National Conference on Modern Trends of Operating Systems

MTOS - 2009

SYSTEM LEVEL FAULT DIAGNOSIS IN DISTRIBUTED SYSTEM

'Manmath Narayan Sahoo, ?Pabitra Mohan Khilar

"NIT Rourkela/CSE, Rourkela, India, Email: sahoo.manmath@gmail.com
2 NIT Rourkela/CSE, Rourkela, India, Email: pmkhilar@nitrkl.ac.in

ABSTRACT

With the increasing need for efficient means of automatic fault diagnosis in large distributed computing
systems, system-level fault diagnosis has been a fertile research area for the last few years. The
increasing complexity of the multiprocessor systems leads to different types of faults which in turn
degrades the performance of the system. This paper includes different types of faults that might occur in
a distributed environment. It discusses traditional mechanisms for hardware and software fault-tolerance
such as — Built In Self Test (BIST), Triple Modular Redundancy (TMR), N-Version Programming,
Recovery Block Scheme and Check-pointing and Rollback Recovery. BIST, TMR, N-Version Programming
are basically redundancy techniques. Along with these, the comparison methods such as PMC model,
Simple Comparison Model and the General Comparison Model for diagnosis of multiprocessor systems

are also discussed.

INDEX TERMS : Fault Tolerance, Diagnosability, System Level Diagnosis, Comparison Models, Multiprocessor System.

LINTRODUCTION

It has long been the goal of system designers to
connect independent computer resources together to create
a network with greater power and availability than any of
its parts. Unfortunately the reverse can happen if faulty
resources are allowed to corrupt the network. In the
distributed environment, there are many opportunities for
failure. Any component in any computing node could fail.
A hardware or software failure on a management node could
affect the entire system, as scheduling and synchronization
data is lost. Failures external to individual nodes are also
possible. Many possible failures could remove a large
number of nodes from the system, such as a network switch
failure. Any of these failures will cause the applications
running on the affected nodes to crash or produce incorrect
results. So the motivation towards the fault-tolerant
computing is to form an agreement among the fault-free
members of the resource population on a quantum of
information in order to maintain the performance and the
integrity of the system. System reconfiguration means after
any failure of a node the whole system will not collapse
rather the rest of the fault-free nodes will function correctly
but in a gracefully degraded manner.

The most widely accepted definition of a fault-
tolerant computing system [9] is that, it is a system, which
has the built-in capability to preserve the continued correct
execution of its programs and I/O functions in the presence
of a certain set of operational faults.

There are two fundamental classes of faults that can
“occur in cluster systems [2]. First, a centralized component
such as storage node or management software can fail as a

result of a software bug or a hardware fault. Protecting against
these failures typically involves redundancy. Critical
functionality is replicated over several nodes such that if
one node fails, a backup can step in to take over the
responsibilities of the primary. The second class of failure is
a crash or hang of software on one of the many computation
nodes in the cluster. This can result from a software bug in
an application, a hardware fault on the node, or a problem in
the operating system local to the node. All of these failures
have the same end result: the application running on the
node can no longer function properly, but the other nodes
participating in the same computation can continue
unaffected excepting that they will no longer receive output
from the failed node. The standard technique for handling
application failures is to periodically checkpoint the
computational state of the application such that it can be
restored in the event of a system failure. Other nodes
participating in the computation may need to be rolled back
to earlier checkpoints in order to make them consistent with
the recovery state of the failed node.

Diagnosing each unit of the distributed system to
check whether a particular node is faulty or fault-free is
called as system level diagnosis [3]. In order to perform
diagnosis, a system is usually partitioned into a set of well-
defined units and one or more tests are applied to each
unit. A test may be any kind of a pass/fail check on the
operation of a unit. So a fault diagnosis algorithm deals
with the problem of accurately locating faults in a system,
given a system description and a set of test results.

The reminder of the paper is organized as follows:
section 2 presents the system model of a multiprocessor
system. Section 3 outlines different types of faults that

e LD

MTOS - 2009

could occur in a distributed environment. In section 4
presents the traditional methods for tolerating hardware
and software faults. Section 5 discusses different system
level fault diagnosis techniques and Section 6 concludes
our research work.

