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ABSTRACT 
The design of an extended complex Kalman filter for the 

nieasurenient of power system frequency has been presented in this 
paper. The design principles and the validity of the model has been 
outlined. A complex model has been developed to track a distorted 
signal that belongs to a power system. The model inherently takes 
care of the frequency measurement along with the amplitude and 
phase of the signals. The theory has been applied to standard signals 
representirig the worst-case measurement and network conditions in a 
typical power system. The proposed algorithm is suitable for real- 
time applications where the measurement noise and other 
disturbances are higli. llie coiiiplex quantities can be conveniently 
handled using a floating point processor. Comparison of the results of 
the proposed method with those obtained from a real extended 
Kalnlan filter reveal the superior performance of the former method. 

I. INTRODUCTION 
In this paper the method presentde deals with the 

measurement of the parameters of a power system signal 
which is usually coiitaiiiiiiated with noise and high 
disturbances. The amplitude and phase estimation of a 
digitized signal has been important area of research for past 
several years and the methods have been almost standardizcd 
for signals with k n o w  frequencies. However, if the frequency 
is not known apriori it becomes a formidable task to 
accurately measure the amplitude and phase. It has been a 
perpetual problem even now to correctly estimate the 
fiequency of an incoming signal from its sampled values 
under high noise conditions. The reason for this is the 
association of severe non-linearity in the modeling process. 
On the other hand the philosophy of protection for power 
systems has been undergoing a metamorphosis. The modem 
protective relays employ sophisticated signal processing 
algorithms to accurately estimate the system conditions from 
the measured voltage and current signals. The pitfalls in these 
schemes stan from the frequency measurement algorithm 
which under transient and abnormal conditions cannot sense 
the correct value. 

Many algorithms have been reported in the literature 
for measurement and estimation of frequency [1,2,3,4]. A 
comparative study among four different trackers has been 
outlined in [5].  In this paper the performance of (i) an adaptive 
notch filter (ii) a multiple frequency tracker (iii) an adaptive 
IIR filtcr iUd iW (iv) liypcrstobcl adoptive line 

enhancer have been presented. The complex Kalman filtering 
has been used in [6] to estimate the fi-equency of the signals 
corrupted with white noise. The present paper is based on the 
fundamental work carried out in [6].  However, in practice the 
real and imaginary signals can not be obtained simultaneously. 
Therefore, keeping in view the measurement of power system 
signals the signal model has been modified. The output 
equation is rewritten to calculate the real signal. 

ILSIGNAL MODEL 
The non-linear state space description of the power 

system signal can have various forms. Numerous linear as 
well as non-linear models have been proposed to estimate the 
amplitude, phase and frequency of a single sinusoid. This 
signal can also represented by a complex model. With 
availability of floating point DSP processors the computation 
in complex domain is no longer a difficult task. Moreover, the 
complex representation is much simpler and direct as h r  as 
the frequency measurement is concerned. Once the signal 
model is established the Extended Klaman Filter theory [7] 
can be applied to identify the filter equations and 
computational steps. 

Let an observation signal yk at time t k  be a sum of zk 
of M sinsoids With additive noise vk 
yk = zk+vk k=l, 2,3 .. . .N (1) 

(2) 
M 
i=l 

where, zk = C ai sin(wpk + $i) 

Oi = 2@i, t k  = kAt 
in which ai, f; and 4, are amplitude, frequency and the phase of 
the tfi sinusoids respectively. The observation noise vk is a 
Gaussian white noise with zero-mean and variance a:. 

In case of power system signals the percentage of 
frequency components other than thefundamental is low. 
Therefore these harmonic components need not be considreed 
in the model. 
For such systems equation (2) reduces to a single sinusoid of 

T, = sampling time, wI = the fundamental angular frequency. 
The observation signal can be represerfted in an 

autoregressive coiiiplex form as I'ollows: 

the form yk = a, sin(koT, + ) (3) 

(4) 
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The above non-linear process can be represented as: 
xk+l (9) 
yk+ I=HXk + vk (10) 

wherex(k)=[or Uk u i r  (11) 

H =[0 0.5 0.5) (13) 
Linearising the above system and applying the extended 
complex Kalman filter to the first order system, a non-linear 
recursive filter for estimating a single complex sinusoid and its 
frequency in white noise is obtained as follows [6] :  
2 k l k = ; k l k - l  + K k ( y k - H ; k l k - l )  (14) 
; k + I l k  = f ( ; k l k )  ( 15 )  

