
New Approach for Testing the Correctness of
Access Control Policies

Suraj Sharma1, S.K.Jena2, and K.Satyababu3
NIT Rourkela/CSE, Rourkela, India

1suraj.sine@gmail.com,2 skjena@nitrkl.ac.in, 3ksatyababu@nitrkl.ac.in

Abstract—To increase the confidence in the correctness of
specified policies, policy developers can conduct policy
testing by supplying typical test inputs (request) and
subsequently checking test output (responses) against
expected ones to enhance the correctness of specified
policies. Testing of Access Control Policies along with the
Application program is not a worthful practice. Unlike
Software Testing we have the tools and technique for Access
Control Policy Testing. Unfortunately, manual testing is
tedious and time consuming job. We designed a model
called ACPC (Access Control Policy Checker) which include
mutation operators for comparing the original policy
response with the response of mutant policy and check the
correctness of the original policy. The ACPC includes two
sections in first section we generate the requests set
automatically which is previously not available and in
second section we perform testing. This model uses the
policy written in XACML (eXtensible Access Control
Markup Language) [1] which is the standard language for
writing Access Control Policies. We have used a tool called
Margrave [8] for Change Impact Analysis and other
programming languages like Java and C++ for building
different module.

Index Terms— Access-control policies, change-impact
analysis, verification, mutation, XACML

I. INTRODUCTION

The purpose of Access Control is to limit the actions or
operations that a legitimate user of a computer system can
perform. Access control constrains what a user can do
directly, as well what programs executing on behalf of
the user are allowed to do. In this way access control
seeks to prevent activity which could lead to breach of
security [4].

 Access Control relies and coexists with other
security services in a computer system, as in figure 1.
• Access Control is concerned with limiting activity of

legitimate users. It is enforced by a Reference
Monitor which mediates every attempted access by a
user (or program executing on behalf of that user) to
objects in the system.

• The Reference Monitor consults an Authorization
Database in order to determine if the user attempting
to do an operation is actually authorized to perform
that operation.

• Authorizations in this database are administered and
maintained by a Security Administrator. The
Administrator sets these authorizations on the basis
of the security policy of the organization.

• Auditing monitors and keeps a record of relevant
activity in the system.

It is important to make clear distinction between
authentication and Access Control. Correctly establishing
the identity of the user is the responsibility of the
Authentication of the user has been successfully verified
prior to enforcement of Access Control via a reference
monitor.

In general, there do not exist policies which are
“better” than others, rather there exist policies which
ensure more protection than others. However, not all
system has the same protection requirements. Policies
suitable for a given system my not be suitable for another.
For instance, very strict Access Control policies, which
are crucial to some system, may be inappropriate for
environments where users require greater flexibility. The
choice of Access Control policy depends on the particular
characteristics of the environment to be protected.

Let us have a brief idea about Access Control
Policies:-

1. Classical Discretionary Policies

2. Classical Mandatory Policies and

3. The emerging Role-Based Policies

AUDITING

 Security Administrator

Objects
AUTHETICATION ACCESS CONTROL

Authorization
Database

 User Reference Monitor

 Figure 1. Access Control and Other Security Services

Software Testing

Policy Testing

It should be noted that access control policies

are not necessarily exclusive. Different policies can be
combined to provide a more suitable protection system.
Such combination of policies is relatively straightforward
as long as there are no conflicts where one policy asserts
a particular access must be allowed while another one
prohibits it [4].

Access control is one of the most fundamental
and widely used security mechanisms. It controls which
principals such as users or processes have access to which
resources in a system. To facilitate managing and
maintaining access control, access control policies are
increasingly written in specification languages such as
XACML [1] and Ponder [7]. Whenever a principal
requests access to a resource, that request is passed to a
Software component called a Policy Decision Point
(PDP). A PDP evaluates the request against the specified
access control policies, and permits or denies the request
accordingly.

The rest of the paper is organized as follows:
Section II discusses related work. Section III present
Motivation of the paper. Section IV shows an example of
XACML policy and description of it. In section V, we
propose the framework which checks the correctness of
the policies in two different sections. Validating the
Framework in section VI and section VI concludes the
paper.

