
ORIGINAL ARTICLE

Modified particle swarm optimization for solving
machine-loading problems in flexible manufacturing systems

Sandhyarani Biswas & S. S. Mahapatra

Received: 24 July 2007 /Accepted: 10 October 2007 / Published online: 7 November 2007
Springer-Verlag London Limited 2007

Abstract In flexible manufacturing systems (FMSs), the
loading problem is considered as a vital pre-release decision
because its operational effectiveness largely depends on a
good quality solution to the loading problem. Difficulties
arise in obtaining optimal solutions to such problems
because of its combinatorial and NP-hard nature. In the
past, numerous techniques have been suggested and found
to be efficient, but they take long computational times when
the problem size increases. In order to address the above
issues, a meta-heuristic approach based on particle swarm
optimization (PSO) has been proposed in this paper to
improve the solution quality and reduce the computational
effort. However, PSO has the tendency to suffer from
premature convergence. Therefore, the PSO algorithm has
been modified through the introduction of a mutation
operator to improve efficiency of the algorithm. The
proposed algorithm attempts to minimize the system
unbalance while satisfying the technological constraints,
such as the availability of machining time and tool slots.
The proposed algorithm produces promising results in
comparison to existing methods for ten benchmark in-
stances available in the FMS literature.

Keywords Flexible manufacturing systems .

Machine-loading problem . Particle swarm optimization .

Mutation . System unbalance

1 Introduction

The advent of global economy and trade has resulted in
competition that has led enterprises to face a dynamic
environment. Such an environment is characterized by a
large volume of uncertainty, such as rapid market changes,
increased product variety, competitive prices, and short
product life cycles. Therefore, it is of prime importance to
introduce flexible manufacturing systems (FMSs) so that
these uncertainties can be handled in an effective manner.
According to Stecke [1], an FMS is characterized as an
integrated, computer-controlled complex arrangement of
automated material-handling devices and numerically con-
trolled (NC) machine tools that can simultaneously process
medium-sized volumes of a variety of part types. The
highly integrated FMS offers the opportunity to combine
the efficiency of a transfer line and the flexibility of a job
shop to best suit the batch production of mid-volume and
mid-variety of products. However, flexibility has a cost,
and the capital investment sustained by firms to acquire
such systems is generally very high. Therefore, particular
attention must be paid to the proper planning of an FMS
during its development phase in order to evaluate the
performance of the system and justify the investment
incurred. Prior to production, careful operational planning
is essential to establish how well the system interacts with
the operations over time. Hence, the successful operation of
an FMS requires more intense planning compared to any
conventional production system.

The decisions related to FMS operations can be broadly
divided into pre-release and post-release decisions. Pre-
release decisions include the FMS operational planning
problem that deals with the pre-arrangement of jobs and
tools before the processing begins, whereas post-release
decisions deal with the scheduling problems [1]. Pre-release

Int J Adv Manuf Technol (2008) 39:931–942
DOI 10.1007/s00170-007-1284-5

S. Biswas (*) : S. S. Mahapatra
Department of Mechanical Engineering,
National Institute of Technology,
Rourkela 769008, India
e-mail: sandhya_biswas@yahoo.co.in

S. S. Mahapatra
e-mail: mahapatrass2003@yahoo.com

decisions, e.g., machine grouping, part type selection,
production ratio determination, resource allocation, and
loading problems, must be solved while setting up an FMS.
Amongst pre-release decisions, machine loading is consid-
ered as one of the most vital production planning problems
because the performance of the FMS largely depends on it.
Loading problems, in particular, deal with the allocation of
jobs to various machines under technological constraints,
with the objective of meeting certain performance mea-
sures, hence, it is considered as a combinatorial optimization
problem and happens to be NP-hard in nature. Numerous
methods based on mathematical, heuristics, meta-heuristics,
and simulation have been suggested by researchers in the
pursuit of obtaining quality solutions to loading problems
and reduce computational burden. But these approaches are
barely capable of producing optimal/near-optimal solutions
or require excessive computational efforts to arrive at good
quality solutions. In order to alleviate these difficulties, an
attempt has been made in this paper to propose an
algorithm based on particle swarm optimization (PSO) to
solve the machine-loading problem of a random FMS with
the objective of the minimization of system unbalance
while satisfying the constraints related to the available
machining time and tool slots. However, PSO has the
inherent drawback of trapping at a local optimum due to the
large reduction in velocity values as the iterations proceed
and, hence, reduces the solution variety. This drawback has
been addressed effectively by incorporating mutation, a
commonly used operator in genetic algorithms, to improve
the solution quality. In addition, the study analyzes the
effect of the underloading/overloading of machines on the
solution quality in a loading problem.

The remainder of this paper is organized as follows.
Section 2 gives a brief review of the past literature on the
loading problem. Section 3 formally defines the problem
studied in this paper, along with the objectives and
assumptions made to solve the problem. The proposed
algorithm based on PSO is presented in Sect. 4. In Sect. 5,
the results of benchmark problems from the open literature
are compared with the proposed method to illustrate its
advantage over the other methods. Finally, conclusions
drawn from this study are summarized and directions for
future research are outlined in Sect. 6.

