= 0 and p′(x) < 0 for x > x̂ . Therefore, p(x) increases in [0, x̂),
attains its maximum at x̂ and decreases thereafter. It follows from the facts p(0)= 0
and limx→+∞ p(x)=−∞ that, there is a unique positive x∗ > x̂ such that p(x) > 0 for
0< x < x∗, p(x∗)= 0 and p(x) < 0 for x > x∗. Since (xm/sinhm+1 x) > 0 for all x > 0,
it follows that

φ(x)=
xm

sinhm+1 x
p(x)


> 0 for 0< x < x∗,

= 0 for x = x∗,

< 0 for x > x∗.

(2)
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Define

λ∗(m)= λ∗ =
x∗

f (x∗)
(3)

where x∗ is the unique positive real root of the equation φ(x)= x f ′(x)+ f (x)= 0.

Remark 3.1. For the function f (x)= (xm/sinhm x), let x∗(m) denote the positive real root
of the equation φ(x)= x f ′(x)+ f (x)= 0 and let

λ∗(m)=
x∗(m)

f (x∗(m))

denote the corresponding critical parameter. For m = 1, 2 and 3, it is numerically
computed that x∗(1)≈ 1.915, x∗(2)≈ 1.2878, x∗(3)≈ 1.034 02 and λ∗(1)≈ 3.3198,
λ∗(2)≈ 2.1772, λ∗(3)≈ 1.7926.

The following theorem shows that fλ has a unique real fixed point for each λ > 0.
However, the nature of the fixed point changes when the parameter λ passes through the
critical parameter λ∗.

THEOREM 3.1. Let fλ ∈ S and λ > 0. Then, the function fλ has a unique real fixed
point xλ. Furthermore, the following cases hold.
(1) The fixed point xλ is attracting for 0< λ < λ∗.
(2) The fixed point xλ is rationally indifferent for λ= λ∗.
(3) The fixed point xλ is repelling for λ > λ∗.

Proof. Since fλ(x) > 0 for all x ∈ R, each real periodic point of fλ is positive. The
function

f ′λ(x)= λ
mxm−1

sinhm+1 x
(sinh x − x cosh x) < 0 for x > 0

and hence fλ(x) is decreasing on R+. Let gλ(x)= fλ(x)− x for x ∈ R. Since
f ′λ(x) < 0 for x > 0, g′λ(x)= f ′λ(x)− 1< 0 and consequently, gλ(x) is decreasing on R+.
Now, gλ(0)= λ > 0, limx→+∞ gλ(x)=−∞ and gλ(x) is continuous on R+. By the
intermediate-value theorem, there exists a unique positive xλ such that gλ(xλ)= 0. In
other words, fλ(x) has a unique positive fixed point xλ and λ= (xλ/ f (xλ)). Note that the
function (x/ f (x)) is increasing on R+, since

d

dx

(
x

f (x)

)
=

f (x)− x f ′(x)

( f (x))2
> 0 for x > 0.

(1) For 0< λ < λ∗, (xλ/ f (xλ)) < (x∗/ f (x∗)) which gives xλ < x∗. By equation (2),
φ(xλ) > 0. This implies that

φ(xλ)

f (xλ)
=

x f ′(xλ)+ f (xλ)

f (xλ)
= f ′λ(xλ)+ 1> 0.

Since f ′λ(x) is negative on R+, it follows that −1< f ′λ(xλ) < 0 and the fixed point
xλ is attracting for 0< λ < λ∗.

(2) For λ= λ∗, it follows that xλ = x∗ and φ(xλ)= 0 by arguments similar to those
used in case (1). Now, by equation (2), it follows that (φ(xλ)/ f (xλ))= 0 implying
f ′λ∗(xλ)=−1. Therefore, the fixed point xλ = x∗ is rationally indifferent if λ= λ∗.
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(3) For λ > λ∗, it follows that xλ > x∗ by arguments similar to those used in case (1).
Again by equation (2) and by the fact xλ > x∗, we have φ(xλ) < 0. It shows
that (φ(xλ)/ f (xλ))= f ′λ(xλ)+ 1< 0 and hence f ′λ(xλ) <−1. Therefore, xλ is a
repelling fixed point of fλ for λ > λ∗. 2

Now, we investigate the possibility of the real periodic points of fλ with minimal
period greater than one. The function fλ(x) is decreasing on R+, fλ(R)= (0, λ] and
fλ has a unique real fixed point xλ by Theorem 3.1. It is easy to see that fλ(0)=
λ > fλ(x) > xλ for 0< x < xλ and fλ(x) < xλ < fλ(0)= λ for x > xλ > 0. In other
words, fλ((0, xλ))= (xλ, λ) and fλ(xλ,∞)= (0, xλ). It follows that f n