II. Related Work

 One important aspect of policy verification is to
formally check general properties of access control
policies, such as inconsistency and incompleteness
[14,15]. In former case, an access request can be both
accepted and denied according to the policy, while in the
latter case the request is neither accepted nor denied.
Although efficient algorithms have been proposed to
perform such verification for specific systems [14,18] this
problem can be intractable or even undecidable when
dealing with policies that involve complex constraints.

Besides the verification of general properties,
several tools have been developed to verify properties for
XACML policies [1]. Hughes and Bultan translated
XACML policies to the Alloy language [17] and checked
their properties using the Alloy Analyzer. E. Martin and
T. Xie [3,6] given the fault model for verification of
access control policies and used minimal cover concept
for reducing the number of generated requests . Fisler et

al. [5] developed a tool called Margrave that uses multi-
terminal binary decision diagrams [8] to verify user-
specified properties and perform change-impact analysis.
Zhang et al [16] developed a model-checking algorithm
and tool support to evaluate access control policies
written in RW languages, which can be converted to
XACML. These existing approaches assume that policies
are specified using a simplified version of XACML. It is
challenging to generalize these verification approaches to
support full-feature XACML policies with complex
conditions. In addition, most of these approaches require
users to specify a set of properties to be verified;
however, policy properties often do not exist in practice.
The Mutation policy testing approach proposed in this
paper works on full-feature XACML policies without
requiring properties, complementing the existing policy
verification approaches.

Flaws in the previous models:
1. Manual generation of requests.
2. Random method of generation of requests [3].
3. Over burden to reduce the requests set

according to minimal coverage [6].

III. MOTIVATION

 Assuring the correctness of policy specifications is
becoming an important and yet challenging task,
especially as access control policies become more
complex and are used to manage a large Amount of
sensitive information organized into sophisticated
structures. Identifying discrepancies between policy
specifications and their intended function is crucial
because correct implementation and enforcement of
policies by applications is based on the premise that the
policy specifications are correct. As a result, policy
specifications must undergo rigorous verification and
validation through systematic testing to ensure that the
policy specifications truly encapsulate the desires of the
policy authors. Like software verification and testing
techniques, formal policy verification and testing
techniques are complementary means to achieve the same
goal.
 To reduce the flaws of the previous work we
proposed the new framework for making the whole
testing processes automated.

Discretionary

Policy

Role-Based

Policy

Mandatory

Policy

All Accesses

Figure 2. Multiple Access Control Policies

Figure 3: Analogy Between traditional Software and Policy Testing

Test
Input

Responses Policy

Expected
Outputs

 Test
output

Program

 Expected
Responses Request

IV. XACML

 XACML (eXtensible Access Control Markup
Language) is a language specification standard designed
by OASIS[1]. It can be used to express domain-specific
access control policy languages as well as access request
languages. Besides offering a large set of built-in
functions, data types, and combining logic, XACML also
provides standard extension interfaces for defining
application-specific features. Since it was proposed,
XACML has received much attention from both the
academia and the industry. Many domain-specific access
control languages have been developed using XACML
.Open source XACML implementations are also available
for different platforms (e.g., Sun’s XACML
implementation [2] and XACML.NET). Therefore,
XACML provides an ideal platform for the development
of policy testing techniques that can be easily applied to
multiple domains and applications. The basic concepts of
access control in XACML include policies, rules, targets,
and conditions. A single access control policy is
represented by a policy element, which includes a target
element and one or more rule elements. A target element
contains a set of constraints on the subject (e.g., the
subject’s role is equal to faculty), resources (e.g., the
resource name is grade), and actions (e.g., the action
name is assign)1 . A target specifies to what kinds of
requests a policy can be applied. If a request cannot
satisfy the constraints in the target, then the whole policy
element can be skipped without further examining its
rules.
 We next describe how a policy is applied to a request
in details. A policy element contains a sequence of rule
elements. Each rule also has its own target, which is used
to determine whether the rule is applicable to a request. If
a rule is applicable, a condition (a boolean function)
associated with the rule is evaluated. If the condition is
evaluated to be true, the rule’s effect (Permit or Deny) is
returned as a decision; otherwise, NotApplicable is
returned as a decision. If an error occurs when a request
is applied against policies or their rules, Indeterminate is
returned as a decision. More than one rule in a policy
may be applicable to a given request.
 To resolve conflicting decisions from different rules, a
rule combining algorithm can be specified to combine
multiple rule decisions into a single decision.

