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Abstract

The paper presents an adaptive neural network approach for the estimation of harmonic distortions and power quality in power
networks. The neural estimator is based on the use of linear adaptive neural elements called adalines The learning parameter of
the proposed algorithm is suitably adjusted to provide fast convergence and noise rejection for tracking distorted signals in the
power networks. Several numerical tests have been conducted for the adaptive estimation of harmonic components, total
harmonic distortions, power quality of simulated waveforms in power networks supplying converter loads and switched
capacitors. Laboratory test results are also presented in support of the performance of the new algorithm. © 1998 Elsevier Science
S.A. All rights reserved.
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1. Introduction

Power quality is a term that is directed at a wide
variety of variations in the electric power supplied to
utility customers. These variations can originate and/or
manifest themselves at various places in the power
network. Many of these power quality concerns are
associated with the operation and design of customer
facilities, concerns associated with wiring and ground-
ing problems, switching transients, load variations, and
harmonic generations, etc.

The proliferation of power electronic devices and
computer loads are directly linked to the increasing
number of power quality related problems. Not only
are these types of loads a source of additional harmon-
ics, but they also have a high sensitivity to non-sinu-
soidal waveforms. As a result, the use of power quality
analysis methodologies and measurement tools is be-
coming commonplace in the power industry. Estima-
tion of harmonic components in a power or
distribution network supplying nonlinear loads and
solid state switching devices is a standard approach for
the assessment of the quality of delivered power. The
identification of harmonics is important where har-

monic standards are to be adopted. It may be used to
allocate loads that exceed specified harmonic current
limits. Furthermore, it is an important requirement for
designing harmonic filters.

Most frequency domain harmonic analysis tech-
niques [1,2] use discrete Fourier transform (DFT) or
fast Fourier transform (FFT) to obtain harmonic esti-
mates of distorted signals. In applying FFT, the phe-
nomena of aliasing, leakage and picketfence effects may
lead to inaccurate estimates of harmonic magnitudes.
The DFT suffers from inaccuracies due to the presence
of random noise usual in the measurement process and
tracking of signals with time varying amplitude and
phase involves large errors. The application of Kalman
filters and recursive LMS and RLS filters [3–5] have
been reported in the literature for tracking time varying
signals embedded in random noise and decaying dc
components. Both these filters suffer from large compu-
tational overhead and suitable values of covariance
matrices and real-time implementation of these filters
poses difficult problems.

This paper presents a new approach [6,7] for the
estimation of harmonic amplitudes and phase, total
harmonic distortions, and harmonic powers and a
power quality index using a single adaptive neuron
called adaline. An adaline has a set of input, and a
desired response signal. It has also a set of adjustable
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Fig. 1. Block diagram of an adaline.

Fig. 3. Schematic diagram of model used for simulation study.

2. Adaline for harmonic estimation

The power system voltage or current waveform is
assumed to comprise fundamental and harmonic
components as

y(t)= %
N

i=1

Ai sin(ivt+fi) (1)

where the Ai ’s and fi ’s are the amplitude and phase
of the harmonics, respectively; N is the total number
of harmonics, and v is the angular frequency of the
fundamental component of the signal. To obtain the
solution for on-line estimation of the harmonics, we
propose the use of an adaptive neural estimator
comprising an adaptive neuron called Adaline which
is shown in Fig. 1.

To obtain the input variables for the adaline, the
signal given in equation is written in the discrete form
as

y(k)

=A1 cos f · sin u+A1 sin f · cos u+ …

+AN cos fN · sin Nu+AN sin fN · cos Nu (2)

where

u=
2pk
NS

(3)

N is the order of the highest harmonic present in the
signal, k is the sample number or iteration count and
NS is the sample rate.

parameters called the weight vector. The weight vec-
tor of the adaline generates the Fourier coefficients
from a distorted signal using a nonlinear weight ad-
justment algorithm based on a stable difference error
equation. Several computer simulation tests are con-
ducted to estimate the harmonic amplitudes, and
phase, THD and harmonic powers from distorted
power system signals. The proposed estimation tech-
nique is adaptive and is capable of tracking the varia-
tions of amplitude and phase angle of the harmonics.
The performance of this algorithm is compared with
the widely used Kalman filtering technique due to its
simplicity, superior noise rejection and tracking per-
formance. Further tests in the laboratory are con-
ducted to track the voltage and current harmonics,
harmonic power and distortions, etc. of a R–L load
supplied through power converters using the new neu-
ral estimation approach.