2 Literature review

The pioneering work in FMS planning problems formulated
as a non-linear 0–1 mixed-integer programming (MIP)
problem was proposed by Stecke and Solberg [2] and was
subsequently improved by Stecke [1]. Berrada and Stecke
[3] proposed a branch-and-bound algorithm to balance the
workloads on machines. Sarin and Chen [4] used an MIP

approach to determine part routings through the machines
and to allocate appropriate cutting tools to each machine for
achieving minimum machining cost, which are dependent
on the machine–tool combinations. Chen and Chung [5]
discussed the effects of loading and routing decisions on
the performance of an FMS. Atmani and Lashkari [6] and
Gamila and Motavalli [7] presented a linear 0–1 integer
programming model for machine tool assignment and
operation allocation to determine an optimal plan by
minimizing the total costs and the time of operations,
respectively, considering material handling and setups. A
few researchers, such as Shanker and Tzen [8], O’Grady
and Menon, [9], and Liang and Dutta [10–12], have
attempted to solve the loading problem with a bi-criterion
objective for the machine-loading problem. Although
analytical- and mathematical-programming-based methods
are robust in applications, they tend to become impractical
when the problem size increases. This has motivated
researchers to develop fast and effective heuristics for
solving loading problems in large-sized FMSs. Stecke and
Tallbot [13] have reported that mathematical approaches
may not provide practical solutions to real-time applications
because they require a large amount of computational
effort. Hence, they have proposed heuristic algorithms for
the minimization of part movements that balances the load
on machines of equal size. Mukhopadhyay et al. [14]
suggested a heuristic-based approach to solve the loading
problem in FMSs by developing the concept of essentiality
ratio for the maximization of throughput and the minimi-
zation of system unbalance simultaneously. Tiwari et al.
[15] proposed a heuristic approach that uses fixed pre-
determined job ordering rules as the input while solving
loading problems. However, it has been established by
Stecke and Solberg [2], Shanker and Tzen [8], and Moreno
and Ding [16] that the shortest processing time (SPT) rule
works better in comparison to other rules, e.g., longest
processing time (LPT), first-in-first out (FIFO), and last-in-
first-out (LIFO). Srinivas et al. [17] addressed the FMS
machine-loading problem through winner determination
using the combinatorial auction process so that both the
minimization of system unbalance and the maximization of
throughput can be achieved simultaneously. Nagarjuna et
al. [18] proposed a heuristic based on a multi-stage
programming approach for minimizing the system unbal-
ance while satisfying constraints such as the availability of
tool slots and machining time.

The major limitation of a heuristic is its inability to
estimate the results in a new or completely changed
environment, as they are generally rule-based and mostly
rely on empirical data. Therefore, numerous researchers
have used meta-heuristic approaches for solving the
machine-loading problem. Mukhopadhyay et al. [19]
proposed a perturbation scheme known as a “modified

932 Int J Adv Manuf Technol (2008) 39:931–942

insertion scheme” for generating new job sequences in their
simulated annealing (SA) approach. Genetic algorithm
(GA)-based approaches for loading problems is found to
ensure an optimal solution and to be less computationally
intensive. Kumar and Shanker [20], Tiwari and Vidyarthi
[21], and Swarnkar and Tiwari [22] have addressed
machine-loading problems having the bi-criterion objec-
tives of minimizing system unbalance and maximizing the
throughput using a hybrid algorithm based on tabu search
(TS) and SA. The main advantage of this approach is that a
short-term memory provided by the tabu list can be used to
avoid revisiting the solution while preserving the stochastic
nature of the SA method. Vidyarthi and Tiwari [23]
proposed a fuzzy-based methodology to solve the ma-
chine-loading problem in an FMS. The job-ordering
determination before loading is carried out by evaluating
the membership contribution of each job to its character-
istics, such as batch size, essential operation processing
time, and optional operation processing time. The opera-
tion–machine allocation decisions are made based on the
evaluation of the membership contribution of an operation–
machine allocation vector. Chan and Swarnkar [24]
presented a fuzzy goal programming approach to model
the machine tool selection and operation allocation prob-
lem. Then, an ant colony optimization (ACO)-based
approach is applied to improve the solution further.

When a system cannot be evaluated analytically to
obtain a single solution, then simulation may be a good
option. In this regard, simulation-based studies have been
carried out for testing various dispatching rules by Stecke
and Solberg [2] and Gupta et al. [25]. Many simulation
studies focused on the determination of optimal operational
parameters while designing an FMS [19, 26, 27]. Although
simulation is an effective technique for dynamic analysis, it
lacks the ability to provide an optimal solution as far as
FMS design is concerned. Simulation techniques have
another limitation in terms of the number of iterations. A
large number of iterations are needed to find the best
possible solution and there is always a possibility of
returning to some recently found solutions, resulting in a
non-optimal solution.

3 Problem description

The loading problem in manufacturing deals with selecting
a subset of jobs from a set of all jobs to be manufactured
and assigning their operations to the relevant machines in a
given planning horizon with technological constraints in
order to meet certain performance measures, such as the
minimization of system unbalance and the maximization of
throughput. System unbalance can be defined as the sum of
unutilized or overutilized times on all of the machines

available in the system, whereas throughput refers to the
summation of the batch size of the jobs that are to be
produced during a planning horizon. The minimization of
system unbalance is equivalent to the maximization of
machine utilization. The processing time and tool slots
required for each operation of the job and its batch size are
known beforehand. There are two types of operations
associated with the part types; essential and optional.
Essential operations can be carried out on a particular
machine using a certain number of tool slots, while optional
operations can be performed on a number of machines with
the same or different processing times and tool slots. The
FMS under consideration derives its flexibility in the
selection of a machine for the optional operation of
the job. Generally, the complexity of these problems
depends on whether the FMS is of a dedicated type or a
random type. A dedicated FMS is designed to produce a
rather small family of similar parts with a known and
limited variety of processing requirements, while in a
random-type system, a large family of parts having a
wide range of characteristics with random elements is
produced and the product mix is not completely defined
at the time of installing the system. This paper addresses
the loading problem in a random FMS. Loading in an
FMS environment is more complex and difficult to solve.
In order to minimize the complexities, the following
assumptions are made when analyzing the FMS loading
problem:

– Initially, all of the jobs and machines are simultaneous-
ly available

– The processing time required to complete an entire job
order is known a priori

– The job undertaken for processing is to be completed
for all of its operation before considering a new job;
this is called non-splitting of the job

– The operation of a job once started on a machine is
continued until it is completed

– The transportation time required to move a job between
machines is negligible

– The sharing and duplication of tool slots is not allowed.