1<Policy PolicyId="demo" RuleCombinationAlgId= "first-applicable">
2 <Target>
3 <Subjects> <AnySubjects/> </Subjects>
4 <Resources>
5 <Resource><ResourceMatch MatchId="equal">
7 <AttributeValue>demo:5</AttributeValue>
8 <ResourceAttributeDesignator AttributeId="objectid"/>
9 </ResourceMatch>
10 </Resource>
11 </Resources>
12 <Actions> <AnyAction/></Actions>

13 </Target>
14 <Rule RuleId="1" Effect="Deny">
15 <Target> <Subjects><AnySubject/></Subjects>
16 <Resources> <AnyResource/> </Resources>
17 <Actions>
18 <Action>
19 <ActionMatch MatchId="equal">
20 <AttributeValue>Dissemination</AttributeValue>
21 <ActionAttributeDesignator AttributeId="actionid"/>
22 </ActionMatch>
23 </Action>
24 </Actions>
25 </Target>
26 <Condition FunctionId="not">
27 <Apply FunctionId="at-least-one-member-of">
28 <SubjectAttributeDesignator AttributeId="loginid"/>
29 <Apply FunctionId="string-bag">
30 <AttributeValue>testuser1</AttributeValue>
31 <AttributeValue>testuser2</AttributeValue>
32 <AttributeValue>fedoraAdmin</AttributeValue>
33 </Apply>
34 </Apply>
35 </Condition>
36 </Rule>
37 <Rule RuleId="2" Effect="Permit"/>
38 </policy>

 For example, a deny overrides algorithm determines to
return Deny if any rule evaluation returns Deny or no rule
is applicable. A first applicable algorithm determines to
return what the evaluation of the first applicable rule
returns. In general, an XACML policy specification may
also include multiple policies, which are included with a
container element called PolicySet. When a request can
also be applied to multiple policies, a policy combining
algorithm can also be specified in a similar way. Figure 4
shows an example XACML policy, which is revised and
simplified from a sample Fedora2 policy. This policy has
one policy element which in turn contains two rules. The
rule composition function is “first-applicable”, whose
meaning has been explained earlier. Lines 2-13 define the
target of the policy, which indicates that this policy
applies only to those access requests of an object
“demo:5”. The target of Rule 1 (Lines 15-25) further
narrows the scope of applicable requests to those asking
to perform a “Dissemination” action on object “demo:5”.
Its condition (Lines 26-35) indicates that if the subject’s
“loginId” is “testuser1”, “testuser2”, or “fedoraAdmin”,
then the request should be denied. Otherwise, according
to Rule 2 (Line 37) and the rule composition function of
the policy (Line 1), a request applicable to the policy
should be permitted.

V. PROPOSED FRAMEWORK

ACPC (Access Control Policy Checker) is the
proposed model for the automated testing the correctness
of the Access Control policies. This model will work for
the policies written in XACML and having two sections.

1. In first section we generate the sets of Requests

2. In second section we check the correctness of the
Policies.

Figure 4. ACPC (Access Control Policy Checker) Model

1Conditons of “Any Resource”, and “Any Action” can be satisfied

by any subject, resource, or action, respectively.
2http://www.fedora.info

The ACPC model of illustrated below in fig. 5 having
two sections:

A. Request Generator

 The framework receives a set of policies under test and
outputs a set of tests (in the form of request) for policy
authors to inspect for correctness. The framework
consists of four major components: derivation, change-
impact analysis, request generator, and request reduction.
The key notion of the framework is to synthesize two
versions of the policy under test in such a way that test
coverage targets (e.g., certain policies, rules, or
conditions) are encoded as the differences of the two
synthesized versions. A change-impact analysis tool can
then be leveraged to generate counterexamples to witness
these differences, thus covering the test coverage targets.
Based on the generated counterexamples, the framework
generates tests (in the form of requests).