Fig. 2. Block diagram of the adaline used for tracking 3-phase voltages and currents.
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Fig. 4. Voltage waveform, fundamental and dominant harmonics of phase-A at the inverter end.

Thus, the input vector to the adaline is given by

x(k)= [sin u cos u sin 2u cos 2u…sin Nu cos Nu ]T

(4)

where T is the transpose of the quantity.
If the power system signal contains a decaying dc

component with a decaying rate of 1/b, the waveform is
described by

y(t)=Adce−bt+ %
N

i=1

Ai sin(ivt+f) (5)

The practical value of b lies between 0.5 and 20,
depending on the resistance and reactance values in the
power network. A large value of b indicates a very fast
decaying dc quantity. Further the value of b is not
known and is identified by the linear combiner.

The signal is expressed using Taylor series expansion
(neglecting higher order terms) as

y(t)=Adc−Adcbt+ %
N

i=1

Ai sin(ivt+f) (6)

In this the input vector to the adaline is expressed as

x(k)=
�

1
u

v
sin u cos u … sin Nu cos Nu

nT

(7)

The weight vector of the adaline is updated using a
nonlinear weight adaptation algorithm (modification of
Widrow–Hoff delta rule) as

W(k+1)=W(k)+
ae(k) X(k)

l+xT(k) X(k)
(8)
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Fig. 5. Fundamental and dominant harmonics of phase-A current at the inverter end.

where the following hold good at the kth sampling
instant: x(k) is the input vector; W T(k)= [W1(k) W2(k)
W3(k) W4(k)… W2N+1(k) W2N+2(k)]; e(k)=y(k)−
ŷ(k)is the error; y(k) is the actual signal amplitude;
ŷ(k) is estimated signal amplitude; a is the learning
parameter; and l is a parameter to be suitably chosen
to avoid division by zero.

In the above equation the vector X is chosen as

X(k)= [1 1 SGN (sin u) SGN (cos u)… SGN(sin Nu)

SGN(cos Nu)]T (9)

and the SGN function of a variable xi(cos u,
sin u, ..., cos Nu, sin Nu, etc.) is given by

SGN(xi)=
!+1 if xi\0

−1 if xiB0

i=3, …, 2N+2

Instead of using SGN function we can use tanh or
arc(tanh) function for X(k).

The error e(k) between the actual signal and the
estimated signal is brought down to zero, when perfect
learning is attained and the weight vector will yield the
Fourier coefficients of the signal. If W0 is the weight
vector after the final convergence is reached, the
Fourier coefficients are obtained as

W0=

[Adc bAdc A1 cos f1 A1 sin f1 … AN cos fN AN sin fN ]T

(11)

The amplitude and phase of the Nth harmonic are
given by

AN
W0
2(2N+1)+W0

2(2N+2)

and

fN= tan−1�W0(2N+2)
W0(2N+1)

n
(12)

The learning parameter a used in the modified
Widrow–Hoff delta rule is an important parameter
which controls the convergence and noise rejection
property of the neural estimator. The learning parame-
ter a adapted recursively in the following way:

a(k+1)=ma(k)+g
e(k)
2 (13)

where the initial value of a (a(0)) is chosen to lie
between 0Ba(0)B2 and the forgetting factor m=0.97.
The value of g is chosen appropriately between 0.001B
gB0.1 for rapid convergence to reduce the Euclidean
distance between W(k) and W0. A value of g=0.01 is
suitable for tracking harmonics in power networks. The
learning parameter a is, however, constrained to lie
between the limits
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Fig. 6. Measured power quality indices.

amin5a(k+1)5amax (14)

The choice of amin and amax is to be done in such a way
that

0Bamin, amaxB2 (15)

The step size is always positive and is controlled by the
size of the prediction error and the parameters m and g.
For a large prediction error, the learning parameter is
increased to provide faster tracking. The parameter
amax is so chosen as to ensure the mean square error of
the algorithm remains bounded and amin is so chosen as
to provide a minimum level of tracking ability. The
parameter m is usually chosen in the range of 0–1 to
provide exponential forgetting of the system data.

The power system signal model presented in Eq. (5)
does not show any noise term. Thus, if a random noise
is added to the signal model, the accuracy of the neural
estimator will be affected in the presence of random
noise. Thus, to provide a better noise rejection term, the
error term is fed back recurrently and the input to the
adaline will become for the model containing dc com-
ponent and harmonics as

x(k)

=
�

1
u

v
sin u cos u… sin Nu cos Nu e(k) e(k−1)

e(k−2)
nT

(16)

3. Harmonic distortion factor and harmonic power

After the amplitude and phase of the fundamental
and harmonic components are estimated, it is necessary
to compute the voltage and current distortion factors as

VTHD=

'%
k

Vk
2

V1

, ITHD=

'%
k

Ik
2

I1

(17)

and

k=0, 2, 3, …,�

where V1 and I1 are the RMS values of the fundamental
frequency components of voltage and current,
respectively.