Kk = P ~ I ~ - ~ H * ' ' [ H ~ ~ / ~ _ ~ H * '  +1]-' (16) 

' k l k  = p k l k - l - K k H ~ l k - l  (17) 

j k l k + l  = F k p k / k F i r  (1 8) 
where, 

I- 1 

The filter is non-linear and therefore the gain Kk and the 
covariance matrix 4, kdepend on the estimate Y of the 

state vector xk. 
k l k  

III.SIMULATI0N 
The following tests have been performed to evaluate 

the perforiiiance of the above method. 
Test Signal - I: Fundamental Signal with white noise [Signal 
to noise ratio ( S N R )  13 dB] 
Signal = A cos(koTs + t$) + Zero niean Gaussian white noise 
of standard deviation 0.1 where, A=l .  0 
Test Signal- 11: Fundamental Signal with harmonics and white 
noise [SNR 37Dbl 
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Signal = A cos(kwT, + 9) + A 4 0  cos(3kwT, + $) + AJ20 
cos(SkoT, + 4) + noise as above with standurd clevidion 
0.01; where, A-1.0 

The problem with all Kalman filter algorithms is to 
reset the covariance matrix. After initial convergence the gain 
Kh and the covariance matrix Ph settle to very small values. 
Subsequently when some of the parameters (amplitude, phase 
and frcqucncy) of the signal change the covariance matrix has 
to be reset to quickly track these values. In this paper a method 
based on the magnitude of the error has been used. 

The decision to set the covariance matrix to the initial 
value is based on a hysteresis type decision block. The 
hysteresis band is determined by the amount of noise and the 
nature of convergence. If the noise is estimated to be around 
10% of the amplitude then the hysteresis band is chosen to be 
20 - 30% of the amplitude to avoid frequent resetting of the 
covariance matrix. A flag is set when the error exceeds the 
higher threshold ell and is reset when the error falls below the 
lower threshold eb If the flag is 1 and any of the Kalman gains 
are very small then the covariance is reset and the flag ia also 
reset to 0 that there is no immediate resetting of the covariance 
matrix. 

Fig 1 The hysterisis band for resetting the covariance matrix 

Generally the frequency variation in power systems is 
limited to f5 Hz. Therefore, for faster tracking the frequency 
is limited to 40 Hz on the lower side and 60 Hz on the upper 
side. This results in the stable operation of the filter and does 
not lead the filter wayward and loose track of the desired 
frequency under high noise conditions. 

Two different types of test signal as above have been 
taken to study the effectiveness of the proposed algorithm. In 
each of the cases the fundamental amplitude and frequency are 
subjected to sudden changes and under such conditions the 
tracking ability of the proposed filter is examined. The same 
tests are also carried out using an ordinary extended Kalman 
filter (Appendix). The comparative performance has been 
presented in Figs.2 to7. . 

A. Case I 
The amplitude of a sinusoidal power system signal is 

suddenly reduced from 1.4 p.u. to 1.0 p.u. and the 
instantaneous waveforms are displayed in Fig. 2. In another 
case, harmonics and more noise are added to the signal and its 
amplitude is suddenly reduced from 1.2p.u. to 0.8p.u. ,and 
Fig.3 exhibits corresponding waveforms. The instantaneous 
waveforms havc been displayed in Fig.2 The coniparativc 
study shows that the complex Kalman filter exhibits slightly 
inferior performance in estimating the amplitude and 
frequency in case of the signals without harmonics. Both the 



filters (real and complex) settle down at the new values witlin 
approximately half a cycle (about 0.01 second) of the 
hdamental time period. The proposed complex filter exhibits 
a little oscillation in the frequency during the amplitude 
change, whereas for the second type of signal (i.e. signal with 
harmonics) the-perforniance of the complex Kalman filter is 
unable to track the amplitude with 1.2 p.u. fundamental, 
D.12p.u. third harmonic and 0.06 PA. fifth harmonic. 
However, as soon as the amplitudes of these components are 
reduced to 0.8, 0.08 and 0.04 respectively the filter settles 
down quickly. 

