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Abstract

The paper presents a new approach for the classification of transient disturbance waveforms in a power system by using a Fourier linear
combiner and a fuzzy expert system. The measured voltage or current waveforms at a distribution bus are passed through a Fourier linear
combiner block to provide peak or root mean square (RMS) amplitude and phase of the fundamental component at every sampling instant.
The peak or RMS amplitude and computed slope of the waveforms are then passed on to a diagnostic module that computes the truth value of
the signal combination and determines the class to which the waveform belongs. Computer simulated tests are carried out usingemtp
programs to obtain the disturbance waveform classification with the help of a new hybrid approach which is much simpler than the recently
postulated neural network and wavelet based techniques. The classification is found to be robust and yields accurate results in most cases with
the least amount of computational burden.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Power supply quality issues and the resulting problems
are the consequences of the increasing use of solid state
switching devices, non-linear and power electronically
switched loads, unbalanced power systems, lighting
controls, computer and data processing equipments as
well as industrial plant rectifiers and inverters. These elec-
tronic type loads cause quasi-static harmonic dynamic
voltage distortions, inrush, pulse type current phenomena
with excessive harmonics and high distortion. Further cyclic
and acyclic loads with temporal variations, or sudden start-
ing of large induction motors can cause low frequency
voltage waveform modulation producing a major power
quality problem termed as voltage flicker.

Power quality problems can cause system equipment
malfunction, voltage flickers, computer data loss and
memory malfunction of sensitive loads such as computer,
PLC (Programmable Logic Controller) controls, protection
and relaying equipment as well as erratic operation of
electronic controls.

Power supply quality monitoring involves the estimation
of voltage or current peak or root mean square (RMS) values

from the measured voltage or current samples and the
classification of the waveforms. In addition, the power
quality monitoring device displays the captured waveforms
when certain thresholds are exceeded. These waveforms
exhibit certain distinguishing characteristics and can be
classified to belong to a certain waveform class like voltage
sag, voltage swell, outage, voltage impulse, or normal etc.
The most important characteristic of the classification
system is the accuracy and robustness in the presence of
noise and harmonics in the data collected from the trans-
mission and distribution networks. Artificial neural
networks (ANN) have attracted a great deal of attention
because of their pattern recognition capability, parallel
computational architecture, associate memory, and the
ability to handle noisy data. However, the convergence
speed, robustness and accuracy of ANN base methods
depend heavily on the choice of the architecture of the
network, the weight adaptation algorithm and the amount
of noise in the data.

The application of ANN for the classification of low and
high impedance faults [1–4], magnetizing inrush [5] and
power quality assessment [6] has resulted in significant
success. Both multilayered feed-forward and time delay
neural networks [7] architectures have been used in classi-
fying transient power quality disturbances like voltage sag,
voltage swell, outage, voltage surge etc. The success rate in
these classifications varies from 72 to 93%, and the number
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of training cycles and computational overheads are very
large. Another powerful technique presented in the recent
time to assess the power quality disturbance type is the
wavelet transform [8]. The wavelet transform results in a
robust classification at the cost of a large computational
overhead as several levels of wavelets in time and frequency
frame have to be considered to yield the proper class of the
disturbance pattern.

This paper, therefore, presents a new approach using a
Fourier linear combiner and a fuzzy rule-based expert
system to classify the disturbances. The Fourier linear
combiner is used to estimate the phase, amplitude, and
rate of change of the voltage waveform of the power system
under various operating conditions. The Fourier linear

combiner is in the form of an adaline [9], which has an
input sequence, and a desired response–signal sequence,
and weight parameters. It uses an adaptive algorithm
based on a least meanp-power error criterion to produce
fast convergence and noise rejection unlike the earlier algo-
rithm [9]. The fuzzy expert system [10] uses a rule base to
classify the disturbance waveform from the estimated
values of amplitude, slope, and distortion factors if any.
Several waveforms having swell, sag impulse, outage,
harmonic distortion, or frequency excursion etc. embedded
in random noise are tested using this new hybrid estimator
and fuzzy expert system. The robust and accurate classifica-
tion of disturbance waveforms validate the efficacy of this
new approach.
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Fig. 1. Block diagram for power quality monitoring.