The VTHD factor is considered a good index of the
supply quality and ITHD (ITHD\0) is effective in the
identification of a polluting load.

The fundamental and harmonic active power of the
power network are obtained from Eq. (18) as

P=W06(3) · W0i(3)+W06(4) · W0i(4)

PN=W06(2N+1) · W0i(2N+2)

+W06(2N+1) · W0i(2N+2) (18)

where W06 and W0i are the converged weight vector for
voltage and current samples of the network. The total
harmonic active power is obtained as
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Fig. 7. (i) Load current waveform, (ii) dc and harmonic components and (iii) ITHD of a half-wave rectifier.

Pm= %
N

n=2

Pn (19)

The active harmonic power is considered as an index of
the presence of a polluting load and its effects on power
quality.

For a 3-phase three-wire system, the instantaneous
positive and zero voltage and current space vector are
defined as:

Positive sequence:

Vp=
2
3
�

VaN+VbN exp
�

− j
2pN

3
�

+VcN exp
�

j
2pN

3
�n
(20)

ip=
2
3
�

iaN+ ibN exp
�

− j
2pN

3
�

+ icN exp
�

j
2pN

3
�n

(21)

Zero sequence

V0N=1
3 [VaN+VbN+VcN ]

i0N=1
3 [iaN+ ibN+ icN ] (22)

Further the instantaneous positive sequence compo-
nents can be resolved into orthogonal components as

Vp=VdN+ jVqN

ip= idN+ jiqN

The magnitudes of VdN, VqN, idN, and iqN are ob-
tained after the separation into real and imaginary
parts in Eqs. (20) and (21).

For each phase of the power network, the voltages
VaN, VbN, VcN are computed using one neural estimator
as

VaN= [W06a
2 (2N+1)+W06a

2 (2N+2)]1/2 (23)

where

fN= tan−1�W06a(2N+2)
W06a(2N+1)

n
VbN= [W06b

2 (2N+1)+W06b
2 (2N+2)]1/2

VcN= [W06c
2 (2N+1)+W06c

2 (2N+2)]1/2 (24)

fbN= tan−1�W06b(2N+2)
W06b(2N+1)

n
fcN= tan−1�W06c(2N+2)

W06c(2N+1)
n

The Nth harmonic power is obtained for one phase as

PN=VdN · idN+VqN · iqN+V0N · i0n, N\0 (25)

Hence the total harmonic power for all the three phases

Pm=3ph= %
N

n=1

Pn−3ph (26)

Another alternative form for the harmonic power can
be written as

Pm=Re
!1

T
&

0

T

[Va(t) · ia dt+

Vb(t) · ib dt+Vc(t) · ic dt ]
"

(27)

where Va(t) and ia(t), etc. are the instantaneous phase
voltages and currents, respectively and are obtained
from the neural estimation filter, one filter each for the
voltage and current (six for all the three phases).

The instantaneous voltage and currents for each
phase are the outputs from the neural estimator and are
obtained as (as shown in Fig. 2)

Va
�(t)=Wa

TXa (28)

where Wa denotes the weight vector for the A-phase
voltage and Xa is the input Fourier component. In a
similar way voltages and currents for all the phases can
be computed to provide the active harmonic power for
all the three phases.

If the harmonic power Pm\0, this power is flowing
to the load and indicates a source side pollution. On the
other hand if PmB0, this is produced by the nonlinear
load and the pollution is created by the load. The
3-phase power factor is given by

l=P/S (29)

where P is the total active power produced by the
fundamental and harmonic components and S=V · I,
which is given by
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S
�� %

N

n=1

Vdn

�2

+
� %

N

n=1

Vqn

�2n1/2

×
�� %

N

n=1

idn

�2

+
� %

N

n=1

iqn

�2n1/2

(30)

4. Simulation results

4.1. Case 1

Fig. 3 shows the schematic diagram of a power
network comprising a 3-phase ac system feeding non-
linear load via a dc-link. The dc link supplies power
to a 3-phase ac system with a time-varying load and
variable static capacitor bank at the load end. The
converter is switched on at t=0.12 s and load
changes are effected at t=0.45, 0.65 and 0.75 s by
0.2, 0.4 and −0.5 pu, respectively. The voltage and
current waveforms are monitored at the load testing
point of the ac-system. Numerical simulation is per-
formed using the EMTDC [8] software package,
which is capable of simulating power networks during
transient conditions.

