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Abstract

In this paper, we present a new approach to identify transient power quality disturbances using linear combiners and a fuzzy
decision support system. The key idea underlying the approach is to obtain the amplitude and the slope of the peak fundamental
component of a voltage waveform using adaptive linear combiners, along with nonlinear least mean squares (LMS) algorithm.
Fuzzy logic is then used to identify the class to which the waveform belongs by a set of heuristic rules and an uncertainty index.
Detailed digital simulation results involving various types of transient power quality disturbances are presented to prove the
ability of the new approach in classifying these disturbances. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

In recent years, there has been a significant deteriora-
tion in the quality of electrical power due to prolifera-
tion of nonlinear and power-electronically switched
loads in power systems. The poor power quality affects
the loads, particularly highly sensitive loads such as
computers and microprocessor-based controllers, re-
sulting in malfunctions, instabilities, short lifetime, etc.
Poor quality of electric power is normally caused by
power line disturbances, such as impulses, notches,
momentary interruptions, faults, overvoltages, under-
voltages and harmonic distortions, voltage flicker, etc.
In order to improve the quality of the delivered power,
it is imperative to know the sources and causes of these
disturbances and also to classify them.

The process of obtaining power quality data involves
the design of the points of measurement, selection of
electrical parameters like voltage and current wave-
forms to be measured, the selection of sensors, the
design of instrumentation and cabling and A/D and
D/A conversions of data, etc. The power system distur-
bance waveforms like voltage sag, swell, impulse and

harmonics, voltage flicker, etc. are characterized by
certain features, which will be sufficient to distinguish
them from the voltage waveform data collected from
electrical transmission and distribution systems.

The currently known method for detecting power
quality disturbances is based on a point-to-point com-
parison of adjacent cycles [1]. This method inherently
suffers from the drawback that it fails to detect and
identify periodic disturbances, such as phase controlled
load voltage wave shapes. Past research has considered
the applications of neural networks to classification of
waveforms due to high and low impedance faults [2–4],
magnetizing inrush [5] and power quality issues. In a
recent paper [6], the neural network approach was used
to identify power system disturbances. This approach
seems appropriate to detect and identify a particular
type of disturbance; however, due to its intrinsic nature,
a specific neural network architecture is required to
detect a particular type of disturbance. Thus, the time
delay neural network and BP neural network will not
be in general able to identify all classes of disturbances.

In this paper, we propose a new approach to detect
and localize various types of power quality distur-
bances, including harmonic distortion using an adaptive
linear combiner [7] and a rule-based fuzzy logic decision
system [3]. The input to the fuzzy classifier is from a* Corresponding author..
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Fig. 1. Different classes of disturbance waveforms showing (i) swell; (ii) sag; (iii) outage; (iv) surge; and (v) distortion.

voltage waveform data preprocessing block known as
linear combiners whose weights are adapted by a nor-
malised least mean squares (LMS) algorithm. Several
voltage waveforms belonging to the disturbances classes
like sag, swell, impulse, outage, harmonic distortion
and voltage flicker, etc. are tested using this new ap-
proach and in most cases, the event is classified accu-
rately. The identified waveform has the highest
credibility or belief factor as defined in the paper in the
context of fuzzy classifier.

2. Outline of the method

This section outlines the various power quality dis-
turbance waveforms as described below.

Impulse: waveforms in this class are described as high
frequency transients and occur due to capacitor switch-
ing, load start-up and lightning, etc.

Voltage sag: the waveforms in this class are charac-
terized by short-term decrease of voltage magnitude
and are measured on a cycle-to-cycle basis. System
faults and motor startups, etc. cause this kind of
voltage problem. The majority of voltage sags have a
magnitude around 80% of the normal value and dura-
tion of 4–10 cycles.

Harmonic distortion: voltage and current signals be-
come distorted due to harmonic penetration into the

power network and voltage and current total harmonic
distortions (THDs) exceed 5% of the magnitude of the
fundamental component. This class of disturbance is
due to the use of nonlinear loads and adjustable speed
drives, etc.