B. Case - II 
In this case the amplitude is suddenly increased from 

1.0 p.u to 1.4 p.u. for the ignal with harmonics. For the test 
signal I1 the real Kalman filter looses complete track of the 
signal with the new value of amplitude (Fig.4). Whereas, 
under identical conditions the complex Kalman filter takes 
almost 1-cycle (0.02 seconds) of the fundamental to track the 
amplitude, phase and frequency of the signal with the new 
amplitude. 

C. Case - III 
The frequency is suddenly increased from 50 Hz to 

54 Hz. The study shows that the complex Kalman filter 
exhibits quicker tracking performance as compared to the 
ordinary Kalman filter in case of the signal without harmonics 
(Fig.5). The proposed filter settles within 0.75 cycles (0.15 
seconds) of the fundaiiieiital signal. But the real Kalniaii filter 
takes over 5 cycles. For the test signal - 11, the later goes 
unstable &er the frequency has been increased, whereas the 
proposed filter takes around 3-cycles to settle down at the new 
value of the frequency. These waveforms are depicted in 
Fig.6. 

D. Cue - ZV 
Fig.8 shows the waveforms when the frequency is 

suddenly reduces from 50 Hz. to 46 Hz. For test signal - I the 
proposed filter takes around 0.015 seconds (0.75 cycles) to 
settle to the new value of the frequency. Whereas, the real 
filter is slower and takes almost one and half cycles (0.03 
seconds) before settling at these values. Besides it is observed 
that the real filter malfunction and lose complete track of the 
signal when the signal is contaminated with harmonics and 
noise. 

IV. CONCLUSION 
A non-linear complex Kalman filter has been 

proposed to estimate instantaneous frequency changes for a 
power system signal contaminated with noise and harmonics. 
The hysteresis method has been suggested for resetting the 
covariance iiiatris, which enables fast tracking of the filter and 
involves less computation. This makes the filter attractive for 
real time iiiipleiiieiitatioii. The issues such as stability of the 
algorithm and performance under other disturbance conditions 
are currently under investigation. 

V. APPENDIX 
Let the signal model as usual is represented by 
z k  = 4 sin( kwi + $1 ) (A-1) 

where T, = sampling time, w I  = the fundamental angular 
frequency 

The observation signal can be represented in a non- 
linear state-space model as follows: 
r r 

wherej] =al; x2 =wI ; x3 = ql; (A-3) 
y k  ' ~ I ( k ) ~ i ~ ( k X Z ( k ) T s + x 3 ( k ~  +vk (A-4) . 
v k  = measurement noise 
The above non-linear process can be represented as: 
xk+I =Xk 64-51 
yk+l =Ghd+vk (A-@ 

Linearising the above system and applying the 
extended Kalman filter to the first order system, a non-linear 
recursive filter for estimating a single sinusoid and its 
frequency in white noise is obtained as follows [7]: 
i k / k =  iklk-1 + K k ( Y k  - G(;k /k-$  (A-7) 

' k c l / k =  ' k i t  (A-8) 
A 

1-l 
(A-9) 

%lk+l  = 'klk (A-1 1) 

The initial estimate of the covariance matrix matrix P is 
decided by trial and error and fixed to an identity matrix. The 
covariance resetting under abnormal changing conditions is 
decided by the same hysteresis method discussed earlier. The 
filter is non-linear and therefore the gain K k  and the covariance 
matrix Pklk depend on the estimate 2 k  I k  ofthe state vector xk. 
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Signal = Acos(kwT, + #,) + noise 
A c t u a l  S l p n a )  

2 . 0  , 1 

Fig2 Step down in the cunplitude 

SignaZ = Acos(kwx + 41) + -cos(3kwl: A + #J + -cos(SkoT, A + k> + noise 
10 20 

0 0  L I 
.I# I #  so z~ .I? I1 14 as  as  a? as a# IO s i  aa 

11s. (88C)  

Fig.3 Step down in the amplitude 
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A A Signal = Acos(kwq + 4,)  + -cos(3koT, + 4 3 )  + -cos(5koT, + 9,) + noise 
10 20 
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Fig.4 Step up in the amplitude 

Signal = Acos(koT + #,) + noise 

-I 8 . 
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Signal = Acos(kwT, + 4,) + - ~ 0 ~ ( 3 k w c  + 43) + - cos(5kwT, + &) + noise 
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Fig.6 8% Step up in the Frequency 

Signal = Acos(kwT, + 4,) + noise 
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