i. Derivation

Given the policy under test, the derivation component

synthesizes the policy’s versions, which are later fed to a
change-impact analysis tool. We provide two variants of
version synthesis below called one-to-empty and all-to-
negate-one.
 One-to-empty: For each rule r in p, the two derived
versions are an empty policy and a policy that contains
only r. If r is a permitting rule, the derived empty policy
is an empty denying policy. If r is a denying rule, the
derived empty policy is an empty permitting policy. The
reason for this mechanism is as follows. Comparing a
permitting rule r with an empty permitting policy will not

help generate requests to cover r because no
counterexamples are generated for these two versions.
Similarly, comparing a denying rule r with an empty
denying policy will not help generate requests to cover r.
This derivation process is applied n times. So there are n
pairs of policy versions synthesized for p.
 All-to-negate-one: For each rule r in p, the two
synthesized versions are p and p where the decision of r is
negated. This process is applied n times so there are n
pairs of policy versions synthesized for p. The preceding
two variants are specifically developed for achieving high
rule coverage. Because the coverage of a rule implies the
coverage of the policy that contains the rule, our two
variants also indirectly target at achieving high policy
coverage. In principle, we can develop variants of
derivation for achieving high condition coverage by
negating each condition one at a time.

ii. Change–Impact Analysis

Given two versions of a policy, a change-impact
analysis tool outputs counterexamples that lustrate
semantic differences between the two policies. More
specifically, each counterexample represents a request
that evaluates to a different response when applied to the
two policy versions. For example, a particular request r
evaluates to permit for policy p but the same request
evaluates to deny for policy p′. Change-impact analysis
[5] is usually performed on mature policies that are
undergoing maintenance or updates to avoid accidental
injection of anomalies. In our case, we exploit the
functionality of change-impact analysis to automatically
generate access requests by iteratively manipulating the
inputs to a change-impact analysis tool.
 We use tool Margrave’s API [5,8] to perform a
change-impact analysis on the original policy and each of
the policy versions. Based on the counterexample
produced by Margrave, the request generator generates
request. Exactly one request is generated from each
version. Margrave package running in PLT scheme with
drscheme[10] package and for generation counterexample
CUDD tool [9] is necessary.

iii. Request Generator

 Generating the test suite manually is very tedious and
time consuming. To generate it automatically we are
using the Margrave tool which takes the two versions as
input and gives output in the form of counterexample.
From the counterexample we generate the request. That
part we will do with Java programming language.

B. Policy Checker

 This section presents a model for access control
policies and a set of mutation operators that implement
that model. In general, a fault model is an engineering
model of something that could go wrong in the
construction or operation of a piece of equipment,
structure, or software. In our case, we are modeling

Change-Impact
analysis tool

Generating
Requests

Derivation
Policies

Mutant
Killed!

Policies Different
Derivation

Policies

Counter
examples

Requests

Mutation
Operator
Handler

 Mutator

Policy Response

Mutant
Policy

Mutant
Response

Is
Same

?

Sec 1: Request Generator

Sec 2: Policy Checker

Figure 5. ACPC (Access Control Policy Checker) Model

things that could go wrong when constructing an access
control policy. We use this model to measure the fault-
detection effectiveness of automatic test generation and
selection techniques. Any fault results in a semantic
change in the policy but we broadly categorize faults as
being semantic or syntactic as follows: syntactic faults
are a result of simple typos whereas semantic faults are
associated with the logical constructs of the policy
language. This section of framework consists of three
main components: Mutation operator handler,
Mutant/original policy testing, Difference Checker
(Comparer).