Voltage swell: these waveforms are characterized by
short-term increase in the line voltage caused primarily
by over-excitation, load unbalancing and capacitive
loads.

Outage: an outage is an absence of usable power at
some point of the power system and the waveforms that
can be charecterized as such fall into this class. These
are caused by system faults and opening of circuit
breakers.

Having chosen the classes of disturbance waveforms
as shown in Fig. 1, the next step in the development of
a classifier lies in the selection and extraction of desired
features of these waveforms. Any successful classifica-
tion scheme should have a strong noise rejection capa-
bility and should be able to handle bad data and
frequency excursions. The preprocessor block of the
classifier computes the peak amplitude (A) and its
change (S) on a sample to sample basis using a nor-
malised least mean squares algorithm (NLMS), as de-
scribed in Section 3. The inputs to the fuzzy classifier
are A and S and an uncertainty index lk and the output
is the type of waveform and its credibility factor (max-
imum value is 1). The fuzzy classifier is described in
Section 4.

3. Identification of the voltage waveform model

The power system voltage or current waveform is
assumed to comprise fundamental and harmonic com-
ponents as

y(t)= %
N

i=1

Ai sin (iv0t+fi) (1)

where Ai and fi are the amplitude and phase of the
harmonics, N is the total number of harmonics and v0

is the angular frequency of the fundamental component
of the signal. To obtain the solution for on-line estima-
tion of amplitude of the fundamental component and

Fig. 2. Block diagram for estimation of fundamental and harmonic
amplitudes.
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Fig. 3. Membership grades for amplitude, slope and THD.

the total harmonic distortion THD, an adaptive linear
combiner along with the nonlinear LMS algorithm is
used. The discrete representation of the signal in Eq. (1)
is obtained as

y(k)= (A1 cos f) sin u+ (A2 sin f) cos u+…

+ (AN cos fN) sin u+ (AN sin fN) cos u (2)

where u=2pk/Ns, k is the sample number or iteration
count and Ns is the sample rate. Eq. (2) is rewritten as

y(k)=W Tc(k) (3)

where

y(k)= [A1 cos f1 A1 sin f1…AN cos fN AN sin fN ]
(4)

and

cT(k)= [sin u cos u…sin uN cos uN ]

The weight vector of the adaptive linear combiner can
be updated using an NMLS algorithm as

W(k+1)=W(k)+
a(k)
L(k)

[y(k)−cT(k)W(k)]·Sgn(c(k))

(5)

L(k)=l+cT(k)·Sgn(c(k)) (6)

In the above formulation, l\0 and the Sgn function is
given by

Sgn(xi)=
!+1, if xi\0

−1, if xiB0

and

Sgn(xi)=0, if xi=0 (7)

The normalised LMS algorithm used in conjunction
with a linear combiner is much superior to the standard
Fourier algorithm for the computation of the funda-
mental component in the presence of harmonics and
noise. Both DFT and FFT are prone to errors varying

from 12 to 15% of the actual amplitude in the presence
of significant waveform distortion and noise. The con-
vergence of this algorithm has been reported in Dash et
al. [8].

Fig. 2 shows the block diagram for the linear com-
biner. The learning parameter a in the above algorithm
controls the convergence and noise rejection property
of the algorithm. Using a Lyapunov formalism it can
be proven that the value of the parameter lies between
0BaB2 for convergence and noise rejection. It is seen
that a small a is required for a periodic sinusoidal
waveform and large a is required for a voltage wave-
form corrupted by noise and distortions. The Lyapunov
energy function V is chosen as

V(k)=e2(k)+c1(e; (k))2, c\0 (8)

where
e(k)=error=y(k)−cT(k)W(k) (9)

and

e; (k)= (e(k)−e(k−1))/DT (10)

where is the sampling internal. The change in the
Lyapunov function V(k) is calculated as

DV(k)=V(k)−V(k−1) (11)

The learning parameter a is chosen as

a(k)=a0+c2V(k), for DV(k)\0 (12)

and

a(k)=a0−c2V(k), for DV(k)B0 (13)

where a0 is the initial value of the learning parameter
and c1\0, c2\0. The constants c1 and c2 are chosen to
give suitable weightings to change in the error and
change in the Lyapunov energy function. In this paper
the values of c1 and c2 are chosen as c1=0.5 and
c2=0.1.

