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The paper presents an adaptive least mean squares (LMS)
algorithm for the fast estimation of voltage and current
signals in power networks. The new estimator is based on
the use of linear combiners. The learning parameter of the
proposed algorithm is constrained by two variable para-
meters which causes an automatic suitable adjustment of the
step size using a fuzzy gain scheduling method to provide fast
convergence and noise rejection for the tracking of funda-
mental and harmonic components from distorted signals.
Several numerical tests have been conducted for the adap-
tive estimation of fundamental and harmonic components
from simulated waveforms from power networks supplying
converter loads and switched capacitors.q 1998 Published
by Elsevier Science Ltd. All rights reserved
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I. Introduction

The problem of estimating the amplitudes, phase angles and
frequencies of sinusoidal signals from noisy and distorted
data has received considerable attention recently due to the
proliferation of power electronic loads in electric power
networks. Further, the estimation of basic parameters of
voltage and current signals is a prerequisite for evolving
suitable protection and control strategies of power networks.
Power quality issues are very much dependent on the RMS
amplitudes of these waveforms, and hence suitable analysis
methodologies and measurement tools are assuming some
importance in the power industry.

With the introduction of microcomputers, the digital
monitoring of voltage and current phasors in a power network
has become feasible. The discrete Fourier transformation
(DFT), least mean squares (LMS), recursive least squares
(RLS), and Kalman filter techniques [1–4] are some of the
known signal processing techniques used for the estimation
of voltage and current phasors. The computational cost of a

DFT-based algorithm is very low, but its performance is
adversely affected by decaying d.c. components or a low
signal-to-noise ratio. Both the LMS and RLS algorithms [4]
suffer from inaccuracies in the presence of decaying d.c.
components and random noise. On the other hand, Kalman
filters are well suited for estimating time-varying signal
parameters accurately in the presence of noise and harmo-
nics. However, a common problem with these Kalman filters
is the high computational requirements, due to transcenden-
tal function evaluation in real time. A Newton-type algo-
rithm has been proposed in Ref. [5] to estimate voltage
phasor and local system frequency from a distorted voltage
waveform. This algorithm, however, suffers from a heavy
computational burden and the choice of initial starting
parameters. A few algorithms using the neural network
[6,7] approach have been presented to recover fundamental
components from signals corrupted by noise and harmonics.
However, these algorithms are susceptible to errors due to
random noise and involve heavy computational overheads.

The purpose of this paper is to present a new algorithm for
the fast tracking of voltage and current phasors using an
adaptive linear combiner [8] which is analogous to a one-
layer neural network. The structure is based on the early
work of Widrow and Lehr in the 1960s [9] and has been
widely applied in neural networks, signal processing and
many other areas. A generalized weight adaptation algo-
rithm for the adaptive linear combiner is used to arrive at the
magnitude and phase of the voltage or current phasor. In this
algorithm, the learning parameters are adjusted to force an
error between the actual and desired outputs in order
to satisfy a stable difference error equation, rather than to
minimize an error function. This approach allows one to
better control the stability and speed of convergence by an
appropriate choice of parameters of the error difference
equation [8]. The algorithm presented in this paper is an
adaptive one and is based on the assumption that the
frequency of the fundamental voltage or current phasor is
known a priori. A fuzzy logic based learning parameter
computation is used to provide fast convergence and noise
rejection. Several numerical examples are given in the paper
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to validate its performance in the presence of random noise
and harmonics.

II. Adaptive linear combiner

The power system voltage or current waveform is assumed
to comprise fundamental and harmonic components, as

y(t) ¼
∑N
i ¼ 1

Ai sin(iqt þ fi) (1)

whereAi andf i are the amplitude and phase of the harmo-
nics, respectively,N is the total number of harmonics, andq
is the angular frequency of the fundamental component of
the signal. To obtain a solution for on-line estimation of the
harmonics, we propose the use of an adaptive estimator in
the form of a linear combiner, shown in Figure 1.

To obtain the input variables for the linear combiner, the
signal given in the equation is written in the discrete form as

y(k) ¼ Ai cosf sin v þ Ai sinf cosv

þ … þ AN cosfN sinNv þ AN sinfN cosNv

ð2Þ

where

v ¼
2pk
Ns

In the above equations,N is the order of the highest harmonic
present in the signal,k is the sample number or iteration
count, andNs is the sample rate.

Thus, the input vector to the linear combiner is given by

x(k) ¼ (sin v cosv sin 2v cos 2v … sinNv cosNv)T (3)

andT is the transpose of the quantity.
If the power system signal contains a decaying d.c.

component and the waveform is described by

y(t) ¼ Adc e¹ bt þ
∑N
i ¼ 1

Ai sin(iqt þ f) (4)

the signal is expressed using a Taylor series expansion
(neglecting higher order terms) as

y(t) ¼ Adc ¹ Adcbt þ
∑N
i ¼ 1

Ai sin(iqt þ f) (5)

In this the input vector to the adaline is expressed as

x(k) ¼ 1
v

q
sin v cosv … sinNv cosNv

� �T

(6)