λ (x) 6= x for any
x ∈ R+ \ {xλ} and odd n. Therefore, fλ(x) does not have any real periodic point of odd
period other than xλ. Observe that fλ(x) > 0 and f ′λ(x) < 0 for x > 0 and λ > 0. So
( f 2
λ )
′(x)= f ′λ( fλ(x)) f ′λ(x) > 0 and f 2

λ (x) is increasing on R+. Consequently, if f 2
λ (x) >

x (or f 2
λ (x) < x) for some x ∈ R+ then f 2n

λ (x) > f 2(n−1)
λ (x) (or f 2n

λ (x) < f 2(n−1)
λ (x))

for all n. It shows that the function f 2
λ (x) does not have any real periodic points of period

greater than one, and hence fλ(x) has no real periodic point of even period greater than
two. Therefore, a real periodic point of fλ other than xλ is of minimal period exactly
equal to two, if it exists. Also, each cycle {x1λ, x2λ} of real 2-periodic points satisfies
x1λ < xλ < x2λ. Let us assume that fλ has two different 2-periodic real cycles {a, b} with
0< a < b and {c, d} with 0< c < d. Since fλ(x) is strictly decreasing on R+ for λ > 0,
it follows that c < a < xλ < b < d or a < c < xλ < d < b. In the first case {c, d} and in
the second case {a, b} is called the outer cycle. In the first case {a, b} and in the second
case {c, d} is called the inner cycle. The following proposition shows that whenever such
a 2-periodic cycle exists, it is attracting or rationally indifferent and all the singular values
of fλ(z) tend to this cycle under iteration of f 2

λ .

PROPOSITION 3.1. Let fλ ∈ S and λ > 0. If fλ has a real 2-periodic cycle, then
limn→∞ f 2n

λ (x)= y1λ or y2λ for all x ∈ [0, y1λ] ∪ [y2λ,+∞) where {y1λ, y2λ} is the
outermost 2-periodic cycle. In particular, the cycle {y1λ, y2λ} is either attracting or
rationally indifferent and all the singular values of fλ tend to {y1λ, y2λ} under iteration
of f 2

λ .

Proof. It is observed earlier that any periodic point of the function fλ is of minimal period
one or two and each 2-periodic cycle {a, b} satisfies a < xλ < b where xλ is the fixed point
of fλ. Since {y1λ, y2λ} is the outermost 2-periodic cycle, f 2

λ (x) 6= x for all x > y2λ. If
possible, let f 2

λ (x) > x for some x > y2λ. Then, the sequence { f 2n
λ (x)}n>0 is increasing

and bounded above by λ, and hence f 2n
λ (x) converges to l, say. Obviously, l > y2λ. By the

continuity of f 2
λ it follows that the point l must be a periodic point of fλ of period at most

two. This contradicts the fact that {y1λ, y2λ} is the outermost 2-periodic cycle. Therefore,
we conclude that f 2

λ (x) < x for all x > y2λ. Since f 2
λ (x) is increasing, the sequence

{ f 2n
λ (x)}n>0 is decreasing and bounded below by y2λ and consequently, limn→∞ f 2n

λ (x)=
y2λ for x > y2λ. Similarly, it can be proved that f 2

λ (x) > x and limn→∞ f 2n
λ (x)= y1λ for

all 0≤ x < y1λ. Therefore, limn→∞ f 2n
λ (x)= y1λ or y2λ for all x ∈ [0, y1λ] ∪ [y2λ,+∞).

Each interval containing y1λ contains points tending to y1λ under iteration of f 2
λ .

Therefore, y1λ cannot be a repelling periodic point of f 2
λ and is either attracting or
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rationally indifferent. Thus, {y1λ, y2λ} is either attracting or rationally indifferent. As
(−y2λ, y2λ)⊂ (−λ, λ) and fλ is an even function, limn→∞ f 2n

λ (x)= y1λ or y2λ for all
x ∈ R \ (−λ, λ). Since all the critical values of fλ are in R \ (−λ, λ) and the finite
asymptotic value 0 is mapped to λ by fλ, it is concluded that all the singular values of fλ
tend to {y1λ, y2λ} under iteration of f 2

λ . 2

The dynamics of fλ(x) for x ∈ R is determined in the following theorem.

THEOREM 3.2. Let fλ ∈ S and λ > 0.
(1) If λ < λ∗ then limn→∞ f n

λ (x)= aλ for all x ∈ R where aλ is the unique real
attracting fixed point of fλ.

(2) If λ= λ∗ then limn→∞ f n
λ (x)= x∗ for all x ∈ R where x∗ is the unique real

rationally indifferent fixed point of fλ.
(3) If λ > λ∗ then limn→∞ f 2n

λ (x)= a1λ or a2λ for all x ∈ R \ {rλ,−rλ} where rλ is
the unique real repelling fixed point of fλ and {a1λ, a2λ} is the real attracting or
rationally indifferent 2-periodic cycle.