The peak amplitude and phase of the fundamental
and harmonic components are estimated from the
weight vector W as follows:
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Fig. 4. Determining the waveform class and estimating the dynamic frequency change (Class II).

Ai=
Wi
2(k)+Wi+1

2 (k) (14)

and

fi= tan−1(Wi+1(k)/Wi(k)) (15)

The THD is calculated as

THD=
1

A1

' %
N

i=2

Ai
2 (16)

To obtain the power quality (PQ) index due to har-
monic distortion an index is calculated as

lPQ=
P' %
N

i=1

VI

(17)

The index is an identification of the source side or load
side PQ distortion.

4. Classification of disturbance waveforms using fuzzy
logic

Fuzzy logic provides an effective method in analysing
the highly nonlinear and uncertain data occurring in a
power system. To classify the PQ disturbance wave-
forms, it is preferable to apply a multicriteria decision
making approach using fuzzy logic. These methods are
neither OR nor AND aggregations, but weighting pro-
cedures, taking into consideration the support for a
decision from a set of support or truth values. The
input parameters used for fuzzification are the peak
fundamental component of the voltage signal from a
distribution bus of a power system network and its rate
of change. The peak amplitude is designated as A and
its rate of change is S. The value of S is obtained thus:

S(k)=
A(k)−A(k−1)

DT
(18)

For classifying the disturbance waveforms, three
fuzzy sets are chosen for the slope as SN (slope nega-
tive), SP (slope positive) and SZ (slope zero). In a
similar manner, five fuzzy sets are chosen for the peak
amplitude A, which are termed ALN (amplitude large

negative), ASN (amplitude small negative), AZ (ampli-
tude zero), ASP (amplitude small positive) and ALP
(amplitude large positive). Bell-shaped functions are
used to obtain the membership grades for both the
amplitude and slope of the waveforms as

m(x)=
1�

1+
x−a1

c
�b1

, for xBa1

and

m(x)=1, for a1BxBa2 (19)

and

m(x)=
1�

1+
x−a2

c
�b1

, for x\a2 (20)

Typical values of a1, a2, b1, b2 and c for the set ALN are
given by

a1=0, a2=0.1, b1=2, b2=3, c=0.1

The fuzzy rule base for this pattern classification
problem is given below:

Rule 1: IF A is ASP AND S is SP THEN the
waveform is Swell.
Rule 2: IF A is ALP AND S is SP THEN the
waveform is Surge.
Rule 3: IF A is ASN AND S is SN THEN the
waveform is Sag.
Rule 4: IF A is AZ AND S is SZ THEN the
waveform is Normal.
Rule 5: IF A is ALN AND S is SN THEN the
waveform is Surge.
Rule 6: IF A is ASP AND S is SZ THEN the
waveform is Swell.
Rule 7: IF A is ALN AND S is SN THEN the
waveform is Surge.
Rule 8: IF A is ALP AND S is SZ THEN the
waveform is Sag.
Rule 9: IF A is ALN AND S is SZ the waveform is
Outage.
Rule 10:IF A is ALN AND S is SP the waveform is
an Outage.
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Fig. 5. Schematic representation of the methodology for determining the flicker parameters (Class I).