2. Monitoring and waveform classification strategy

This section describes the development of a hybrid expert
neural system designed to improve the knowledge of the
power systems engineer in pursuit of an accurate diagnosis
of power system operating problems such as voltage sag,
voltage swell, faults, harmonics etc. described below:

• Impulse: The waveform in this class are described as
high-frequency transients and occur due to capacitor
switching, load start-up and lighting etc.

• Voltage sag: The waveform in this class are character-
ized by short-term decrease of the voltage magnitude and
are measured on a cycle-to-cycle basis. System faults and
motor start-ups etc. cause this kind of voltage problem.
The majority of voltage sags have a magnitude of around
80% and a duration of 4–10 cycles.

• Harmonic distortion: Voltage and current signals
become distorted due to the harmonic penetration into
the power network and voltage and current THDs exceed
5%, which is quite significant. This class of distortion is
due to the non-linear loads and adjustable speed drives
etc.

• Voltage swell: These waveforms are characterized by
short-term increase in line voltage caused primarily by
over-excitation, load unbalancing and capacitive loads.

• Outage: An outage is an absence of usable power at some
point of the power network, and the waveforms that can
be characterized as such fall into this class. These are
caused by system faults and opening of circuit breakers.

After choosing the transient disturbance waveforms to be
taken up for classification, the next step is to select suitable
input features and the method to extract them. Any success-
ful classification would depend on the ability to accurately
extract the relevant features from the captured waveform
samples in the presence of noise and harmonics. Also the
diagnostic module should be easy to implement in real-time
without much computational overhead and should yield
accurate classifications.

The approach chosen for this purpose consists of a Four-
ier linear combiner, a preprocessor and a fuzzy diagnostic
module. Fig. 1 shows how these modules are interrelated.
The raw data in an actual system is to be captured by using a
signal conditioner, a data acquisition interface and an
analog-to-digital (A/D) conversion kit installed in a PC.
This data comprises voltage and current waveforms of a
disturbed power system. A Fourier linear combiner module
with an adaptive LMS algorithm is then used to estimate the
amplitude, phase and THD of the captured waveforms.

3. Fourier linear combiner

The voltage or current signal of a power network is
expressed in the discrete form such as

y�k� � s�k�1 v�k� �
XN
i�1

�ai cosvik 1 bi sinvik�1 v�k� �1�

wherev i is the frequency of theith component and in this
casev i (the fundamental frequency of the power system
signal) is known a priori andN is the order of the harmonics
in the signal. In the above formulation,v(k) is the additive
white Gaussian noise with zero mean and variances2

v which
has no correlation with the signals(k). A decaying dc
component can also be added to the signal model given in
(1).

The coefficientsai andbiof the above signal, corrupted by
noisev(k) are obtained by minimizing the errore(k) between
the desired signaly(k) and the estimated signalŷ�k�
e�k� � y�k�2 ŷ�k�

where

ŷ�k� �
XN
i�1

�âi cosvik 1 b̂i sinvik� �2�
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Fig. 2. Membership function for amplitude and slope.



performance indexJ(k)

J�k� � E�ue�k�up�: �3�

andE is an expectation operator.
Using the steepest descent algorithm, the parameterW is

calculated as

Ŵi�k 1 1� � Ŵi 1
aie

p21�k�xi�k�
l 1 xT

i �k�xi

i � 1;2;…;N for even p and

�4�

Ŵi�k 1 1� � Ŵi 1
aisign�e�k��ep21�k�xi�k�

l 1 xT
i �k�xi

i � 1;2;…;N for odd p;

�5�

where

xi�k� � �cosvi�k� sinvi�k��T �6�

Ŵi�k� � �âi�k�b̂i�k��T

anda i is the step size of parameter for theith frequency
component and sgn(.) is the sign function.