Different researchers have calculated system unbalance
in different ways. Some researchers, such as Mukhopadhyay
et al. [14], Swarnkar et al. [22], and Nagarjuna et al. [18],
solved the machine-loading problem by considering both the
underloading and overloading of machines, while Shanker et
al. [28] have not permitted overloading. In order to examine
the efficiency of the proposed algorithm, the problem
described above is formulated in this paper by considering
two cases. In the first case, an optimal solution is obtained
without permitting the overloading of machines, whereas the
overloading of machines is permitted in the second case. The
mathematical formulation of the problem for both cases are

Int J Adv Manuf Technol (2008) 39:931–942 933

described in the following. The notation used is given as
below:

j Job types, j=1, 2,..., J
m Machine types, m=1, 2,..., M
o Operation number of job j, o=1, 2,..., Oj

Sm Tool slot capacity of machine m
ATm Available time on machine m
ASm Available tool slots on machine m
Bj Batch size of job j
Oe Number of essential operations for job j,

Oe=1, 2,..., EOj

Oo Number of optional operations for job j,
Oo=1, 2,..., EOj

RSm Remaining tool slots on machine m
RTm Remaining time on machine m
T(Ejm

o) Time required for carrying out essential
operation Oe of job j on machine m

S(Ejm
o) Tool slot required for carrying out

essential operation Oe of job j on machine m
T(Ojm

o) Time required for carrying out optional
operation Oo of job j on machine m

S(Ojm
o) Tool slot required for carrying out optional

operation Oo of job j on machine m
B(j, o) Set of machines on which operation o of job j

can be performed
Tm Length of scheduling period for the mth

machine
Pjom Processing time of operation o of job j on

machine m
Sjom Number of tool slots required for processing

operation o of job j on machine m

and:

Xj ¼ 1 if job j is selected
0 otherwise

�

Xjom ¼ 1 if operation o of job j is assigned to machine m
0 otherwise

�

Case 1: overloading not permitted The objective of the
FMS loading problem is to minimize the total system
unbalance, i.e.:

minimize :
XM
m¼1

Tm �
XM
m¼1

XJ
j¼1

XOj

o¼1

BjPjomXjom ð1Þ

The constraints are defined as follows. The overloading of
machines is not permitted:

XJ
j¼1

XOj

o¼1

BjPjomXjom � Tm m ¼ 1; 2; . . . ; M ð2Þ

The jobs will be loaded only when there is an availability of
tool slots on each machine:

XJ
j¼1

XOj

o¼1

SjomXjom � Sm m ¼ 1; 2; . . . ; M ð3Þ

Ensure that a particular operation of a job is done only on
one machine:
X

G2B j; oð Þ
XjoG � 1

j ¼ 1; 2; . . . ; J and o ¼ 1; 2; . . . ; Oj

ð4Þ

where G is an element that belongs to B(j, o). Ensure that
the job cannot be split:

XOj

o¼1

XM
m¼1

Xjom ¼ XjOj j ¼ 1; 2; . . . ; J ð5Þ

Case 2: overloading permitted The objective of the FMS
loading problem is to minimize the absolute value of the
total system unbalance:

minimize :
XM
m¼1

Tm �
XM
m¼1

XJ
j¼1

XOj

o¼1

BjPjomXjom

�����
����� ð6Þ

The constraints are defined as follows. The overloading of
machines is permitted:

XM
m¼1

XJ
j¼1

XOj

o¼1

BjPjomXjom �
XM
m¼1

Tm

m ¼ 1; 2; . . . ; M

ð7Þ

The jobs will be loaded only when there is an availability of
tool slots on each machine:

XJ
j¼1

XOj

o¼1

SjomXjom � Sm m ¼ 1; 2; . . . ; M ð8Þ

Ensure that a particular operation of a job is done only on
one machine:X
G2B j; oð Þ

XjoG � 1

j ¼ 1; 2; . . . ; J and o ¼ 1; 2; . . . ; Oj

ð9Þ

where G is an element that belongs to B(j, o). Ensure that
the job cannot be split:

XOj

o¼1

XM
m¼1

Xjom ¼ XjOj j ¼ 1; 2; . . . ; J ð10Þ

934 Int J Adv Manuf Technol (2008) 39:931–942

If the number of operations is equal for all of the jobs,
denoted as O1=O2=O3=...=Oj=O, then mathematical formula-
tion in both Case 1 and Case 2 requires J � M � Oþ 1ð Þð Þ
decision variables. But, the number of constraints in
Case 1 is M þM þ J þ J � Oð Þ; whereas Case 2 needs
1þM þ J þ J � Oð Þ constraints. Let us consider a problem
with six jobs (J=6) having two operations for each (Oj=2),
and the jobs are to be loaded on four machines (M=4). Then,
the number of decision variables is 54 and the number of
constraints is 26 for Case 1. Similarly, for Case 2, the
number of decision variables is 54 and the number of
constraints is 23. As the problem size increases, the number
of variables and constraints will increase further, making it
difficult to solve. Hence, there is a need to find a better
search technique which can provide a near-optimal solution.
In this paper, an attempt has been made to solve the
machine-loading problem of an FMS by using a meta-
heuristic approach based on PSO.