From the above rule base it can be seen that for both
Sag and Swell there are two rules each and for Surge
there are three rules. Although the PQ disturbances fall
into the five categories, such as Sag, Swell, Normal,
Surge and Outage, the harmonic distortion can be
present in each of them. The classification of distorted
waveform can be made by defining a membership grade
for the THD as

m(THD)
1�

1+
THD−5

50
� (21)

where THD is expressed as a percentage.
The fuzzy reasoning has been carried out using the

maximum product compositional rule of inference. The
firing strengths of the rules are evaluated as
a1, a2, …, a5 from the above rule base for each category
of the waveform, i.e. Swell, Surge, Sag, Outage and
Normal, etc. Finally, the classified waveform has the
highest credibility factor or truth value, which is ob-
tained as

mWF(k)=max(a1, a2, a3, a4, a5) (22)

Before finally classifying the waveform, the uncer-
tainty in the measurement process introduced by the
time varying nature of the voltage waveform is taken
into consideration by an uncertainty index lk. This is
due to the fact that there will be a time lag between the
measured value and the actual value. The severity of
this problem arises when the magnitude of the voltage

phasor changes accompanied by a change in the phase
angle, as in the case of starting of an induction motor
or switching of a transformer. This uncertainty in the
measured value substantially affects the decision pro-
cess. To overcome this, the classification process is
decelerated during the transient period using an uncer-
tainty index defined below.

l %k=2−Lk (23)

where Lk=max[Dk ] and where

Dk(i)=
Mk(i)−a

m−a
, for Mk(i)\m

=
b−Mk(i)

b−m
, for Mk(i)Bm

(24)

Mk= [A1(k) A1(k−1)…A1(k+1−N/2)] (25)

where i represents the ith data of the sliding windows
Mk ; a=max[Mk ], b=min[Mk ] and m=mean[Mk ].

The output mWF(k) of the fuzzy inferencing module is
modified by using the uncertainty index lk as

mWF(k)=lkmWF(k)+ (1−lk)mWF(k−1) (26)

Fig. 7. Converter bus voltage (Ph.A).
Fig. 6. System configuration of the model used for testing the fuzzy
disturbance classifier.
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Fig. 8. Output of fuzzy-expert module for the test waveform.

5. Voltage flicker estimation

Voltage flicker in power systems refers to slow 0.5–
30 Hz frequency modulation of the voltage waveform.
The characteristic of the instantaneous flicker depends
upon the nature (type and size) of the load as well as
the power supply source to which it is connected. The
change of voltage magnitude can occur gradually, as in
the case of an arc furnace load or suddenly as in the
case of starting of a large induction motor, whereas
switching of a capacitor bank or tap changing of a
regulation transformer are the cases of source related
flickers.

The voltage flicker is modelled as an amplitude mod-
ulated waveform, where the modulating signal is a
sinusoid of random frequency and random magnitude.
The generalized waveform of the voltage signal (the
same as Eq. (1), but with a variable amplitude Ai(t)) is
given by

y(t)= %
N

i=1

Ai(t) sin (iv0t+fi)+h (27)

The fundamental component Ai(t) comprises

A1(t)={A10+A1f cos (vft+fi)+j} (28)

where A1f, vf and fi are the amplitude, frequency and
phase of the voltage flicker; and h and j are the
random noise components of zero mean and variance
unity, respectively.

The estimation of the voltage flicker parameters will
require two steps. In the first step, the fundamental
time varying component will be obtained using a linear
combiner shown in Fig. 3. In the second step, the time
varying component will be passed through a low pass
filter (LPF) and two linear combiners to estimate the
flicker parameters (shown in Fig. 4).

For the estimation of the component A1(k) (the
discrete version of Eq. (28)), the input vector to the
linear combiner is given by

yT(k)= [cos v0kTs sin v0kTs cos 2v0kTs sin 2v0kTs…

cos Nv0kTs sin Nv0kTs] (29)

where Ts is sampling time.
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Fig. 9. Estimated flicker parameters.

The weight vector W % adapted as given in Eqs. (5)
and (6) to yield A1(t) and its phase f1(t). As the
fundamental amplitude carries the flicker information,
we shall denote it as yf(k), which is equal to the
fundamental amplitude A1(k) at the kth sampling
instant.

yf(k)=A10+A1f cos (vft+fi)+dk (30)

where dk is a random sequence that takes into account
the noise inherited from the original signal and that
introduced by the measurement process. This sequence
can prove to be troublesome in estimating the flicker
parameters. To reduce the effect of noise, a suitably

designed filter can be used. While selecting the filter
order the accuracy must be kept in mind without
accounting for unnecessary delay. The filtered signal
y %f(k) is given by

y %f(k)=A10+A1f cos (vft+f %i ) (31)

f %f will be slightly different from fi due to phase-shift
introduced by the filter.