2.SYSTEM MODEL

A multiprocessor system is modeled by a graph
G(V,E,C) where V isaset of n vertices and E and C are sets
of edges [4]. Each element of the set V corresponds to a
single computer, processor or unit in the system and each
element of the set E represents the communication
connection between a pair of units (processors, computers).
Set C corresponds to the comparison connections and it
may or may not be a subset of E. The comparison connection
(comparison edge), represented by an edge, denotes that it
is possible to compare the behavior of two units, which are
the endpoints of the considered edge. It also means that
there is some hardware and/or software mechanism making
the comparison feasible.

3. FAULT MODEL

There are countless ways in which computing
systems and applications may fail. These failures can be
categorized by abstract models that describe how a system
will behave in the presence of faults [6]. A fault tolerance
technique will assume a certain model of failure when making
claims about the types of faults it can handle.

3.1 Fail-Stop Fault: The fault that occurs when a
processor ceases operation and alerts other
processors of this fault [Schlichting and Schneider
1983].

3.2 Crash Fault: The fault that occurs when a processor
loses its internal state or halts. For example, a
Processing Element that has had the contents of its
instruction pipeline corrupted or has lost all power
has suffered a crash fault.

3.3 Omission Fault: The fault that occurs when a
processor fails to meet a deadling or begin a task
[Cristian et al.1986]. In particular, a send omission
fault occurs when a processor fails to send a required
message on time or at all, and a receive omission
fault occurs when a processor fails to receive a
required message and behaves

3.4 Timing Fault: The fault that occurs when a
processor completes a task either before or after its
specified time frame or never [Cristian et al.1986].
This is sometimes called performance fault.

3.5 Incorrect Computation Fault: The fault that occurs
when a processor fails to produce the correct result

National Conference on Modern Trends of Operating Systems

in response to the correct inputs [Laranjeira et
al.1991].

3.6 Authenticated Byzantine Fault: An arbitrary or
malicious fault, such as when one processor sends
differing messages during a broadcast to its
neighbors that cannot imperceptibly alter an
authenticated message [Lamport et al.1982].

3.7 Byzantine Fault: Every fault possible in the system
model [Lamport et al. 1982]. This fault class can be
considered the universal fault set.

4, TRADITIONALFAULT TOLERANCE MECHANISMS

Failures are the manifestation of the errors latent in
the system. Therefore even in the situations where errors
are present the system should be able to tolerate the faults
and compute the correct results. This is called fault-
tolerance [10]. Fault-tolerance can be achieved by carefully
incorporating redundancy.

There are 2 types of fault-tolerance mechanisms [10].

i Hardware fault-tolerance.
il. Software fault-tolerance.

4.1 Hardware fault-tolerance

The following two methods are popularly used to
achieve hardware fault-tolerance.

4.1.1 Built In Self Test (BIST): In BIST, the system
periodically performs self-tests of its components. Upon
detection of a failure, the system automatically reconfigures
itself by switching out the faulty components and switching
in one of the redundant good components.

4.1.2 Triple Modular Redundancy (TMR): In TMR [6], as
the name suggests, three redundant copies of all critical
components are made to run concurrently. The system
performs voting of the results produced by the redundant
components to select the majority result. TMR can help
tolerate occurrence of only a single failure at any time. So at
least (2n+1) redundant components are required to tolerate
simultaneous failures of n components.

4.2 Software fault-tolerance

The following methods [10] are popularly used to
achieve software fault-tolerance

i N-version programming
iL. Recovery block technique
iii. =~ Check-pointing and Rollback recovery.

4.2.1 N-Version programming:

In this technique, independent teams develop N
different versions of a software component. The redundant

MNational Conference on Modern Trends of Operating Systems

modules are run concurrently (possibly on redundant
hardware). The results produced by the different versions
of the module are subjected to voting at run time and the
result on which majority of the components agree is
accepted.

4.2.2 Recovery Block Scheme:

[n this scheme, the redundant components are called
try blocks. Each try block computes the same end result as
the others but are written using different algorithms. In N-
version programming different versions of a component are
written by different teams of programmers, whereas in
recovery block different algorithms are used in different try
blocks. Also in contrast to N-version programming approach
where the redundant copies are run concurrently, in the
recovery block approach they are run one after another.
The results produced by a try block are subjected to an
acceptance test. If the test fails, then the next block is tried.
This is repeated in a sequence until the result produced by
a try block successfully passes the acceptance test.