4 Particle swarm optimization

The particle swarm optimization (PSO) algorithm, original-
ly introduced by Kennedy and Eberhart in 1995 [29], is one
of the latest evolutionary optimization techniques inspired
by nature. It is based on the metaphor of social interaction
and communication of bird flocking and fish schooling. In
PSO, the members of the entire population are maintained
through the search procedure, so that information is socially
shared among individuals to direct the search towards the
best position in the search space. In PSO, each member is
called a particle, and each particle moves around in the
multidimensional search space with a velocity which is
constantly updated by the particle’s own experience and the
experience of the particle’s neighbors or the experience of
the whole swarm. Generally, PSO is characterized as a
simple heuristic of well-balanced mechanism, with the
flexibility to enhance and adapt to both global and local
exploration abilities. Compared with GAs, PSO has some
attractive characteristics. It has memory, which enables it to
retain knowledge of good solutions by all particles, whereas
previous knowledge of the problem is destroyed once the
population changes in GAs. In PSO, there is a mechanism
of constructive cooperation and information-sharing be-
tween particles. Due to the simple concept, easy imple-
mentation, and quick convergence, PSO has gained much
attention and has been successfully applied to a wide range
of applications, such as the scheduling of an FMS, power
and voltage control, neural network training, mass-spring
systems, task assignment, supplier selection and ordering
problem, automated drilling, state estimation for electric
power distribution systems, etc. [30–33]. The application of

the PSO algorithm requires that parameters are initialized
and the initial population to be generated randomly. After
evaluation, the PSO algorithm repeats the following steps
iteratively:

– Each particle with its position, velocity, and fitness
value updates its personal best (best value of each
individual so far) if an improved fitness value is found

– The best particle in the whole swarm with its position
and fitness value is, on the other hand, used to update
the global best (best particle in the whole swarm)

– Then, each particle updates its velocity based on the
experiences of its personal best and the global best in
order to update the position of each particle with the
velocity currently updated

– Permutation is determined through the smallest posi-
tion value (SPV) rule so that evaluation is again
performed to compute the fitness of the particles in
the swarm

After finding the personal best and global best values,
the velocities and positions of each particle are updated
using Eqs. 11 and 12, respectively:

vtij ¼ wt�1vt�1
ij þ c1r1 pt�1

ij � xt�1
ij

� �

þ c2r2 gt�1
j � xt�1

ij

� �
ð11Þ

xtij ¼ xt�1
ij þ vtij ð12Þ

where vij
t represents the velocity of particle i at iteration t

with respect to the jth dimension (j=1, 2,..., n). pij
t

represents the position value of the ith personal best with
respect to the jth dimension. xij

t is the position value of the
ith particle with respect to the jth dimension. c1 and c2 are
positive acceleration parameters, called the cognitive and
social parameters, respectively, and r1 and r2 are uniform
random numbers in the interval (0, 1).

w is known as the inertia weight, which is updated as
follows:

wt ¼ wt�1 � a ð13Þ

Table 1 Solution representation of particle Xi
t in the particle swarm

optimization (PSO) algorithm

Dimension, j 1 2 3 4 5 6

xij
t 0.11 1.48 1.21 0.45 1.08 0.32

vij
t 3.89 2.94 3.08 −0.87 −0.20 3.16

Job sequence,
πi

t
1 6 4 5 3 2

Int J Adv Manuf Technol (2008) 39:931–942 935

where α is a decrement factor. The parameter w controls the
impact of the previous velocities on the current velocity.
The termination criterion might be a maximum number of
iterations or the maximum CPU time to terminate the
search.

4.1 Solution representation

One of the most important issues when designing the PSO
algorithm lies on its solution representation. In order to
construct a direct relationship between the problem domain
and the PSO particles for the FMS loading problem, we

present n number of dimensions for n number of jobs. In
other words, each dimension represents a typical job. In
addition, the particle X t

i ¼ xti1; x
t
i2; . . . ; x

t
in

� �
corresponds to

the continuous position values for n number of jobs in
the loading problem. The particle itself does not present
a job permutation. Rather, the job sequence pti ¼
pti1; p

t
i2; . . . ; p

t
in

� �
is determined from position values using

the SPV rule. Table 1 illustrates the solution representation
of particle Xi

t for the FMS loading problem, together with
its corresponding velocity and sequence. According to the
SPV rule, the smallest position value is xi1

t=0.11, so the
dimension j=1 representing job 1 is assigned to the first

Allocate Oe of job j on machine m

Determine RSm and RTm

RSm=ASm- S(E
o

jm)

RTm=ATm-T(E
o

jm)

Set ASm = RSm and ATm= RTm

Is

Oe < EOj ?

Obtain job sequence using SPV rule

Take j=1from the sequence

Is

ASm ≥ S(E
o

jm)?

Is

ATm≥T(E
o

jm)?

 Oe=1

Reject the job due to

tool slot constraint

Reject the job due

to machining time

constraint

Start

Input M, ATm, ASm, m=1,2,….M

J, Bj, OOj, EOj,j=1,2…..J,T(E
o

jm), S(E
o

jm), T(O
o

jm), S(O
o

jm)

Oe = 1,2…..EOj, Oo = 1,2….OOj

Initialize pop_size,iter_size w, α, c1, and c2 .

Generate Xi and Vi randomly for each particle
in the swarm.

pop = 1

iter = 1

Oe = Oe+1

B
A

Yes

No

No

Yes

No

Yes

C

Fig. 1 Flow chart for the parti-
cle swarm optimization (PSO)
algorithm

936 Int J Adv Manuf Technol (2008) 39:931–942

position in the job sequence, πi1
t=1 in the sequence; the

second smallest position value is πi6
t=0.32, so the dimen-

sion j=6 representing job 6 is assigned to the second
position in the job sequence πi6

t=6, and so on. Finally, the job
sequence is obtained as [1, 6, 4, 5, 3, 2], as shown in Table 1.
In other words, the dimensions are sorted according to the
position values xij

t to construct the sequence.