For the value ofp greater than 5, the simulations exhibit
performance deterioration of the algorithm for tracking
power system sinusoids corrupted with noise. Also forp �
1 and 2, the performance of the standard LMS algorithm is
obtained. Forp taking on values 3 or 4, the algorithm gener-
ates significantly better discrete Fourier transform estimates
and hence a value ofp� 3 is chosen in this paper. Thus for
p � 3, the parameterW is updated as

Ŵi�k 1 1� �Wi�k�1 aie
2�k� sign{e�k��xi�k��} =�li

1 xT
i �k�xi�k��: �7�

The step sizea i will be selected to be large when there is
significant divergence between the actual signal and the
computed signal. For small divergence, however, the step
sizea i is selected to be small. A suitable value ofa i lies
between 0.2 and 1.6. The adaptive variation of the step size
a i is given by

ai�k� � ai�k 2 1�1 gE2
i �k�

Ei�k� � bEi�k 2 1�1 �1 2 b�ei�k�·ei�k 2 1�:
�8�

In general, the power system disturbance waveforms
contain odd and even harmonics, and a decaying dc offset
during outages. The presence of the decaying dc offset
makes it very difficult to track the fundamental component.
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Fig. 3. Membership function for THD.

Fig. 4. Comparison of performance of conventional and modified LMS algorithm.



The signal embedded with decaying dc can be easily tracked
after extracting the dc component as given below.

Let the time varying signaly(t) be represented as

F�t� � I0e2t=ldc 1 Im1 sin�wt 1 u1�1 Im3 sin�wt 1 u3�1 …

�9�

whereI0 is the amplitude of dc component andldc the decay
factor.

The decrement ratio ofI0 in two consecutive samples is

b � I0�m1 1�=I0�m� � e2Ts=ldc �10�
whereTs is the sampling time.

On the other hand, a small mathematical manipulation
shows that

F�m� 1 F�m1N� � I0b
m
dc�1 1 bN

dc� �11�
where N is half of the number of samples per cycle of
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Fig. 5. Amplitude and phase tracking for sudden changes in amplitude and phase of fundamental component in the presence of decaying dc.

Fig. 6. Comparison of tracking of a fault fundamental current using conventional and new modified LMS algorithm.



fundamental waveform andm the present samplebdc and
ldc are calculated as

bdc � Fm11 1 Fm1N11

Fm 1 Fm1N
ldc � ts

ln�bdc� �12�

I0 � �F�m� 1 F�m1N��=�bm
dc�1 1 bN

dc��: �13�
From the above calculation, it is clear that with a minimum
of (N 1 4)/2 samples the dc component can be filtered out.

4. Fuzzy expert system for classification

After obtaining the peak or RMS value of the disturbed
power system signal, a fuzzy logic based expert systems
used to classify the type of disturbance. As the power
system data is uncertain and the disturbance classification
is a pattern recognition problem, the fuzzy expert system is
well suited to this kind of problem. The fuzzy expert system
is designed using the knowledge about the disturbances
occurring on a distribution bus.

For classifying the power system transient disturbances,
three fuzzy sets designated as SN, SZ and SP are chosen for
the absolute value of the slope (normalized) or change in the
amplitude of the peak value of the waveform. The member-
ship function for computing the absolute value of the slopeS
is obtained using a bell shaped function as

m�x� � 1

1 1
x 2 a1

c

� �b for x , a1

m�x� � 1 for a1 , x , a2

�14�

and

m�x� � 1

x
2a2

c

� �b2
for x . a2:

In a similar way, five fuzzy sets designated as ALN, ASN,
AZ, ASP and ALP are chosen for the peak absolute ampli-
tude A of the waveform. The membership functions are

computed using Eq. (14). Fig. 2 shows the membership
function for amplitudeA and slopeS of the disturbance
waveform. The normalized slope is calculatedas S(K) �
[A(K) 2 A(K 2 1)] /Smax, Smax is the maximum slope andk
the sampling instant. In computing the membership func-
tions, the values ofa1, a2, b1, b2 andc for the fuzzy set ALN
are chosen asa1� 0.0,a2� 0.1,b1� 2.0,b2� 3.0,c� 0.3.
For the fuzzy set SN, the above constants are: asa1� 0.25,
a2 � 0.9, b1 � 4.0, b2 � 8.0, c � 0.1. If the transient
disturbance contains harmonics, the total harmonic distor-
tion (THD) can be fuzzified using a membership function of
the form

m�THD� � 1

1 1
THD 2 5

50

� �0:2 �15�

where THD is expressed in percentage. From the equation,
it is quite evident that upto 5% of THD in a power network
is tolerated and beyond 5%, the membership grade of THD
is 1. Fig. 3 shows the membership function of the total
harmonic distortion.