i. Mutation Operator Handler

This module is for making the faulty policies by the
help of some effective mutation operators. Mutation
operators [12, 13] describe modification rules for
modifying access control policies to introduce faults into
the policies [11]. We are using some five-six mutation
operators which give better performance to analyze the
correctness of the Access Control policies. We have
different operators like PPT, PTF, RTT, RTF, RCT,
RCF and CRE. The first six operators emulate syntactic
faults because these mutation operators manipulate the
predicates found in the target and condition elements. The
last one emulates semantic faults because they manipulate
the logic constructs of XACML policies.
Policy Target True (PTT): Ensure that the policy is
applied to all requests simply by removing the <Target>
tag of each Policy element. The number of mutants
created by this operator is equal to the number of Policy
elements with a <Target> tag.
Policy Target False (PTF): Ensure that the policy is
never applied to a request by modifying the <Target> tag
of each Policy element. The number of mutants created
by this operator is equal to the number of Policy
elements.
Rule Target True (RTT): Ensure that the rule is applied
to all requests simply by removing the <Target> tag of
each Rule element. The number of mutants created by
this operator is equal to the number of Rule elements with
a <Target> tag.
Rule Target False (RTF): Ensure that the rule is never
applied to a request by modifying the <Target> tag of
each Rule element. The number of mutants created by
this operator is equal to the number of Rule elements.
Rule Condition True (RCT): Ensure that the condition
always evaluates to True simply by removing the
condition of each Rule element. The number of mutants
created by this operator is equal to the number of Rule
elements with a <Condition> tag.
Rule Condition False (RCF): Ensure that the condition
always evaluates to False by manipulating the condition
value or the condition function. The number of mutants
created by this operator is equal to the number of Rule
elements.
Change Rule Effect (CRE): Invert each rule’s Effect by
changing Permit to Deny or Deny to Permit. The number
of mutants created by this operator is equal to the number

of rules in the policy. This operator should never create
equivalent mutants unless a rule is unreachable, a strong
indication of an error in the policy specification.

These operators will pass in to Mutant module which
take the original policy and convert it in to mutant policy.
This module we are implementing in Java programming
language.

ii. Mutant/Original Policy Testing

The Mutant and the original policies are passing
through the analyzer called Oasis XACML, which takes
the request and policy i.e. Mutant and original one for
getting responses. The response we will take from the
oasis XACML tool and do further process. So it will give
the respective responses, when we provide request with
policy.

iii. Difference Checker

We prepare this module in Java programming
language, which take the responses of both original
policy and mutant policy and evaluate weather both
response is different or same. If the responses are
different we say “mutant killed” and “mutant alive”
otherwise.

VI. VALIDATING THE FRAMEWORK

 To understand the working of ACPC we will take an
example of sample policy having the following detail:
Subject Faculty, Resources ExternalGrades,
InternalGrades, Actions Assign, View, with one rule
having the ‘Permit’ effect.
 We can find this example in the Margrave’s example
folder after installing the Margrave tool, named as
RSP_Faculty.xml. Let we first start with First section
Request Generation:
i. Derivation : In this module we have two way to

derivate the original policy first one is One-to-empty,
for that we change the rule effect ‘Permit’ to ‘Deny’
and make that rule empty. Second one is All-to–negate-
one, for that we change the rule effect ‘Permit to
‘Deny’. In this way for that particular example we get
to Derived version of original policy.

ii. Change-Impact Analysis: For analysis the changes we
have tool call Margrave in that we use the PLT scheme
called Drscheme. By the help of Drscheme we get the
counterexample, for this particular example the
counterexample:
1:/Action, command, View/
2:/Action, command, Assign/
3:/Resource, resourceclass,InternalGrades/
4:/Resource, resourceclass,ExternalGrades/
5:/Subject, role, Faculty/
12345
{
01011 P>D
01101 P>D

10011 P>D
10101 P>D
}

 Here 1 shows presence of the attribute and 0 shows
the absence in the counterexample P>D shows that rule
effect changed from ‘Permit’ to ‘Deny’
iii. Request Generator: For the help of counterexample,

we have different request sets like:
Subject: Faculty
Resource: ExternalGrades
Action: Assign and
Subject: Faculty
Resource: InternalGrades
Action: Assign etc.
After generating the request sets we provide these

request sets to the second section called policy checker:
i. Mutation operator handler: With the help of different

operators mentioned earlier we can make different
mutant policies.