4.2 The problem of the lack of diversity and the mutation
operator

PSO schemes described above typically converge relatively
rapidly in the first part of the search and then slow down or

stop. This behavior has been attributed to the loss of
diversity in the population and a number of researchers
have suggested methods to overcome this drawback, with
varying degrees of success [34, 35]. Looking at the
positions of the particles when the swarm had stagnated,
it was clear that the points were very tightly clustered and
the velocities were almost zero. The points were often not
that far from the global optimum, but the updating
equations, due to the almost zero velocity, were unable to
generate new solutions, which might lead the swarm out of
this state. This behavior can also lead to the whole swarm
being trapped in a local optimum, from which it becomes
impossible to escape.

Fig. 1 (continued)

Yes

No

No

Yes

Set ASm = RSm and ATm = RTm

B

Calculate fitness by using eq.(1) for caseI and (2) for case II

Is

pop < pop_size ?

Is

j < J?

Update x, v and w by using equation (11), (12) and (13)

Store pbest and gbest fitness values

Compute each particles fitness and find

new pbest and gbest values

Stop

Initialize Oo = 1

Is

ASm ≥ S(O
o
jm)?

Is

ATm ≥ T(O
o
jm)?

Allocate Oo of job j on machine m

based on maximum RTm

Determine RSm and RTm

RSm = ASm - S(O
o
jm)

RTm = ATm - T(O
o
jmi)

Is

Oo < OOj?

Reject the job due

to tool slot

constraint

Reject the job due to

machining time

constraint

j = j+1

pop = pop+1

Oo = Oo+1

No

Yes

Yes

Yes

No

Is

iter < iter_size?

AC

iter = iter +1

Yes

No

No

Int J Adv Manuf Technol (2008) 39:931–942 937

As mutation is capable of introducing diversity in the
search procedure, two types mutation have attracted the
attention of researchers; mutation of the global best and
mutation based on sharing information from neighbors.
Because the global best individual attracts all members of
the swarm, it is possible to lead the swarm away from a
current location by mutating a single individual if the
mutated individual becomes the new global best. This
mechanism potentially provides a means for both escaping
local optima and speeding up the search. Looking at the

individual components of solution vectors corresponding to
the global best function values revealed that it was often
only a few components which had not converged to their
global optimum values. This suggested the possibility of
mutating a single component only of a solution vector. The
latter approach introduces diversity by mutating a few
individuals in the swarm.

In this work, a mutation operator is introduced which
mutates the position vectors of a few particles selected
randomly. The mutation operation is not executed in every
iteration. A function, rand(0, MAXT) is used to return an
integer greater than or equal to 0 and less than MAXT. In
each iteration, if the elapsed time with no further progress is
greater than this random value, the mutation operation is
executed. Two reasons may account for this strategy:(1) if
there is no premature convergence happening, the execution
of PSO will not be affected; (2) the algorithm will not
increase computational overheads by very much. The
mutation operator randomly swaps two positions of a
particle at random. Then, permutations are generated for
the new positions. The mutation strategy is depicted in
algorithmic form as follows:

// DELTA: elapsed time of no further progress //
// MAXT: maximum time of no further progress //
t=0
initialize the swarm
evaluate each particle
while (not-termination-condition) do
t=t+1
update swarm according to Eqs. 11 and 12
if (DELTA>rand(0, MAXT))
do mutation
end if
evaluate the swarm
End

Table 2 Description of problem no. 1 (adapted from Mukhopadhyay
et al. [14])

Job
number

Batch
size

Operation
number

Unit
processing
time (min)

Tool
slots
needed

Machine
number

1 8 1 18 1 3
2 9 1 25 1 1, 4

2 24 1 4
3 22 1 2

3 13 1 26 2 4, 1
2 11 3 3

4 6 1 14 1 3
2 19 1 4

5 9 1 22 2 2, 3
2 25 1 2

6 10 1 16 1 4
2 7 1 4, 2, 3
3 21 1 2, 1

7 12 1 19 1 3, 2, 4
2 13 1 2, 3, 1
3 23 3 4

8 13 1 25 1 1, 2, 3
2 7 1 2, 1
3 24 3 1

Table 3 Comparison of results obtained using the PSO algorithm with other methods (overloading not permitted)

Problem no. Total number of jobs Shanker and Srinivasulu [28] PSO algorithm Assigned jobs Rejected jobs

SU TP SU TP

1 8 253 39 253 39 {1, 7, 6, 5} {2, 3, 4, 8}
2 6 388 51 202 63 {6, 1, 3, 5, 4} {2}
3 5 288 63 72 69 {4, 3, 5, 2} {1}
4 5 819 51 819 51 {3, 4, 5, 2, 1} {Φ}
5 6 467 62 219 52 {2, 3, 4, 1} {5, 6}
6 6 548 51 178 46 {5, 2, 6, 4} {1, 3}
7 6 189 54 189 54 {4, 3, 2, 1} {5, 6}
8 7 459 36 448 40 {4, 5, 1, 7} {2, 3, 6}
9 7 462 79 309 88 {2, 5, 6, 1, 4, 3, 7} {Φ}
10 6 518 44 184 49 {1, 4, 5, 6} {2, 3}

938 Int J Adv Manuf Technol (2008) 39:931–942

4.3 The proposed algorithm

Step 1 Input the total number of available machines, jobs,
batch sizes, tool slots on each machine, operations
of all jobs (both essential and optional), and the
processing time of every operation of each job.