The fuzzified inputs are inferred to a fuzzy rule base,
which is used to characterize the relations between fuzzy
inputs and fuzzy outputs. In this study, the fuzzy rule base of
the fuzzy expert system is fixed as shown below.

Rule 1 If A(K) � ASP and S(K)� SP then W� Swell
Rule 2 If A(K) � ALP and S(K)� SP then W� Surge
Rule 3 If A(K) � ASN and S(K)� SN then W� Sag
Rule 4 If A(K) � AZ and S(K)� SZ then W� Normal
Rule 5 If A(K) � ALN and S(K)� SN then W� Surge
Rule 6 If A(K) � ASP and S(K)� SZ then W� Swell
Rule 7 If A(K) � ALN and S(K)� SN then W� Surge
Rule 8 If A(K) � ALP and S(K)� SZ then W� Sag
Rule 9 If A(K) � ALN and S(K)� SZ then W� Outage
Rule 10 If A(K)� ALN and S(K)� SP then W� Outage

In the above,W stands for the disturbance waveform.
Although the power system disturbance belongs to five

categories like voltage sag, swell, outage, surge and normal,
the harmonic distortion can be present in each of them.
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Fig. 7. (i) Variation of alfa in conventional LMS algorithm; and (ii) variation of alfa in modified LMS algorithm.
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Fig. 8. Output of the fuzzy-module for the composite signal (noise-free case).



Hence, two more rules are added to the fuzzy rule base to
classify the distortion as

Rule 11 Ifm(THD) , 1 then W� Normal
Rule 12 Ifm(THD) . 1 then W� Distorted

Unlike conventional fuzzy inferencing procedures, the
inferencing is done using the maximum product rule of
fuzzy inference. Assuming the above five categories of the
disturbance outlined above, the output (m0) from the fuzzy
expert system module is obtained as

m0�k� � m1Vm2Vm3Vm4Vm5 � max�m1;m2;m3;m4;m5�
�16�

whereV stands for OR operator andm1,m2,m3,m4,m5 are the
firing strengths of the rules for each category of distur-
bances.

An uncertainty indexl is incorporated to the computa-
tion process to get the final value of the outputm0, and which
is designated asm0F. m0F is related tom0 as

m0F�k� � lm0�k�1 �1 2 l�m0�k 2 1�: �17�
The uncertainty indexl is used to compensate the discre-

pancy between the actual value and the observed value. This
is due to the time lag introduced by the transducer used for
measurements of power system disturbance waveforms.
Further, the severity problem is realised when the magni-
tude of the voltage phaser changes is accompanied by a
change in the phase angle as is observed in the case of

transformer switching and starting of large induction
motors.

5. Simulation results

Computer simulated waveforms for various transient
disturbances of a power system are generated usingmatlab.
The sampling rate of 16 based on a 50 Hz waveform is used
for testing the effectiveness of the new algorithm in classi-
fying disturbance waveforms. A SGN function is used for
updating the weight vector of the neural estimator which is
initialised using a set of random weights. The value of initial
parameter is chosen and the limitsamax andamin are main-
tained as 1.2 and 0.6, respectively. The value ofb andg are
chosen asb � 0.8 andg � .01.

5.1. Monitoring of disturbance waveforms

For testing the efficacy of the new algorithm, the follow-
ing power system signal corrupted with noise and decaying
dc component is used for simulation:

y�t� � 1:5 sin�wt 1 p=6�1 0:3 sin�3wt 1 p=10�
1:02 sin5wt 1 0:3 exp�212t�1 :03 rand�t�
for t , :05312s

and

y�t� � 3:5 sin�wt 1 p=3�1 :3 sin�3wt 1 p=10�1 :0 sin�5wt

1 p=4�1 :03 rand�t�
for t . :05312s:

From the above description of signals it can be observed that
the signal has a sudden jump at timet greater than.05 s
approximately. Also the decaying dc component is present
in the signal at timet , .0535. The signal is corrupted by a
random white noise of variances � .03 and zero mean. The
tracking efficiencies of the standard LMS algorithm and the
least meanp-power error criterion for the above mentioned
signal are shown in Fig. 4. In case of the conventional LMS
algorithm, the decaying dc component is filtered out using
the principle described in Section 4. From the results, it can
be seen that thep-power error criterion yields a better
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Fig. 9. System configuration of the model used for testing the fuzzy disturbance classifier.