Using four consecutive samples of the discrete signal
given above, this can be shown that

{y %f(k)−y %f(k−3)}

− (1−2 cos vfTs)·{y %f(k−1)−y %f(k−2)}=0 (32)
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Fig. 10. Effect of frequency change on transient variation of the amplitude of the signal: (a) frequency change unknown; (b) frequency change
known; and (c) instantaneous signal wave form.
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Fig. 11. (a) Phase voltage waveform obtained from the test; (b) confirmation factors of sag, swell and surge in on-line data.
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From the above equation, the flicker frequency vf can
be estimated recursively from the weight vector W ¦(k)
as

vf=
1
Ts

arccos
�W %2(k)

W %1(k)
−1

�
(33)

Once the flicker frequency is estimated, the base ampli-
tude and flicker amplitude and phase can be found out
by another linear combiner as shown in Fig. 3.

The input vector is given by

cT(k)= [1 cos kvfTs sin kvfTs] (34)

and A10 and A1f are obtained as

A10(k)=W §1 (k)

A1f(k)= [{W §2 (k)}2+{W §1 (k)}2]1/2 (35)

It was observed that the flicker estimation becomes
ambiguous if there is a mismatch between the system
frequency and that assumed in the algorithm for ex-
tracting the fundamental envelope, as a frequency drift
also produces modulated amplitude pattern. The key to
distinguishing between the two events is the fundamen-
tal phase, which reveals a positive or negative ramp like
response in event of a frequency mismatch. The flicker
estimation should completely be inhibited until the
frequency mismatch is substantially compensated. To
accomplish this, following procedure is adopted:

Compute:

l¦k=2−Lk

where the calculations are similar to those of Eqs.
(23)–(25), with Mk being modified as

Mk= [f1(k)f1(k−1)…f1(k+1−N/2)]

Rule 11: if l %k is LOW and l¦k is HIGH then Flicker.
Rule 12: if l %k is LOW and l¦k is LOW then Freq.

Drift.

6. Results

6.1. Transient disturbances

To test the effectiveness of the proposed new ap-
proach, a typical power system shown in Fig. 5 is
considered. The power system comprises a short-trans-
mission-line supplying a resistive load (3.3 MW)
through a power converter (rectifier). The power system
also supplies a constant impedance load and capacitors
are placed on the load bus and the converter bus, as
shown in the figure, to improve power factor. An
EMTDC software package is used to simulate the
power system. The initial load current is 18 amps when
the power converter is started at t=0.043 s. An outage
at the generator end is initiated at t=0.49 s and

persists for 0.04 s. (two cycles based on the 50 Hz
supply frequency). Fig. 6 shows the instantaneous con-
verter bus voltage waveform (A-phase only).

A MATLAB software package is used to estimate the
amplitude and slope of the simulated bus voltage wave-
forms. 10% random noise is added (based on the peak
amplitude of the fundamental component) to the simu-
lated waveform to provide the waveform patterns,
which usually occur in practical situations. Various
fuzzy indices are shown in Fig. 7 and the fuzzy index
which has the highest membership grade or truth value
is chosen to indicate the class of the waveform. For
example, during 0.1–0.2 s, mSag=1, mSurge=0, mSwell=
0, mDistortion=0, etc. Thus, during this period a voltage
sag has occurred. Similarly, during 0.6–0.7 s, md=0,
mSurge varies between 0.09 and 0.1, mSag=0, mSwell=0,
and mDistortion=0, thus indicating the presence of Swell.

In the above estimation the linear combiner is started
with initial weight vector as a null vector (all the
elements are zeros) and the values of amax and amin are
kept between 1.2 and 0.6, respectively. Furthermore, it
is observed from these simulations that the truth value
of a particular category of waveform rises from zero to
100%, if it exists during a particular period. The classifi-
cation is found to be excellent, even in the presence of
noise and harmonic distortions.