Step 2 Initialize the parameters such as population size,
maximum iteration, decrement factor, inertia
weight, and social and cognitive parameters.
Generate the initial population randomly. Con-
struct the initial position values of the particle
uniformly as xtij ¼ xmin þ xmax � xminð Þ � U 0; 1ð Þ;
where xmin=0.0, xmax=4.0, and U(0, 1) is a uni-
form random number between 0 and 1. Generate
the initial velocities of the particle as vtij ¼ vminþ
vmax � vminð Þ � U 0; 1ð Þ; where vmin=−4.0, vmax=
4.0, and U(0, 1) is a uniform random number

between 0 and 1.

Step 3 Get the initial sequence by using the SPV rule.
Then, select the first job from that sequence and
do the following:

(a) First, load the essential operation on the machine if
and only if the available machining time is greater
than the time required by the essential operation;
otherwise, reject the job.

(b) Similarly, load the optional operation if and only if
the available machining time and tool slot is
greater than the time and tool slot required by
the optional operation on the basis of the machine
having the maximum available time; otherwise,
reject the job.

Step 4 Evaluate each particle’s fitness (system unbalance)
by using Eq. 1 for Case 1 and Eq. 6 for Case 2,
while satisfying their respective constraints.

Step 5 Find out the personal best (pbest) and the global
best (gbest).

Step 6 If no progress in the pbest value is observed for an
elapsed period of DELTA, carry out the mutation
of a particle using the mutation strategy as outlined
in Sect. 4.2, provided that DELTA is greater than a
random number between 0 and the maximum time
of no progress (MAXT).

Step 7 Update the velocity, position, and inertia weight by
using Eqs. 11, 12, and 13, respectively.

Step 8 Compute each particle’s fitness similar to Step 3
and find the new pbest and gbest.

Step 9 Terminate if the maximum number of iterations is
reached and store the gbest value; otherwise, go to
Step 2.

5 Results and discussion

The proposed PSO algorithm for the FMS loading problem
is coded in Visual C++ and implemented on a Pentium IV

Table 4 Summary of results obtained from the PSO algorithm
(overloading permitted)

Problem
no.

Total number
of jobs

PSO
algorithm

Assigned
jobs

Rejected
jobs

SU TP

1 8 152 45 {1, 4, 7, 3, 6} {8, 2, 5}
2 6 69 50 {5, 2, 1, 4} {3, 6}
3 5 98 79 {4, 3, 5, 1} {2}
4 5 819 51 {3, 4, 5, 2, 1} {Φ}
5 6 9 64 {1, 6, 2, 3, 4} {5}
6 6 35 62 {5, 2, 1, 3, 4} {6}
7 6 39 66 {1, 6, 2, 3, 4} {5}
8 7 101 42 {2, 3, 7, 5, 1} {4, 6}
9 7 309 88 {1, 7, 6, 2, 3,

4, 5}
{Φ}

10 6 5 58 {5, 4, 1, 6, 3} {2}

Table 5 Comparison of the results obtained using the modified PSO algorithm with other methods (overloading permitted)

Problem no. Total number of jobs Srinivas et al. [17] Swarnkar and Tiwari [22] Nagarjuna et al. [18] Modified PSO algorithm

SU TP SU TP SU TP SU TP

1 8 14 48 14 48 14 48 3 49
2 6 500 57 234 63 18 46 69 50
3 5 72 69 128 73 94 69 32 48
4 5 819 51 819 51 819 51 819 51
5 6 467 62 364 76 175 53 9 64
6 6 500 57 69 64 69 64 35 62
7 6 486 63 177 54 165 54 39 66
8 7 72 48 63 48 13 44 52 50
9 7 309 88 309 88 309 88 309 88
10 6 84 54 122 56 82 54 5 58

Int J Adv Manuf Technol (2008) 39:931–942 939

PC. The algorithm is shown as a flow chart in Fig. 1. The
performance of the PSO algorithm is evaluated by using ten
benchmark problems available in the open literature. The
description of problem no. 1 having eight jobs is shown in
Table 2. Since different methods have been used by
researchers for the calculation of system unbalance, the
machine-loading problem of an FMS has been solved in
this paper by considering two cases to examine the
robustness of the PSO algorithm. Computational results
for Case 1 and Case 2 are summarized in Tables 3 and 4,
respectively, using standard PSO. It is evident from Table 3
that the PSO algorithm outperforms the other solution
methodologies for all instances. For example, the PSO
algorithm yields a system unbalance of 202 and a
throughput of 63, whereas Shanker and Srinivasulu [28]
arrived at a system unbalance of 388 and a throughput of 51
for problem no. 2. In the case that overloading on machines
is permitted, the PSO algorithm is capable of either
outperforming existing methods or at least producing an
equal solution, as indicated in Table 4. However, the
computational effort in both cases is much less compared
to other solution methods. It was observed that, for the test
problems selected, around 50 iterations were required for
obtaining a global/near-optimal solution [21], but the PSO
algorithm could produce best solutions within 20 iterations
and, hence, it requires less computational effort.

One of the major drawbacks of PSO is its premature
convergence. In order to eliminate this and to improve the
solution quality, the mutation operator is adopted from
GAs. The results of the proposed modified PSO are given
in Table 5. The results indicate that PSO with mutation
provides a significant improvement in performance. For
example, the modified PSO algorithm yields a system
unbalance of 3 and a throughput of 49 for problem no. 1,
whereas Nagarjuna et al. [18] arrived at a system unbalance
of 14 and a throughput of 48. For the same problem,
Srinivas et al. [17] and Swarnkar and Tiwari [22] also
reported a system unbalance of 14 and a throughput of 48.
However, the improvement in PSO is obtained with
marginal computational efforts compared to the other
methods. Figure 2 illustrates the convergence behavior of

the PSO algorithm for the different parameter combina-
tions. It can be observed from the figure that the algorithm
can achieve the optimal solution after 12 iterations for
problem no. 1, when population size is fixed at 25, w=0.85,
α=0.9, and c1=c2=2 because no further improvement is
observed beyond 12 iterations.