3.2.3 Check-pointing and Rollback recovery

MTOS - 2009

In this technique [2] as the computation proceeds,
the system state is tested each time after some meaningful
progress in computation is made. Immediately after a state-
check test succeeds, the state of the system is backed up
on a stable storage. In case the next test does not succeed,
the system can be made to rollback to the last check-pointed
state. After a rollback, from a check-pointed state a fresh
computation can be initiated.

5. SYSTEM LEVELFAULT DIAGNOSIS TECHNIQUES
5.1 The PMC Model

In 1967, Preparata, Metze, and Chien (PMC) formed
the framework for system level fault diagnosis [6], in which
a processing element (PE) can test other. However the test
result is not reliable if the testing PE is faulty.

The PMC model uses a graph G (V, E) to model the
system’s testing convention. Where V represents the set of
PEs, and directed edges in E represent one processor applying
a test to another processor. Each edge is labeled with a O(1)
if the corresponding test produces a passing (failing) result.
The set of results is known as a syndrome [5].

Table I: Invalidation Rules for PMC Model

Status of Tester PE Status of Tested PE Test Result
Fault-Free Fault-Free 0
Fault-Free Faulty 1

Faulty Fault-Free X
Faulty Faulty X

Figure 1: Example (PMC Model)

Table I depicts the invalidation rules for the PMC
model and figure 1 shows an example of system level
diagnosis using the PMC model. A through E are processors
where an edge (v1, v2) represents a test by v1 on v2. A label
on an edge is the result of that test. The table in the figure

relates the status of v1 and v2 to the result of the test of v1 on
v2. In the figure, A is faulty as denoted by its gray color. The
“X” on the edge (A, B) means that this result may be a one or
a zero without affecting the result of the diagnosis. If it is
assumed that it is a 1-diagnosable system, then it is possible
to identify A as being faulty. First notice that edge (E, A) is
labeled “1” meaning A is faulty if E is fault free. IfE were faulty,
then it would be the single faulty member of the system. So
diagnosis depends on deducing the condition of E. Either E is
faulty, or A is. Assume E is faulty in which case D must be fault
free since 1-diagnosable system. But this leads to a contradiction
because the label “0” on edge (D, E) implies that fault-free D
misdiagnosed faulty E. Thus, E is fault free, and A is faulty
regardless of the actual value of “X.”

%ﬁ)

MTOS - 2009

5,2 The Simple Comparison Model (SCM)

In the simple comparison model [1] there is a central
observer (comparator), which performs comparisons
between pairs of processors by assigning them some tasks
from the set of tasks T= {T1, T2, .. .}. Each pair of processors
v, and v, is assigned a task T, e T. Once both processors
complete the task T, their results are compared.

The comparison graph in this case, is an undirected
graph G = (V,C), where V denotes the set of processors and

National Conference on Modern Trends of Operating Systems

C={(vi, vj) : (vi, vj) is a pair of processors performing the
same task T, e T }.The processor pair (vi, vj) or (vj, vi) are
denoted as c;.

Let F be the fault set i.e. the set of faulty processor,
and W' is the comparison outcome of the processor pair c;.
The set of all comparison outcomes is called as comparison
syndrome [7). According to SCM a comparison syndrome
W, is said to be consistent or compatible [1] with a fault set
F, if for any c,e C, such that v is fault- free, i.e. vie V-F, Wi
=liffveF.

[} % ™ v2
: e
@ .
1

B SN v L3 v
H ~ \)
1y Y RS 0 e o A
LY 0 s [}]
L) ~ [0 ! L)
Y e v '
N -~ v] v3
v . \ '
T~ \ Yo \ 'l' J
-
vb .~ ‘\‘--.. 0 S ! ' .
C sV 1
T TR S LR ‘
. - L4
. “‘O‘
v5 1 v4

. Faulty Processor

O Fault-free Processor
Comparison Test

Communication Link

Figure-2: (a) communication graph (b) comparison assignment

Figure 2(a) shows a small system of seven fully
connected processor and figure 2(b) shows a comparison
assignment with dashed lines under the fault set F= {v,, v,, v.}

5.3 The General Comparison Model (GCM)

Unlike SCM, in case of GCM [8], the comparator
node is one of the processors under comparison. Figure 4

2

depicts the invalidation rules for GCM. According to GCM,
if the comparator node is fault-free, then the comparison
outcome is 0 if none of the compared nodes is faulty, and it
is 1 if one of them is faulty. However, if the comparator itself
is faulty, then the comparison outcome is unreliable, and
hence, may be 0 or 1.