Proof. All the singular values of fλ(z) are in (R \ (−λ, λ)) ∪ {0} by Proposition 2.2. If
there is a 2-periodic cycle then the cycle is in (0, λ) and by Proposition 3.1, all the singular
values tend to the outermost 2-cycle under iteration of f 2

λ .
(1) Let f 2

λ (x) > x (or f 2
λ (x) < x) for some x > 0. Since f 2

λ (x) is increasing on R+, the
sequence { f 2n

λ (x)}n>0 is increasing and bounded above by λ (or decreasing and bounded
below by 0). Therefore, f 2n

λ (x) converges to x̂ , say. Now, by continuity of fλ, the point x̂
is a periodic point of fλ(x) of period one or two. If possible, let x̂ be a periodic point
of fλ with prime period two. Then, there is an outermost 2-periodic cycle of fλ and all the
singular values of fλ tend to the outermost 2-periodic cycle under iteration of f 2

λ which is a
contradiction to the fact that the basin of attraction of aλ must contain at least one singular
value of fλ. Therefore, x̂ is not a 2-periodic point and is a fixed point. Since fλ has only
one real fixed point aλ for 0< λ < λ∗, x̂ = aλ and limn→∞ f 2n

λ (x)= aλ for all x ∈ R+.
By continuity of fλ, it follows that limn→∞ f n

λ (x)= aλ for all x ∈ R+. Since

fλ(R− ∪ {0})⊂ R+, lim
n→∞

f n
λ (x)= aλ for all x ∈ R.

(2) Let f 2
λ (x) > x (or f 2

λ (x) < x). Since f 2
λ (x) is increasing on R+, the sequence

{ f 2n
λ (x)}n>0 is increasing and bounded above by λ (or decreasing and bounded below

by 0). Proceeding as in case (1), it is easy to see that { f 2n
λ (x)}n>0 converges to x∗ for all

x ∈ R+. By continuity of fλ, it follows that limn→∞ f n
λ (x)= x∗ for all x ∈ R+. Since

fλ(R− ∪ {0})⊂ R+, lim
n→∞

f n
λ (x)= x∗ for all x ∈ R.

(3) If λ > λ∗, then the unique real fixed point of fλ is repelling. Therefore, we
can find a real number x sufficiently close to the fixed point rλ such that f 2

λ (x) > x .
Since f 2

λ (x) is increasing on R+, the sequence { f 2n
λ (x)}n>0 is increasing and bounded

above by λ. Therefore, { f 2n
λ (x)}n>0 converges to x̂ , say. By continuity of f 2

λ , it follows
that x̂ is a 2-periodic point of fλ. If possible, let there be more than one 2-periodic
cycle of periodic points. If {i1λ, i2λ} is the innermost real cycle of 2-periodic points
of fλ then i1λ < rλ < i2λ and, fλ(x) ∈ (rλ, i2λ) for all x ∈ (i1λ, rλ) and fλ(x) ∈ (i1λ, rλ)
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for all x ∈ (rλ, i2λ). Furthermore, the sequence { f 2n
λ (x)}n>0 converges either to i1λ

or to i2λ for x ∈ (i1λ, i2λ) \ rλ by the same arguments as used in the previous cases.
Therefore, {i1λ, i2λ} is either an attracting or a rationally indifferent cycle and at least
one singular value of fλ tends to this cycle under iteration of f 2

λ . But all the singular
values of f 2

λ tend to the outermost 2-cycle under iteration of fλ by Proposition 3.1 leading
to a contradiction. Hence, fλ has exactly one 2-periodic cycle. Let it be {a1λ, a2λ}.
By Proposition 3.1, limn→∞ f 2n

λ (x)= a1λ or a2λ for all x ∈ [0, a1λ] ∪ [a2λ,+∞). If
x ∈ (rλ, a2λ], then f 2

λ (x) > x and limn→∞ f 2n
λ (x)= a2λ. Similarly, it is easily seen that

limn→∞ f 2n
λ (x)= a1λ for all x ∈ [a1λ, rλ). Since fλ(z) is an even function, it follows that

limn→∞ f 2n
λ (x)= a1λ or a2λ for all x ∈ R− \ {−rλ}. Therefore, if λ > λ∗ it is concluded

that limn→∞ f 2n
λ (x)= a1λ or a2λ for all x ∈ R \ {rλ,−rλ} where rλ is the repelling fixed

point of fλ and {a1λ, a2λ} is the attracting or rationally indifferent 2-periodic cycle. 2

The above theorem exhibits the occurrence of a period-doubling bifurcation at λ= λ∗

in the dynamics of functions fλ in the one-parameter family S .