The instantaneous voltage waveform is tracked us-
ing the neural estimator and is shown in Fig. 4. The
corresponding fundamental and dominant voltage
harmonic components of the A-phase are shown in
the same figure. Fig. 5 shows the fundamental and
dominant harmonic components of the phase A cur-
rent at the inverter bus. The voltage and current har-
monic distortions VTHD, ITHD, power quality index l,
and fundamental component of real power are shown
in Fig. 6. From Fig. 4, it is seen that one cycle
(based on 50 Hz waveform) is almost required to
provide an accurate tracking of the peak value of the
fundamental component of the phase voltage. How-
ever, when capacitor switching and load changes oc-
cur at the converter bus, harmonics are generated and
the fundamental peak voltage at the converter bus
reduces. Under these circumstances the neural estima-
tor produces accurate estimates of corresponding fun-
damental and harmonic components. The switching
operations of the converter load and the load and
converter bus capacitors generate large amounts of
voltage and current distortions, which can be ob-
served from the figure. The performance of the
Kalman filter in tracking the harmonics and distor
tions is found to be inferior in comparison to the
proposed neural estimator. This has also been confi-
rmed in Ref. [6] and the results of this comparison are
omitted here.

4.2. Case 2

The second test case taken for numerical simulation

is a 15 000 HP induction motor fed from a strong ac
system via a back-to-back power converter system (rec-
tifier and inverter connected back-to-back). A switching
capacitor bank is installed across the induction motor
terminal for power factor improvement. Fig. 7 shows
the schematic diagram of the studied system. The fol-
lowing three operations are carried out sequentially:
1. dc link starting at 0.085 s;
2. induction motor starting at 0.12 s;
3. the capacitor bank is switched on at 0.16 s.

Fig. 8 shows the fundamental, 5th, 7th and 11th
harmonic voltages for A-phase along with voltage and
current THDs, and power quality index using the adap-
tive neural estimator.

4.3. Real-time monitoring of power quality

With a view to real-time implementation of the pro-
posed neural estimator for power quality assessment,
data is obtained from a laboratory setup comprising a
230 v, 50 Hz, ac system supplying a R–L load through
a half-wave or a full-wave rectifier. The resistance and
inductance of the load are R=330 V and L=0.05 H.
The power supply waveform was checked by an oscillo-
scope, which was found to be practically sinusoidal
without any significant harmonic content.

The system data is acquired through a PCL-718 data
acquisition card using a 12-bit successive approxima-
tion technique for A/D conversion. The card provides a
powerful and easy to use software driver routine. A
personal computer PC-486, 66 MHz processor is used
to process the voltage and current samples using a
software program written in C+ + language. The sam-
pling time is fixed at 0.25 ms, thus giving a sampling
rate of 4 kHz. The PC-486 processor is fast enough to
provide very fast execution time in a real-time environ-
ment and in this case the program is executed in less
than 0.1 ms, thus giving the possibility of a larger
sampling rate. The neural estimator with an adaptive
learning parameter a provides fast tracking of the fun-
damental component of the voltage. The harmonic
components for the R–L load supplied by half-wave
and full-wave rectifiers are shown in Figs. 9 and 10.
From the figures it is observed that once the neural
estimator is initialised, the tracking is found to be fast
and accurate for successive changes. The total current
harmonic distortions are also shown in the figures.

5. Conclusions

The single-layer adaptive neural network presents a
very realistic and promising approach for fast estima-
tion of power network signal parameters corrupted by
noise, decaying dc components and harmonics. The
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Fig. 8. (i) Input current waveform, (ii) harmonic components and ITHD of a full-wave rectifier.
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Fig. 9. (i) Load current waveform, (ii) dc and harmonic components, and (iii) ITHD of a halfwave rectifier.

non-linear adaptation of the weight vector for the
adaline is performed using a difference error equation
and provides an accurate estimation of amplitude and
phase of the 3-phase voltage and current phasors cor-
rupted by harmonics and noise. The learning parameter
a is also adapted for providing fast convergence and

noise rejection. Numerical simulation tests using the
EMTDC software package clearly demonstrate the ca-
pability of the algorithm in quantifying power quality
from noisy data. Real-time laboratory tests confirm the
validity of the new approach for computing harmonic
distortions and power quality on-line.

Fig. 10. (i) Input current waveform, (ii) harmonic components and ITHD of a fullwave rectifier..
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