The study not only aims at providing a PSO algorithm
that produces the best possible solutions to a set of
optimization problems, but it also illustrates the importance
of the correct selection of the parameters, such as inertia
weight and population size. An important parameter in PSO
is the inertia weight w, which controls the impact of
previous velocities on the current velocity. In order to
investigate the effect of w on the solution quality, the value
of w is varied from 0.4 to 1.15 in increments of 0.05,
keeping all other parameters constant. From Fig. 3, it can be
observed that the best fitness value (system unbalance) is
obtained at w=0.85 when population size is 25 for problem
no. 1. The value of w should not be very low or very high,
but its best value must be experimentally discovered,
depending on the type of problem. Therefore, it can be
stated that a low value of w leads to small memory retention
capacity of the particles and it takes a long time to achieve a
global optimum. However, a very large value of w causes
excessive memory retention of the particles and makes it
difficult to escape from a local optimum. Another important
parameter in PSO is the population size. To study the effect
of population size on the solution quality, it is increased
from 5 to 50 in increments of 5 for the test problems,
keeping all other parameters constant. Figure 4 shows the
effect of the population on system unbalance. It can be

System unbalance vs. No. of Iterations

0

50

100

1 4 7 10 13 16 19 22 25 28 31 34

No.of Iterations

Sy
st

em
 u

nb
al

an
ce

Fig. 2 Convergence curve for PSO

System unbalance vs. Population size

0

10

20

5 10 15 20 25 30 35 40 45 50

Population size

Sy
st

em
 u

nb
al

an
ce

Fig. 4 Best results obtained for different population sizes

System unbalance vs.Inertia weight

0
10
20
30
40
50

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Inertia weight

Sy
st

em
 u

nb
al

an
ce

Fig. 3 Effect of inertia weight on system unbalance

940 Int J Adv Manuf Technol (2008) 39:931–942

observed that, as the population size increases, the system
unbalance decreases to a certain extent and further increases
of the population has no effect on the solution quality. This
may be attributed to the fact that diversity in the solution
space increases as the population size increases, but large
increases in the population size causes a random or worst
point of search and increases the possibility of trapping at a
local optimum. However, the population size must be
maintained at least two times the number of jobs in order to
obtain an improved solution.

6 Conclusions

This paper presents an efficient and reliable evolutionary-
based approach to solve the flexible manufacturing system
(FMS) loading problem. The proposed approach utilizes the
global and local exploration capabilities of particle swarm
optimization (PSO) to search for the optimal solution by
taking into account the availability of tool slots and
machining time constraints. The key advantage of PSO is
its computational efficiency and a smaller number of
parameters are required to be adjusted in order to obtain
the optimum result compared to related techniques. Exten-
sive computational experiments have been conducted on
different benchmark problems to show the effectiveness of
the proposed approach. A comparative study has been
carried out for the same problem with similar objective
functions and constraints, and the computational experience
manifests that the proposed meta-heuristic approach based
on PSO outperforms the existing methodologies as far as
solution quality is concerned with reasonable computational
efforts. Many researchers have developed heuristics to
minimize the system unbalance, but at the expense of
throughput, which can be visualized in Tables 2 and 4.

Although the objective of this study is to minimize
system unbalance, the proposed meta-heuristic based on
PSO with mutation not only minimizes system unbalance,
but it also simultaneously increases the throughput for most
of the instances. A modified PSO algorithm is proposed in
this paper to avoid premature convergence with the
introduction of the mutation operation. The performance
of this algorithm is compared to the standard PSO
algorithm and other related techniques. The result obtained
by the modified PSO scheme is promising and encouraging.
It is evident from this study that the overloading of
machines is a viable proposition for minimizing the system
unbalance, but it involves cost. Therefore, a tradeoff
between the balancing of loads on machines and cost
incurred must be made.

In future, the study can be extended to solve the loading
problem using the same meta-heuristic approach in a
multiple-objective framework, i.e., combined objective of

the minimization of the system unbalance and the maximi-
zation of throughput. Consideration of multiple-objective
PSO based on Pareto dominance rough sets or fuzzy sets to
balance conflicting technological, economic, and environ-
mental targets may give a new direction for research in the
field of FMS. More realistic variables and constraints, such
as the availability of pallets, jigs, fixtures, automatic guided
vehicles (AGVs), etc., in addition to tool slots and
machining time may be included to solve loading problems
in future studies.

Acknowledgment We extend our hearty thanks to the anonymous
reviewer for their constructive suggestions that helped us to improve
the quality of the technical and literal content of the manuscript.

References

1. Stecke KE (1983) Formulation and solution of nonlinear integer
production planning problems for flexible manufacturing systems.
Manage Sci 29(3):273–288

2. Stecke KE, Solberg JJ (1981) Loading and control policies for a
flexible manufacturing system. Int J Prod Res 19(5):481–490

3. Berrada M, Stecke KE (1986) A branch and bound approach for
machine load balancing in flexible manufacturing systems.
Manage Sci 32(10):1316–1335

4. Sarin SC, Chen CS (1987) The machine loading and tool
allocation problem in a flexible manufacturing system. Int J Prod
Res 25(7):1081–1094

5. Chen IJ, Chung C-H (1991) Effects of loading and routing
decisions on performance of flexible manufacturing systems. Int J
Prod Res 29(11):2209–2225

6. Atmani A, Lashkari RS (1998) A model of machine-tool selection
and operation allocation in FMS. Int J Prod Res 36(5):1339–1349

7. Gamila MA, Motavalli S (2003) A Modeling technique for
loading and scheduling problems in FMS. Robot Comput-Int
Manuf 19(1–2):45–54