Remark 3.2. All the singular values of fλ, λ > 0 are in R and tend to either an attracting
or a rationally indifferent periodic point under iteration of f 2

λ . Therefore, the set P( fλ)
is contained in the Fatou set of fλ for λ > 0. In particular, the point 0 is in the Fatou set
F( fλ) for λ > 0.

Remark 3.3. Note that fλ(iy)= (ym/sinm y) and the image of any point on the imaginary
axis is either infinity or a real number. By Theorem 3.2, each of the real numbers except at
most two are in an attracting or a parabolic domain of fλ corresponding to a real periodic
point. Therefore, any Fatou component U of fλ other than an attracting or parabolic
domain (and their pre-images) intersects neither the real nor the imaginary axis. Thus,
such a Fatou component U is contained completely in one of the four quadrants of the
complex plane.

4. Dynamics of fλ(z) for z ∈ C
The dynamics of fλ(z) for z ∈ C is studied in this section. The non-existence of Baker
domains and wandering domains in the Fatou set of fλ ∈ S for λ > 0 is proved in
Theorem 4.1 and Theorem 4.2 respectively. The dynamics of fλ(z) for z ∈ C is described
in Theorem 4.3.

THEOREM 4.1. Let fλ ∈ S and λ > 0. Then, the Fatou set of fλ has no Baker domain.

Proof. Suppose, on the contrary that the Fatou set of fλ has a Baker domain B of minimal
period p. All the singular values of fλ are real by Proposition 2.2 and fλ(R)= (0, λ].
Therefore, Sp( fλ) is bounded for each p > 1 and the Fatou set of fλ cannot have a Baker
domain of minimal period greater than one [19]. Therefore, p = 1. That is, B is an
invariant Baker domain. By the definition of an invariant Baker domain, there is a point z∗

in the boundary of B such that limn→∞ f n
λ (z)= z∗ for all z ∈ B and fλ(z∗) is not defined.

Since the point at infinity is the only point in Ĉ where the function fλ(z) is not defined,
z∗ =∞. Now, limn→∞ f n

λ (z)=∞ and f n
λ (z) ∈ B for z ∈ B and n ∈ N gives that the

domain B is unbounded. Since fλ(z)= fλ(z) for all z ∈ C and B is contained in one of
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the four quadrants by Remark 3.3, B = {z ∈ C | z ∈ B} is also an invariant Baker domain
of fλ. Clearly, one of B and B contains points with positive imaginary parts. Let it be B,
i.e., =(z) > 0 for each z ∈ B.

We assert that the set {=(z) | z ∈ B} is unbounded. To see it, suppose on the contrary
that {=(z) | z ∈ B} is bounded. Then {<(z) | z ∈ B} must be unbounded as B is itself
unbounded. Now, let {zk}k>0 be a sequence in B such that limk→∞ |<(zk)| =∞. Then

fλ(zk)=
λ2m zm

k

(ezk − e−zk )m
→ 0 as k→∞

by Remark 2.1. The point 0 is in the attracting or parabolic domain for each λ > 0 by
Remark 3.2. Let N (0) be a neighbourhood of z = 0 completely lying in the Fatou set.
Then, there is a natural number k̂ such that fλ(zk) ∈ N (0) for all k > k̂. Consequently, zk

is in a Fatou component U such that fλ(U ) is contained in an attracting domain or a
parabolic domain and hence, not in B for k > k̂. It contradicts the invariance of B. Thus
the set {=(z) | z ∈ B} is unbounded.

Let B be in the first quadrant of the plane. If B is in the second quadrant, the
proof follows similarly. For θ ∈ (0, (π/2)), let Sθ = {z ∈ C | θ < Arg(z) < π/2} and
Sθ ′ = {z ∈ C | 0< Arg(z)≤ θ} where 0< Arg(z) < 2π . Let Lk = {z ∈ C | =(z)= πk}
and L+k = {z ∈ Lk | <(z) > 0} for k ∈ Z. We now show that the set {=(z) | z ∈ B ∩ Sθ }
is unbounded for each θ ∈ (0, π/2). In view of the conclusion obtained in the previous
paragraph, it is sufficient to prove that the set {=(z) | z ∈ B ∩ Sθ ′} is bounded. Suppose
the set {=(z) | z ∈ B ∩ Sθ ′} is unbounded for some θ . Then a sequence {sn}n>0 of points
can be found in B ∩ Sθ ′ such that =(sn)≤ (tan θ)<(sn) for all n ∈ N and =(sn)→∞ as
n→∞. Consequently, <(sn)→∞ and∣∣∣∣ sn

sinh(sn)

∣∣∣∣≤ 2
|<(sn)+ i=(sn)|

e<(sn) − e−<(sn)
≤ 2
|(1+ tan θ)<(sn)|

e<(sn) − e−<(sn)
→ 0 as n→∞.