The weight vector of the linear combiner is updated using a
non-linear weight adaptation algorithm (modification of the
Widrow–Hoff delta rule), as

(kþ 1) ¼ W(k) þ
ae(k)X(k)

lþ xT(k)X(k)
(7)

where the following hold good at thekth sampling instant:

k is the input vector

T(k) ¼ [W1(k) W2(k) W3(k) W4(k) … W2N þ 1(k) W2N þ 2(k)];
e(k) ¼ y(k) ¹ ŷ(k)isthee ;
y(k) is the actual signal amplitude;
ŷ(k) is the estimated signal amplitude;
a is a learning parameter;
l is a parameter to be suitably chosen to avoid division by
zero.In the above equation the vectorX is chosen as

X(k) ¼ [11SGN(sin v)SGN(cosv)

… SGN(sinNv)SGN(cosNv)]T ð8Þ

and theSGNfunction is given by

SGN(xi) ¼
þ 1 if xi . 0

¹ 1 if xi , 0

(
(9)

wherei ¼ 3, …, 2N þ 2Instead of using theSGNfunction,
we can use the tanh or arc(tanh) functions forX(k).

The errore(k)between the actual signal and the estimated
signal is brought down to zero when perfect learning is attained
and the weight vector will yield the Fourier coefficients of the
signal. IfW0 is the weight vector after the final convergence is
reached, the Fourier coefficients are obtained as

W0 ¼ [AdcbAdcA1 cosf1 A1 sinf1

… AN cosfN AN sinfN]T ð10Þ

The amplitude and phase of theNth harmonic are given by

AN ¼

����������������������������������������������������
W2

0(2N þ 1) þ W2
0(2N þ 2)

q
andfN ¼ tan¹ 1

3
W0(2N þ 2)
W0(2N þ 1)

� �
ð11Þ

For tracking three-phase voltage and current phasors, three
adaptive linear combiners will be required, as shown in
Figure 2.

III. Fixing the learning parameter a
The learning parametera used in the modified Widrow–
Hoff delta rule is an important parameter which controls the
convergence and noise rejection property of the adaptive
linear combiner. The learning parametera is adapted
recursively in the following way.

a(kþ 1) ¼ a(k) þ m SGN[=ae2(kþ 1)]Dakþ 1 (12)

where

=ae2(kþ 1) ¼
]e2(kþ 1)

]a
¼

]e2(kþ 1)
]W(kþ 1)

]W(kþ 1)
]a

(13)
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Figure 1. Block diagram of linear combiner



In the above equation (equation (13)),m is a small positive
constant that controls the adaptive behaviour of the step size.
The termDakþ1 of the same equation is explained in detail in
the next section.

The initial value ofa is chosen to be 2.0. The learning
parametera is, however, constrained to lie between the limits

amin # a(kþ 1) # amax (14)

The value ofamax is chosen to ensure that the mean square
error of the algorithm remains bounded. A sufficient condi-
tion to ensure mean squared convergence of the algorithm is

amax¼
2

3 tr(R)
(15)

whereR is the autocorrelation matrix of the input vectorX
given by

R¼ E[X(kþ 1)XT(kþ 1)]

Theamin is chosen to provide a minimum level of step size
without making system tracking very sluggish. The step size
is always positive. For large prediction error, the learning
parameter is increased to provide faster tracking.

IV. Calculation of Da
The change of the step sizeDa(n) is computed by using a fuzzy
logic based algorithm. The input and output of the fuzzy
system are quantitative measures of misadaptionu(n) and the
change of the step sizeDa(n), respectively. Inside the fuzzy
logic (FL) block, they are converted into, and treated as, fuzzy
variables, although they have crisp values. Here in this paper
the norm of cross-correlation between the estimation error and
the input data as a measure of misadoption isUk, whereUk/2 is
the magnitude of the gradient vector=ke

2(k).

Uk ¼ ke(k) X(k)k

The linguistic control rules are as given below.

R1: IF U(k) is ZE THEN Da(n) is ZE
R2: IF U(k) is VS THEN Da(n) is VS
R3: IF U(k) is S THENDa(n) is S
R4: IF U(k) is M THEN Da(n) is M
R5: IF U(k) is L THEN Da(n) is L
R6: IF U(k) is VL THEN Da(n) is VL

The linguistic variables ZE, VS, S, M, L and VL represent

the fuzzy subsets zero, very small, small, medium, large and
very large, respectively. The membership functions of the
fuzzy variablesU(k) andDa(n) with respect to the linguistic
variables are shown in Figure 3. The above fuzzy rules are
aggregated by an OR operation given by

R¼ R1 cR2 cR3 cR4 cR5 cR6

The inference mechanism of the fuzzy logic based algorithm
produces a fuzzy outputDa(n) from which the crisp value of
Da(n) is obtained through a defuzzification procedure. The
output of the FL block is computed by

Da(n) ¼

∑
i

tiDai∑
i

ti

(16)

wheret i is the firing strength of theith rule andDa(n) is the
centre of gravity of the output fuzzy subset of theith rule.
The computing process being very simple does not affect the
simplicity of the linear combiner.