8. Shanker K, Tzen Y-JJ (1985) A loading and dispatching problem
in a random flexible manufacturing system. Int J Prod Res 23
(3):579–595

9. O’Grady PJ, Menon U (1987) Loading a flexible manufacturing
system. Int J Prod Res 25(7):1053–1068

10. Liang M, Dutta SP (1992) Combined part selection, load sharing
and machine loading problem in hybrid manufacturing systems.
Int J Prod Res 30(10):2335–2349

11. Liang M, Dutta SP (1993) Solving a combined part-selection,
machine-loading, and tool-configuration problem in flexible
manufacturing systems. Prod Oper Manag 2:97–113

12. Liang M, Dutta SP (1993) An integrated approach to the part
selection and machine loading problem in a class of flexible
manufacturing systems. Eur J Oper Res 67:387–404

13. Stecke KE, Tallbot FB (1983) Heuristic algorithms for flexible
manufacturing systems. In: Proceedings of the 7th International
Conference on Production Research, Windsor, Ontario, Canada,
August 1983, pp 570–576

14. Mukhopadhyay SK, Midha S, Krishna VM (1992) A heuristic
procedure for loading problems in flexible manufacturing systems.
Int J Prod Res 30(9):2213–2228

15. Tiwari MK, Hazarika B, Vidyarthi NK, Jaggi P, Mukhopadhyay
SK (1997) A heuristic solution approach to the machine loading
problem of an FMS and its Petri net model. Int J Prod Res 35
(8):2269–2284

Int J Adv Manuf Technol (2008) 39:931–942 941

16. Moreno AA, Ding F-Y (1993) Heuristics for the FMS-loading and
part-type-selection problems. Int J Flex Manuf Syst 5:287–300

17. Srinivas A, Tiwari MK, Allada V (2004) Solving the machine-
loading problem in a flexible manufacturing system using a
combinatorial auction-based approach. Int J Prod Res 42(9):
1879–1893

18. Nagarjuna N, Mahesh O, Rajagopal K (2006) A heuristic based on
multi-stage programming approach for machine-loading problem
in a flexible manufacturing system. Robot Comput-Int Manuf
22:342–352

19. Mukhopadhyay SK, Singh MK, Srivastava R (1998) FMS
machine loading: a simulated annealing approach. Int J Prod
Res 36(6):1529–1547

20. Kumar N, Shanker K (2000) A genetic algorithm for FMS part
type selection and machine loading. Int J Prod Res 38(16):
3861–3887

21. Tiwari MK, Vidyarthi NK (2000) Solving machine loading
problems in a flexible manufacturing system using a genetic
algorithm based heuristic approach. Int J Prod Res 38(14):
3357–3384

22. Swarnkar R, Tiwari MK (2004) Modeling machine loading
problem of FMSs and its solution methodology using a hybrid
tabu search and simulated annealing-based heuristic approach.
Robot Comput-Int Manuf 20(3):199–209

23. Vidyarthi NK, Tiwari MK (2001) Machine loading problem of
FMS: a fuzzy-based heuristic approach. Int J Prod Res 39(5):
953–979

24. Chan FTS, Swarnkar R (2006) Ant colony optimization approach
to a fuzzy goal programming model for a machine tool selection
and operation allocation problem in an FMS. Robot Comput-Int
Manuf 22(4):353–362

25. Gupta JND, Luong LHS, Nguyen VH (1999) Part dispatching and
machine loading in flexible manufacturing systems using central
queues. Int J Prod Res 37(6):1427–1435

26. Kost GG, Zdanowicz R (2005) Modeling of manufacturing
systems and robot motions. J Mater Process Technol 164–
165:1369–1378

27. Zolfaghari S, Liang M (1999) Jointly solving the group
scheduling and machining speed selection problems: a hybrid
tabu search and simulated annealing approach. Int J Prod Res 37
(10):2377–2397

28. Shanker K, Srinivasulu A (1989) Some solution methodologies
for loading problems in a flexible manufacturing system. Int J
Prod Res 27(6):1019–1034

29. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In:
Proceedings of the 1995 IEEE International Conference on Neural
Networks (ICNN’95), Perth, Australia, November/December
1995, vol 4, pp 1942–1948

30. Jerald J, Asokan P, Prabaharan G, Saravanan R (2005) Scheduling
optimisation of flexible manufacturing systems using particle swarm
optimisation algorithm. Int J Adv Manuf Technol 25:964–971

31. van den Bergh F, Engelbecht AP (2000) Cooperative learning in
neural networks using particle swarm optimizers. S Afr Comput J
26:84–90

32. Salman A, Ahmad I, Al-Madani S (2002) Particle swarm
optimization for task assignment problem. Microprocess Micro-
syst 26:363–371

33. Abido MA (2002) Optimal power flow using particle swarm
optimization. Electr Power Energy Syst 24:563–571

34. Riget J, Vesterstroem JS (2002) A diversity guided particle swarm
optimizer—the ARPSO. Department of Computer Science, Uni-
versity of Aarhus, Denmark, technical report no 2002-02
EVA Life

35. Krink T, Lovhjerg M (2002) The lifecycle model: combining
particle swarm optimisation, genetic algorithms and hillclimbers.
In: Proceedings of the 7th International Conference on Parallel
Problem Solving from Nature PPSN 2002), Granada, Spain,
September 2002, pp 621–630

942 Int J Adv Manuf Technol (2008) 39:931–942

	Modified particle swarm optimization for solving machine-loading problems in flexible manufacturing systems
	Abstract
	Introduction
	Literature review
	Problem description
	Particle swarm optimization
	Solution representation
	The problem of the lack of diversity and the mutation operator
	The proposed algorithm

	Results and discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