It follows that there is an n0 ∈ N such that fλ(sn) ∈ N (0) for n > n0. Consequently, the
set {sn | n > n0} is not in the Baker domain, which is a contradiction. Therefore, the
set {=(z) | z ∈ B ∩ Sθ ′} is bounded, and hence the set {=(z) | z ∈ B ∩ Sθ } is unbounded.
Furthermore, B ∩ Sθ has an unbounded connected subset. In particular, there exists an
integer k0 such that the set B ∩ Sθ intersects L+k for all k ≥ k0. Choose θ in such a way
that for all δ, β ∈ (θ, π/2), |m(δ − β)|< (π/4) where fλ(z)= λ(zm/sinhm z).

Case 1. m is odd.
Note that

fλ(x + iπk)= λ
(x + iπk)m

sinhm(x + iπk)
=


−λ

(x + iπk)m

sinhm x
for odd k,

λ
(x + iπk)m

sinhm x
for even k.

(4)

Let z1 = x1 + iπk, z2 = x2 + iπ(k + 1) ∈ B ∩ Sθ for some k ≥ k0. If Arg(z1)= θ1

and Arg(z2)= θ2 then θ1, θ2 ∈ (θ, π/2) and |Arg(zm
1 )− Arg(zm

2 )| = |m(θ1 − θ2)|< π/4.
Therefore, the two points zm

1 and zm
2 belong either to the same quadrant or to two

consecutive quadrants. This means either the real parts or the imaginary parts of zm
1
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and zm
2 have same sign. Let the first possibility hold i.e., (<(zm

1 )/<(z
m
2 )) > 0. One of

k and k + 1 is even and the other is odd. Also note that (λ/sinhm x) > 0 for x > 0. Using
equation (4), we have<( fλ(z1))/<( fλ(z2)) < 0. In other words, <( fλ(z1)) and<( fλ(z2))

have opposite sign. Thus fλ(B)= B intersects the imaginary axis which contradicts
Remark 3.3. For =(zm

1 )/=(z
m
2 ) > 0, arguing similarly, we can get =( fλ(z1))/=( fλ(z2)) <

0, which also results in a similar contradiction to Remark 3.3.

Case 2. m/2 is odd.
Note that

sinhm
(

x + i

(
π

2
+ 2πk

))
=−coshm x for k ∈ N.

Since the line

L(π/2)+2πk =

{
z ∈ C

∣∣∣∣ =(z)= π2 + 2πk

}
intersects B ∩ Sθ for all sufficiently large k, there is an even k′ ∈ N such that the points
z3 = x3 + i((π/2)+ 2πk′) and z4 = x4 + i(2πk′) are in B ∩ Sθ for some x3, x4 > 0
where θ is so chosen that |Arg(zm

3 )− Arg(zm
4 )|< π/4. Now,

fλ(z3)=−λ
(x3 + i((π/2)+ 2πk′))m

coshm x3
and fλ(z4)= λ

(x4 + i2πk′)m

sinhm x4
.

Arguing exactly in the same manner as in Case 1, it is found that either
<( fλ(z3))

<( fλ(z4))
< 0 or

=( fλ(z3))

=( fλ(z4))
< 0.

Both of these possibilities contradict Remark 3.3.

Therefore, the Fatou set of fλ does not contain any Baker domain. 2

THEOREM 4.2. Let fλ ∈ S and λ > 0. Then, the Fatou set of fλ has no wandering
domain.

Proof. By Remark 3.2, the set P( fλ) \ {∞} is in the Fatou set of fλ. Since ∞ is in
the derived set P( fλ)′ of P( fλ), we have J ( fλ) ∩ P( fλ)′ = {∞}. If a point z0 is in a
wandering domain of fλ then, every limit point of { f n

λ (z0)}n>0 is infinity [22]. Since
S2( fλ) is bounded, f 2n

λ (z0) does not tend to infinity as n→∞. Then, we can find
a subsequence {nk}k>0 of {2n}n>0 such that { f nk

λ (z0)}k>0 is bounded. Let us consider
{ f nk
λ }k>0. Since { f n

λ }n>0 is normal at z0, there is a subsequence { f
nk,m
λ }m>0 of { f nk

λ }k>0

such that limm→∞ f
nk,m
λ (z0)=∞. However, it is not possible because {nk,m}m>0 is a

subsequence of {nk}k>0. Therefore, the Fatou set of fλ does not contain any wandering
domain. 2