N

. Faulty Processor
O Fault-free Processor

@ Any: Faulty or
Fault-free '

Figure 3: Invalidation rules for GCM

National Conference on Modern Trends of dperating Systems

In this model, the communication graph and the
comparison graph are defined as follows. The
communication graph is represented by the graph G(V,E),
where V= {vl, v2, - -, vN} denotes the set of N processing
units and E refers to the set of communication links. The
comparison graph is a multigraph whose edges represent
comparison tests performed by the processing units on pairs
of processors.

Figure 4(a) shows a five units interconnection graph
and Figure 4(b) depicts an example of a comparison graph.

o

(@) (b)

O Faushty O Faoltfee Lok ___. G

Test

Figure 4: (a) An interconnection graph (b)A
comparison multigraph

Each processing unit is assigned a subset of the
other units to test. Testing is based on assigning a set of
tasks T={T1, T2, - - -} to the system’s processors. A pair of
processors (v, v) is assigned a task T, e T. Once both
processing units execute the task T, the results are
compared. The comparison multigraph is represented by
an undirected graph M(V,C), where V and C denote,
respectively, the vertices (processors) and the edges
(comparison tests). For every Vo Vs VeV, (vi,vj, vk) e C, or

simply cf e C, iff processor v, tests processors v, and \/ by

assigning them the same task. Each edge c has a label
associated with it. The binary value assigned to the label
depends on the GCM’s invalidation rules as discussed
previously.

6. CONCLUSION

Distributed management hardware and software fault-
tolerance typically makes use of redundancy, due to the
relatively small number of components that need to be
duplicated for this approach. When a component fails, the

MTOS - 2009
redundant components take over the responsibilities of the
failed parts. Apart from this some other techniques such as
check-pointing and rollback recovery, N-version
programming and Recovery block scheme are also used. A
comparison method can be used for fast and reliable
detection and/or location of a faulty unit in multiprocessor
systems. This method is primarily applicable for the re-
configurable multiprocessor systems where the
simultaneous running of the same programs on different
processors and diagnostic comparisons are easily feasible.
Simplicity and ease of implementation as well as the smaller
number of tests than those used in classical methods make
comparison connection assignment an attractive alternative
in the diagnosis of the multiprocessor systems.

Reference

{1] Mourad Elhadef, Shantanu Das, and Amiya Nayak, “System-
Level Fault Diagnosis Using Comparison Models: An
Artificial-Immune-Systems-Based Approach,” JOURNAL OF
NETWORKS, VOL. 1, NO. 5, pp. 43-53, Sep/Oct 2006

2] Michael Treaster ,"A Survey of Fault-Tolerance and Fault-
Recovery Techniques in Parallel Systems,” arXiv:cs [
0501002 v1 | Jan 2005

(3] Jinghao Xu and Leszek Lilien, “A survey of methods for
system-level fault diagnosis,” ACM-IEEE Computer Society
Fall Jolnt Computer Conference, DallaS, Texas, October
1987

(4] M. Malek, “A comparison connection assignment for
diagnosis of multiprocessor systems,” in Proc. 7th Symp.
Comput. Architecture, May 1980. pp 31-35

[5] F P Preparata, G Metze and R. T. Chien, “On the connection
assignment problem of diagnosable systems,” IEEE Trans.
Electron. Comput., vol. 16, pp. 848-854, Dec. 1967

[6] M. Barborak, M. Malek, and A. Dahbura, “The C onsensus
Problem in Fault-Tolerant Computing," ACM Computing
Surveys, vol. 25, no. 2, pp. 171-220, June 1993.

{71 J. Maeng and M. Malek, “A Comparison Connection
Assignment for Self-Diagnosis of Multiprocessor Systems, "
in Proc. 1lth Int. Symp. on Fault-Tolerant Comput., 1981,
pp. 173-175. _

[8] A.Sengupta and A. Dahbura, “On Self-Diagnosable
Multiprocessor Systems: Diagnosis by the Comparison
Approach,” IEEE Trans. on Computers, vol. 41, no. 11, pp.
1386-1395, Nov. 1992,

[9] Algirdas Avizienis,” Fault-Tolerant Systems, " IEEE Trans.
on Computers Vol. C-25, NO. 12.pp. 1304-1312, December
1976

[10] Rajib Mall, "Real -Time System, Theory and Practice, "

Pearson Education, 2007

%{@D