ii. Mutant/original policy testing: we do the testing in
this way, first we find out the response of the original
policies and mutant policies by supplying the policy
and response in XACML like: xacml_demo
RPS_Fculty.xml Request1.xml in command line
(with syntax xacml_demo <policy_file_name>
request_file_name>) for original policy likewise for
mutant policy with same request, and repeat this for
different mutant policies and for different request sets.

iii. Difference checker: In this module we just check the
mutant policy response and original policy response
if these two are different than we say that the mutation
has been killed otherwise not killed. The percentage
of killed mutation shows the percentage of correctness
of the policy.

VII. CONCLUSION

 We have proposed a Model called ACPC which is used
to check the correctness of the Access control policies
and developed an automated mutation testing framework
that implements that model. In this framework, we have
defined a set of mutation operators. We have
implemented a mutator that generates a number of mutant
policies based on the defined mutation operators. We
evaluate each request in a given request set on both the
original policy and a mutant policy. The request
evaluation produces two responses for the request based
on the original policy and the mutant policy, respectively.
If these two responses are different, then we determine
that the mutant policy is killed by the request. We have
also leveraged a change-impact analysis tool to detect
equivalent mutants among generated mutants. We have
conducted an experiment on various XACML policies to
evaluate the mutation operators as well as request
generation and selection techniques in terms of fault-
detection capabilities.

REFERENCES

[1]. OASIS eXtensible Access Control Markup Language
(XACML). 2005.

[2]. Sun’s XACML implementation. 2005.
[3]. E. Martin and T. Xie. A fault model and mutation testing of

access control policies. In Proc. 11th International
Conference on World Wide Web, 2007.

[4]. R. Sandlhu and P. Samarati. Access control: Principles and
practice. IEEE Comm., pages 2-10, Sept. 1994

[5]. K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of
access-control policies. In Proc. 27th International
Conference on Software Engineering, pages 196–205, 2005.

[6]. E. Martin, T. Xie, and T. Yu. Defining and measuring policy
coverage in testing access control policies. In Proc. 8th
International Conference on In- formation and
Communications Security, pages 139–158, 2006

[7]. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The
Ponder policy specification language. In Proc. International
Workshop on Policies for Distributed Systems and
Networks,pages 18–38, 2001.

[8]. Margrave’s API version 2.
[9]. F. Somenzi. CUDD: The CU decision diagram package.
[10]. PLT scheme with Drscheme package.
[11]. L. J. Morell. A theory of fault-based testing. IEEE

Trans.Softw. Eng., 16(8):844–857, 1990.
[12]. A. J. Offutt, A. Lee, G. Rothermel, R. Untch, and C.Zapf. An

experimental determination of sufficient mutation operators.
ACM Transactions on Software Engineering Methodology,
5:99, April 1996.

[13]. J. Offutt and R. H. Untch. Mutation 2000: Uniting the
orthogonal. In Mutation 2000: Mutation Testing in the
Twentieth and the Twenty First Centuries, pages 45–55,
October 2000.

[14]. S. Jajodia, P. Samarati, and V. S. Subrahmanian. A logical
language for expressing authorizations. In Proc. 1997 IEEE
Symposium on Security and Privacy, pages 31–42, 1997.

[15]. M. Kudo and S. Hada. XML document security based on
provisional authorization. In Proc. ACM Conference on
Computer and Communication Security, pages 87– 96,
Athens, Greece, November 2000.

[16]. N. Zhang, M. Ryan, and D. P. Guelev. Evaluating access
control policies through model checking. In Proc. 8th
International Conference on Information.

[17]. D. Jackson, I. Shlyakhter, and M. Sridharan. A
micromodularity mechanism. In Proc. 8th ESEC/FSE, pages
62–73, 2001.

[18]. T. Jaeger, X. Zhang, and F. Cacheda. Policy management
using access control spaces. ACM Transactions on
Information and System Security, 6(3), 2003.