THEOREM 4.3. Let fλ ∈ S and λ > 0.
(1) For λ < λ∗, the Fatou set F( fλ) of fλ is the basin of attraction of the unique real

attracting fixed point aλ of fλ.
(2) For λ= λ∗, the Fatou set F( fλ) of fλ is the parabolic basin corresponding to the

unique real rationally indifferent fixed point x∗ of fλ.
(3) For λ > λ∗, the Fatou set F( fλ) of fλ is the basin of attraction or parabolic basin

corresponding to a cycle of real 2-periodic points {a1λ, a2λ} of fλ
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Proof. We know that the boundary of any rotational domain of a meromorphic function f
is contained in the closure of the set P( f ) [4]. Thus, the Fatou set of fλ does not contain
any rotational domain. By Theorems 4.1 and 4.2, the Fatou set of fλ also does not contain
any Baker domain and wandering domain for λ > 0.

If U is an attracting domain or parabolic domain of period p and zu is the corresponding
attracting or rationally indifferent periodic point of fλ, then there is a singular value s of fλ
such that f np

λ ( f k
λ (s))→ zu as n→∞ for some k, 0< k ≤ p. Since all the singular values

and their forward orbits (whenever defined) are in R, zu is real. Therefore, any attracting
or parabolic domain of fλ corresponds to a real attracting or rationally indifferent periodic
point.
(1) For 0< λ < λ∗, fλ has only one real periodic point which is the attracting fixed point

aλ. Therefore, F( fλ) is the basin of attraction of aλ.
(2) For λ= λ∗, fλ has only one real periodic point which is the rationally indifferent

fixed point x∗. Therefore, F( fλ) is the parabolic basin corresponding to x∗.
(3) For λ > λ∗, fλ has a repelling fixed point rλ and a cycle of real 2-periodic points

{a1λ, a2λ} which is either attracting or rationally indifferent. Therefore, F( fλ) is the
attracting basin or parabolic basin corresponding to {a1λ, a2λ}. 2

Since fλ and f−λ are conformally conjugate, the dynamics of fλ for λ < 0 is as follows.

COROLLARY 4.1. Let fλ ∈ S and λ < 0.
(1) For −λ∗ < λ < 0, the Fatou set F( fλ) of fλ is the basin of attraction of the unique

real attracting fixed point of fλ.
(2) For λ=−λ∗, the Fatou set F( fλ) of fλ is the parabolic basin corresponding to the

unique real rationally indifferent fixed point of fλ.
(3) For λ <−λ∗, the Fatou set F( fλ) of fλ is the basin of attraction or parabolic basin

corresponding to a cycle of real 2-periodic points of fλ.

5. Topology of Fatou components
Topology of the Fatou components of fλ, λ > 0 is investigated in this section. It is observed
from Theorem 4.3 that the Fatou set of fλ contains components with period one and two.
The connectivity of a periodic Fatou component of a meromorphic function is either one,
two or infinity whereas the connectivity of a pre-periodic Fatou component can be any
finite number [2]. In Theorem 5.1, it is proved that the Fatou set of fλ, 0< λ < λ∗ is
infinitely connected. The existence of pre-periodic Fatou components is established and
the connectivity of all the Fatou components of fλ is determined for λ > λ∗ in Theorem 5.2.

THEOREM 5.1. Let fλ ∈ S and 0< λ < λ∗. Then, the Fatou set F( fλ) of fλ is connected.
Furthermore, the Fatou set F( fλ) is infinitely connected.

Proof. By Theorem 3.2(1), limn→∞ f n
λ (x)= aλ for x ∈ R and 0< λ < λ∗ where aλ is the

attracting fixed point of fλ. The Fatou set of fλ is the attracting basin

A(aλ)= {z ∈ C | f n
λ (z)→ aλ as n→∞} for 0< λ < λ∗.
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Let I (aλ) be the immediate basin of attraction of aλ. By definition, I (aλ) is a forward
invariant connected subset of the Fatou set F( fλ). Note that A(aλ)= I (aλ) if I (aλ) is
backward invariant. Since I (aλ) is connected, in order to prove the connectedness of
F( fλ), it is sufficient to show that I (aλ) is backward invariant.