The power system signal model presented in equation (4)
does not show any noise term. Thus, if a random noise is
added to the signal model, the accuracy of the linear
combiner will be affected in the presence of the random
noise. Therefore to provide a better noise rejection term, the
error term is fed back recurrently and the input to the linear
combiner will, for the model containing a d.c. component
and harmonics, become

X(k) ¼ [1
v

q
sin v cosv … sin Nv cosNv e(k)e(k¹ 1)

e(k¹ 2)]T ð17Þ

V. Simulation results

In order to check the validity and performance of the
proposed algorithm, numerical experimentation on the
simulated waveforms has been carried out using
the matlab software package. The simulations fully
confirmed the correctness of the presented approach. The
linear combiner algorithm is initialized by starting from a
null weight vector. A sample rate of 64 based on the 50 Hz
frequency is chosen for the estimation of signal amplitude
and phase for all the studies. Owing to limited space, we
are presenting some illustrative results in order to show
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Figure 2. Block diagram of the linear combiner used for tracking three-phase voltages and currents



Figure 3. (i) Membership function of U(k). (ii) Membership function of Da

Figure 4. Tracking a distorted signal under conditions of sag, swell and outage



the accurate tracking capability of the FLMS (fuzzy LMS)
estimator.

V.1 Case 1
Figure 4 shows the typical voltage waveform (short-duration
RMS variations in the voltage waveform) encountered for a
distribution feeder during a single-line to ground fault. The
depression of voltage is usually known as sag, which has a
magnitude around 80% of the fundamental and a duration of

2–10 cycles. The swell is characterized by the voltage rise of
the unfaulted phase (to a value nearly 120% of the funda-
mental component) and outage is characterized by zero
voltage on the faulted phase. From the figure it is observed
that the linear combiner provides fast tracking of the peak
voltage magnitudes and the fundamental voltage waveform
very accurately in less than 1 cycle. The variation ofa is also
shown in this figure. This example clearly demonstrates the
feasibility of using a linear combiner and fuzzy LMS
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Figure 5. Tracking of fundamental and harmonic components



algorithm for power quality monitoring. An optimized
Kalman filter is used to provide a meaningful comparison
with the new approach presented in this paper. The Kalman
filter shows overshoots and a larger settling time in compar-
ison to the linear combiner–fuzzy LMS approach. The figure
also shows the membership grades of the change ina[Da(k)]
and the actual value ofa. The fuzzy output for producing the
change ina is either zero or 1 and the actual value ofa is
calculated according to equation (12).

V.2 Case 2
The signal that is of considerable importance in power
networks is the fault current, which changes from its nominal

value to a large value during the fault period. Such a signal is
represented as

y(t) ¼ 1:5 sin(qt þ 29:38) þ 0:5 exp( ¹ 15t)

þ 0:2 sin(5qt þ 141:68) þ 0:017 sin(7qt þ 86:28)

þ 0:022 sin(11qt ¹ 99:48)

þ 0:024 sin(13qt ¹ 179:28)

þ 0:012 sin(17qt ¹ 1:38) þ 0:016 sin(19qt ¹ 89:68)

þ K rand(t)

whereK ¼ 0:05.
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Figure 6. Tracking fundamental amplitude of simulated data samples by fuzzy LMS. (i) Tracking datasample-
1; (ii) tracking datasample-2



The value ofK is set at 0.05 for this study, which is
equivalent to superimposing a 0.2 p.u. peak noise level on
the faulted current signal. The functionrand(t) has a zero
mean, normal distribution and variance unity.

Figure 5 shows the tracking of the fundamental and fifth
harmonic components of the distorted signal presented
above using both the fuzzy LMS algorithm and the
Kalman filter. From the figure it can be seen that in the
presence of a decaying d.c. and harmonics, the Kalman filter
shows a larger error and converges to the true value slowly in
more than four cycles. However, using the fuzzy LMS
algorithm (Figure 6), the convergence is obtained in
almost one cycle in the case of the fundamental and in less
than two cycles in the case of the fifth harmonic. This result
is found to be significant in comparison to the computation of
harmonics in the presence of a decaying d.c. and large
random noise.

VI. Conclusions

The adaptive linear combiner represents a very realistic and
promising approach for the fast estimation of power network
signal parameters corrupted by noise, decaying d.c. compo-
nents, and harmonics. The non-linear learning parameter
weight vector adjustment for the linear combiner is done
using a difference error equation and provides an accurate
estimation of the amplitude and phase of a voltage phasor
corrupted by harmonics and noise. By taking a suitable fixed
learning parameter, one can also obtain the same accuracy of
results but with sudden changes in the input vector (which
are quite obvious in power system waveforms), the magni-
tude of the learning parameter must be suitably changed.
Again, it is difficult to optimize the initial value of the
learning parameter, which is generally carried out heuristi-
cally. In this paper, an automatic adjustment of the learning
parameter is achieved depending upon the changes in the
input vector. Computer simulation experiments have shown
that the non-linear weight adaptation along with an adaptive

fuzzy LMS algorithm yield a more accurate and faster
estimation of voltage phasor in comparison with the well-
known Kalman-filter-based algorithm.
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