6.2. Flicker estimation

Voltage flicker is simulated using the MATLAB soft-
ware package from the signal represented as

y(t)−{1+0.05 cos (44t+20$)+hk}.
{sin (2v0t+60$)+0.3 sin (3v0t+60$)

+0.1 sin (5v0t+60$)+0.08 sin (7v0t+60$)}+ �k

where, hk and �k are two different random noise se-
quences. The values of hk and �k are: hk=0.02 rand(k);
and �k =0.05 rand(k), where rand(k) has zero mean
and unity variance. The initial weight vector is obtained
as a null vector with all the elements initialised to zero.
The learning parameter a is updated using a Lyapunov
approach, where the constants a0, c1 and c2 are chosen
as a0=1.2, c1=0.5 and c2=0.

The added noise amplitude in this example is nearly
15% of the peak amplitude of the fundamental compo-
nent (base amplitude). The flicker parameters such as
amplitude (A1f), frequency (vf) and phase (ff) are
shown in Fig. 8. The signal waveform and its envelope
are shown to indicate the presence of a flicker. The
estimated values of the above parameters using a 3-
stage Kalman filter [5] are also shown in the figure. The
envelope of the fundamental frequency component is
separated into a constant and time varying component.
An extended Kalman filter approach is used to com-
pute the magnitude and frequency of the instantaneous
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flicker level. The Kalman gain is computed using suit-
able noise covariance matrices Q and R for providing
optimized performance. The Q and R matrices are
chosen as Q=diag(0.0001), R=diag(0.00001), respec-
tively. From Fig. 8, it is observed that the proposed
approach performs satisfactorily in comparison to the
Kalman filter, where the computational overhead is
very high in the presence of noise and harmonics.

6.3. Effect of frequency changes on the estimated
wa6eforms

The estimation of amplitude and phase angles of
signals corrupted with noise depends on the assumption
that the signal frequency is known a priori. However, if
the frequency also changes during a transient process,
the estimation of fundamental frequency is required for
the estimation of signal parameters. A small frequency
drift of +2 Hz was initiated at t=0.03 s, accompanied
by a sudden change in per unit voltage magnitude. Fig.
9 shows the tracked amplitude and phase of the voltage
signal corrupted with a random noise of variance s=
0.05.

6.4. Test with real-time data

With a view to real-time application of the proposed
approach, data is obtained from a laboratory setup
comprising a 230 volt, 50 Hz, 3-phase AC system
supplying a balanced R–L load. The system data is
acquired through a PCL-7/8 data acquisition card using
a 12-bit A/D converter. The data acquisition card has a
powerful and easy to use software routine started in the
EPROM. A personal computer PC-486, 100 MHz pro-
cessor is used to process the voltage and current sam-
ples using a software program developed in C+ +
programming language. The proposed algorithm with
an adaptive learning parameter a provides fast tracking
of the fundamental component of the transient voltage
signal, as shown in Fig. 10(a). Fig. 10(b) shows the
variation in the amplitude of the fundamental compo-
nent of the load voltage along with confirmation factors
(CF) which are obtained from the fuzzy classifier (Fig.
11). These factors clearly indicate the occurrence of a
particular transient disturbance.

7. Conclusions

This paper presents a new approach for monitoring
the transient PQ disturbances including voltage flicker.
The transient power-line disturbances such as voltage
sag, swell, surge, outage, etc. are classified very accu-
rately with the least computational overhead in com-
parison to neural networks and wavelet transforms. In
the case of neural networks, the classification is not
found to be robust and significant accuracy is not
achieved. The adaptive linear combiners filter noise
very effectively and hence produce an accurate classifi-
cation of transient PQ disturbance waveforms. Voltage
flicker parameters due to frequency modulation of
the power supply system waveform are also estimated
using adaptive linear combiners. The accuracy of
this approach and its simplicity outweigh the efficacy
of the Kalman filtering approach in estimating the
amplitude, frequency and phase of the voltage
flicker.
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