Let, if possible, V be a component of f −1
λ (I (aλ)) different from I (aλ). Since 0 is an

omitted value of fλ, each singularity of f −1
λ lying over 0 is transcendental. It means that V

contains an asymptotic path γ corresponding to the asymptotic value 0 and by Remark 2.1,
the set {<(z) | z ∈ γ } is unbounded. Therefore, the set {<(z) | z ∈ V } is unbounded. The
function fλ is even and fλ(z)= fλ(z) for all z ∈ C. In view of Remark 3.3, it is assumed
without loss of generality that, the set V is in the upper half plane {z ∈ C | =(z) > 0}. Let
{wn}n>0 be a sequence on γ such that<(wn)→∞ as n→∞. Then limn→∞ fλ(wn)= 0.
Each of the vertical lines ln = {z ∈ C | <(z)=<(wn) and 0≤ =(z) < =(wn)} joins a point
of V and a point of R ∩ I (aλ) and we get that ln intersects the boundary ∂V of V for
each n. Let zn ∈ ln ∩ ∂V . Then zn ∈ J ( fλ) and =(zn) < =(wn) for all n. Furthermore,

| fλ(zn)| = λ

{(
<(zn)

2
+ =(zn)

2

sinh2
<(zn)+ sin2

=(zn)

)1/2}m

< λ

{(
<(wn)

2
+ =(wn)

2

sinh2
<(wn)+ sin2

=(zn)

)1/2}m

. (5)

Since the sequence {sin2(=(zn))}n>0 is bounded, the right-hand side of equation (5) is
equal to | fλ(wn)| when n→∞. Therefore, limn→∞ fλ(zn)= 0. Let Dr (0)= {z ∈ C :
|z|< r} ⊂ I (aλ). Then, there exists an n0 such that fλ(zn) ∈ Dr (0) for all n > n0. It
means that zn is in the Fatou set of fλ for n > n0, which is a contradiction. Therefore, each
component of f −1

λ (I (aλ)) intersects I (aλ) and hence is a subset of I (aλ). Thus I (aλ) is
backward invariant.

Since F( fλ) is connected and contains an attracting fixed point, it is invariant. The
connectivity of any invariant Fatou component of a meromorphic function is one, two
or infinity, two being the case when the component is an Herman ring. Since the Fatou
set F( fλ) is an attracting domain for 0< λ < λ∗, the connectivity of F( fλ) is either one or
infinity. If possible, let F( fλ) be simply connected. Then, the Julia set J ( fλ) is connected.
As the point at infinity and a pole w∗ lying on the imaginary axis are in J ( fλ), there is
an unbounded connected subset Jw∗ of the Julia set containing w∗. Now, −Jw∗ = {z ∈ C |
−z ∈ Jw∗} is also in the Julia set by Proposition 2.1. Thus J = Jw∗ ∪ −Jw∗ is in the Julia
set and the set Ĉ \ J has at least two components each intersecting the Fatou set of fλ.
This contradicts the fact that F( fλ) is connected. Therefore, F( fλ) is infinitely connected
for 0< λ < λ∗. 2

Remark 5.1. Since the Fatou set is connected with connectivity greater than three for
0< λ < λ∗, singleton components of J ( fλ) are dense in J ( fλ) [10].

It is seen in Theorem 5.1 that the Fatou set of fλ is connected and hence unbounded
for 0< λ < λ∗. The next proposition shows that there are at least three Fatou components
of fλ, two of which are unbounded for λ > λ∗.
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PROPOSITION 5.1. Let fλ ∈ S and λ > λ∗. If U+, U− and U0 denote the Fatou
components containing (a2λ,+∞), (−∞,−a2λ) and 0 respectively where {a1λ, a2λ} is
the 2-cycle of real periodic points of fλ, then the Fatou components U+, U− and U0 are
mutually disjoint. Further, the components U+ and U− are unbounded.

Proof. Observe that both U+ and U− are mapped into U0 and U0 is mapped into U+

by fλ for λ > λ∗. Since U0 and U+ form a cycle of 2-periodic Fatou components,
U0 6=U+. If U0 intersects U− then U0 =U− will become invariant, which is not true.
Therefore, U0 is different from U+ and U−. If U+ and U− are the same component
of F( fλ) then U+ =U− intersects the imaginary axis. Then, since all the points in the
imaginary axis are mapped onto R \ (−λ, λ)⊂ (−∞,−a2λ) ∪ (a2λ,+∞), the points of
the set U+ ∩ {iy | y ∈ R} are mapped into U+ and consequently, U+ is invariant, leading
to a contradiction. Therefore, U0, U+ and U− are mutually disjoint components of F( fλ)
for λ > λ∗. The components U− and U+ are unbounded by definition. 2

THEOREM 5.2. Let fλ ∈ S and λ > λ∗. Then, the Fatou set F( fλ) of fλ contains infinitely
many pre-periodic components and each component of F( fλ) is simply connected.