Fig. 10. Converter bus voltage (phase-a).



tracking capability of the fundamental component of the
power system disturbance signal when dc offset is present.
The tracking time is less than a cycle based on the funda-
mental frequency of the signal. This new algorithm does not
require any filtering technique as needed for the conven-
tional LMS approach in the presence of random noise.

Further, the new algorithm performs extremely well (Fig.
5) during sudden changes in the amplitude and phase angle
of the fundamental component, which is the one required for
monitoring and classification. Kalman filter is also used to

track the signal component in the presence of decaying dc
and random noise and the result is not as good as the one
obtained using the new approach. The results for the
Kalman filter are not presented in the paper.

Another interesting case of practical value is the tracking
of the fundamental component of the power system distur-
bance waveform during a fault.

An emtp software is used to simulate a synchronous
generator feeding a transmission line subjected to a
single-line-to-ground fault at a certain distance from the
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Fig. 11. Output of fuzzy-expert module for the test waveform.



sending end. The fault current waveform is shown in Fig. 6.
This figure also presents the amplitude and phase angle of
the fundamental component of the faulted current wave-
form. The generator frequency also varied during the
fault, which was estimated by another frequency estimation
algorithm presented in Ref. [10].

From the results presented in the figure, it can be seen that
the meanp-power error criterion produces an excellent
convergence to the true signal value in the presence of
noise, decaying dc components, harmonics and frequency
excursion. If the frequency excursion is very small, the
tracking time remains within a cycle.

The conventional LMS algorithm shows large oscilla-
tions due to frequency changes and the presence of dc offset
and noise. The variations ofm for both the conventional
LMS and the new approach with meanp-power error criter-
ion are shown in Fig. 7.

5.2. Classification of disturbance waveforms

Fig. 8 shows the category of the simulated waveforms
like sag or swell and the corresponding output from the
Fourier linear combiner and the integrated fuzzy and Fourier
linear combiner diagnostic systems. The training of the
monitoring system for different class of waveform is essen-
tial for tuning the parameters of the various modules. From
the figure, it is observed that each category of waveform is
successfully classified as the output from the model, shows a
100% truth value of the particular class that suddenly rises
from 0 to 100% in most cases in comparison to the normal
waveform.

After ascertaining the efficacy of the proposed fuzzy
expert system in classifying the simulated disturbances,
a practical case is taken for a detailed study. Fig. 9
shows a generator supplying a power network which
comprises a short-transmission line section and resistive
and constant impedance loads. The resistive load
consumes 3.3 MW of power and is supplied from a
rectifier connected to the load bus as shown in Fig. 9.
The initial starting current of the rectifier is 18 A and is
started att � 0.043 s. An outage at the generator end is
initiated at t � 0.49 s and persists for 2 cycles based on
50 Hz waveform. Variable static capacitors are installed
at the load bus to improve the load power factor as
shown in the figure. The converter voltage waveform
(one phase only) is presented in Fig. 10 using an
emtp software package. Fig. 11 presents the classifica-
tion results showing clearly the type of disturbance
class (voltage sag or voltage swell etc.) from changes
in membership grades. For a particular type of distur-
bance, the membership grade will become unity and for
other non-occuring types, membership grades will be very
small.

6. Conclusion

The paper presents a new approach to the assessment of
power quality using an integrated Fourier linear combiner
and fuzzy decision support system. The tracking capability
of the Fourier linear combiner is enhanced with an adaptive
LMS algorithm using a newp-power error criterion. A fuzzy
logic based reasoning process is used to classify the power
quality disturbance waveforms from the computed ampli-
tude and slope of the waveforms obtained from the Fourier
linear combiner. The newly modified LMS algorithm tracks
the fundamental component of the signal corrupted with
noise within a time period less than one cycle. The paper
also presents the variation of the learning rate using the new
p-power error criterion. The fuzzy expert system used for
the classification power network disturbances like voltage
sag, voltage swell, outage, voltage surge etc. is very simple
to implement in a real time in comparision to the recently
proposed ANN and wavelet based approaches, which are
computationally very involved. Several computational test
results are also presented in the paper to show the improved
performance of the integrated Fourier linear combiner and
fuzzy logic approach.
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