Proof. It is clear from Theorem 3.2 that the point 0 ∈ F( fλ) for all λ. Let U0 be the
Fatou component containing 0. If λ > λ∗ and {a1λ, a2λ} is the 2-cycle of real periodic
points of fλ then by Theorem 3.2, (−∞,−a2λ) and (a2λ,+∞) are in the Fatou set of fλ.
Let U− and U+ be the Fatou components of fλ containing (−∞,−a2λ) and (a2λ,+∞)

respectively. If a pre-image of a point of U− lies in U− then U− ∩ fλ(U−) 6= ∅ which
shows that U− = fλ(U−) since fλ(U−) is connected. It means that U− is forward
invariant. But it is already known that U− is not forward invariant. Therefore, no pre-
image of any point of U− lies in U−. In other words, U− is not backward invariant. Since
none of U0 and U+ is mapped into U− by fλ, each component of f −1

λ (U−) is different
from U0 and U+, and consequently is a pre-periodic Fatou component. Repeating the
same arguments for each component of f −1

λ (U−) and continuing the process, we can find
infinitely many pre-periodic Fatou components.

Let U be any Fatou component of fλ. Suppose, on the contrary that U is multiply
connected. Let γ be a simple closed curve in U such that the bounded component B(γ c)

of γ c
= Ĉ \ γ intersects the Julia set J ( fλ). Set B j = f j

λ (B(γ
c)) for j ∈ N. If B(γ c)

does not contain a pole of fλ then fλ(z) is analytic on B(γ c), the closure of B(γ c),
and B1 = fλ(B(γ c)) is bounded. Further, the function fλ(z) maps the interior of B(γ c)

(which intersects the Julia set) into the interior of B1 and, by the complete invariance
of J ( fλ), it follows that B1 ∩ J ( fλ) 6= ∅. If B1 does not contain any pole of fλ then
consider B2 = fλ(B1) and repeat the above arguments. Since the pre-images of all the
poles of fλ are dense in J ( fλ), B(γ c) contains a point w̃ such that f n

λ (w̃) is a pole
of fλ for a natural number n. Let n∗ the minimum of all such natural numbers, minimum
being taken over all points in the backward orbit of ∞ which lie in B(γ c). Then, the
set Bn∗ contains a pole. Since all the poles of fλ are on the imaginary axis, the boundary
of Bn∗ intersects the imaginary axis. Therefore, the set Bn∗+1 = fλ(Bn∗) contains a
neighbourhood of ∞ and the unboundedness of U+ and U− gives that Bn∗+1 intersects
both U+ and U−. Since fλ(iy) ∈ R and | fλ(iy)| ≥ λ for all y ∈ R, the fλ-image of ∂B∗n
intersects at least one of U+ or U−. Note that ∂B j+1 ⊆ fλ(∂B j ) for j = 1, 2, 3, . . . , n∗.
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TABLE 1. Comparison between the dynamics of λ tanh(ez) and λ(zm/sinhm z).

Dynamics of gλ(z)= λ tanh(ez), λ 6= 0
Dynamics of fλ(z)= λzm/sinhm z, λ 6= 0,
where m or m/2 is an odd natural number

gλ is periodic with period 2π i . fλ is not periodic.
gλ is neither even nor odd. fλ is even.
gλ has no critical values. fλ has infinitely many critical values.
gλ has three (finite) asymptotic values 0, λ
and −λ.

fλ has only one (finite) asymptotic value 0.

The set of all singular values of gλ is finite. The set of all singular values of fλ is
unbounded.

Bifurcation in the dynamics of gλ occurs at
one critical parameter λ∗ ≈−3.2946.

Bifurcation in the dynamics of fλ occurs
at two critical parameters ±λ∗(m) whose
values depend on f .

The Fatou set of gλ has infinitely many
components and each component is simply
connected for λ≤ λ∗.

The Fatou set of fλ has infinitely many
components and each component is simply
connected for |λ| ≥ λ∗(m).

The Fatou set of gλ is infinitely connected
for λ > λ∗.

The Fatou set of fλ is infinitely connected
for |λ|< λ∗(m).

Therefore, ∂Bn∗+1 ⊆ fλ(∂Bn∗)⊆ · · · ⊆ f n∗+1
λ (γ )⊂ F( fλ) and consequently, ∂Bn∗+1 lies

either in U+ or in U−. Since neither U+ nor U− intersects the imaginary axis, ∂Bn∗+1

cannot wind around U0. Now, U0 is a subset of Bn∗+1 and each singularity of f −1
λ lying

over 0 is transcendental. This means that Bn∗ contains an asymptotic path corresponding to
the asymptotic value 0 which contradicts the boundedness of Bn∗ . Therefore, U is simply
connected. 2

Remark 5.2. Theorem 5.2 is true for λ= λ∗ and the proof is similar.

The function λ(zm/sinhm z) differs in many fundamental properties from the
meromorphic function λ tanh(ez), but these functions exhibit similar bifurcations in their
dynamics. The iteration of λ tanh(ez) is studied in [11]. Table 1 provides a comparison
between the dynamical properties of these two functions.
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