
A Novel Approach for Scenario-Based Test
Case Generation

Baikuntha Narayan Biswal

Department of CSE
National Institute of Technology

Rourkela, India
baikunthanarayan@gmail.com

Pragyan Nanda
Department of CSE

National Institute of Technology
Rourkela, India

n.pragyan@gmail.com

Durga Prasad Mohapatra
Department of CSE

National Institute of Technology
Rourkela, India

durga@nitrkl.ac.in

Abstract: Testing of software is a time-consuming
activity which requires a great deal of planning
and resources. Model-based testing is gaining
importance as a research issue. In scenario-based
testing, test scenarios are used for generating test
cases, test drivers etc. UML is widely used to
describe analysis and design specifications of
software development. UML models are
important source of information for test case
design. UML activity diagrams describe the
realization of the operation in design phase and
also support description of parallel activities and
synchronization aspects involved in different
activities perfectly. In this paper we generate test
scenarios from activity diagrams, which achieve
test adequacy criteria perfectly. Finally we
generate test cases by analyzing the respective
sequence and class diagrams of each scenario,
which achieves maximum path coverage criteria.
Also in our approach, the cost of test model
creation is reduced as design is reused.

Keywords: UML-based testing, Scenario-based
testing, Activity diagram, Sequence diagram, Class
diagram, Test scenario, Test case.

I. Introduction
Model Based Testing (MBT) is gaining its popularity
in both academia and in industry. As systems are
increasing in complexity, more systems perform
mission-critical functions, and dependability
requirements such as safety, reliability, availability,
and security are vital to the users of these systems.
The competitive marketplace is forcing companies to
define or adopt new approaches to reduce the time-
to-market as well as the development cost of these
critical systems. Much focus has been placed on
front-end development efforts, not realizing that
testing accounts for 50 to 75 percent of the lifetime
development and maintenance costs [11,12]. Testing
is traditionally performed at the end of development,

but market-driven schedules often force organizations
to release products before they are adequately tested.
Model-based development tools are increasing in use
because they provide tangible benefits by supporting
simulation and code generation, in addition to the
traditional design and analysis activities. These tools
help users develop requirement and design models of
target systems. The key challenge is to translate
development oriented modeling languages into a
form that is suitable for automated test vector
generation, specification based test coverage analysis,
requirement to test traceability, and design-to-test
traceability.
 Testing in industrial projects can be
effective only when the testing effort is “affordable”;
this means that the testing approach should be able to
produce a test plan soon, and even when the software
system is only partially modeled. Another important
aspect in industrial testing is accuracy. Since
inaccuracy can strongly diminish the testing utility,
the best has to be done in order to enrich the testing
results. In this paper, we focus on model-based
testing. The term model-based testing refers to test
case derivation from a model representing software
behavior. Such a model may be generated from a
formal specification such as, Z – specification, OCL
etc. [1,4,10] or may be designed by software
engineers through diagrammatic tools [3,5].

The paper is organized as follows: Section 2
gives a brief idea about the background and concepts
we will be using in rest of the paper. Section 3
presents our approach which can be considered new,
with respect to existing approaches. Section 4 shows
some of the implementation results. Section 5 gives
the comparison with the existing approaches. Section
6 concludes this paper and draws future work
directions.

II. Background

Scenario-based testing is a software testing activity
that uses scenario tests, or simply scenarios, which
are based on a hypothetical story to help a person

International Conference on Information Technology

978-0-7695-3513-5/08 $25.00 © 2008 IEEE

DOI 10.1109/ICIT.2008.43

244

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on May 18, 2009 at 08:33 from IEEE Xplore. Restrictions apply.

think through a complex problem or system. They
can be as simple as a diagram for a testing
environment or they could be a description written in
prose. These tests are usually different from test cases
in that test cases are single steps and scenarios cover
a number of steps. Scenarios are also useful to
connect to documented software requirements,
especially requirements modeled with use cases.
Within the Rational Unified Process, a scenario is an
instantiation of a use case (take a specific path
through the model, assigning specific values to each
variable). More complex tests are built up by
designing a test that runs through a series of use
cases.
 Scenario testing works best for complex
transactions or events, for studying end-to-end
delivery of the benefits of the program, for exploring
how the program will work in the hands of an
experienced user, and for developing more persuasive
variations of bugs found using other approaches.

III. TC-ASEC: The Proposed Approach
In this section we propose an approach TC-ASEC to
generate test cases from design models using activity
diagram, sequence diagram and class diagram. In the
proposed scheme we are using gray-box testing
method, where the advantages of both black-box and
white-box testing are combined together. The
generated test cases extends the logical coverage
criteria of white-box testing and finds all possible
paths from the design model which describes the
expected behavior of an operation. We have extended
our existing approach proposed in to generate test
cases from design models. In our approach we had
used activity diagrams as test models. First of all our
approach parses the activity diagram and generates
the test scenarios which satisfy the path coverage
criteria. As activity diagrams represent the
implementation of an operation like the flow chart of
code implementation and an executing path is a
possible execution trace of a thread of a program, the
executing paths are derived directly from the activity
diagrams. We have considered path coverage in our
approach, since it has the highest priority among all
the coverage criteria for testing. Our approach also
handles the complicacy of nested fork joins using a
criterion that checks whether the target activity state
of a transition is a fork or an activity state. If the
target of the transition is a fork, then the fork has
higher priority over the activity state. So it should be
considered first and then only the other path is
considered. As a result of this priority criterion the

complicated nested fork-join pair is handled properly
in our approach. After all the possible test scenarios
are generated we generate the corresponding
sequence diagram, and class diagrams for each
scenario. Now using category partition method we
analyze the functional requirements to divide the
analyzed system in functional units. To be separately
tested. For each defined functional unit, the
environment conditions (system characteristic of a
certain functional unit) and the parameters (explicit
input of the same unit) relevant for testing must be
identified. Then test cases are then derived by finding
significant values of environment conditions and
parameters. The approach is described in Fig. 1.

Fig. 1 Activity Diagram of our proposed approach

Test Scenario generation: TSAD

In order to generate test scenarios from
activity diagram, we have considered all the
activities, decisions, forks and joins as nodes. Our
approach traverses the activity diagram using
modified depth first search (DFS) method. In order to
traverse the activity diagram from initial node to final
node, our approach visits all the current nodes and
the corresponding transitions released from the
current node. Next, a record of the trace of a run of

245

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on May 18, 2009 at 08:33 from IEEE Xplore. Restrictions apply.

the executing path of activity diagram is maintained
by recording the visiting trace of the current nodes
and transitions.

Each loop present in the activity diagram is
executed at most once covering the corresponding
activity states and transitions. A loop is bypassed in
the sequence if it is already considered earlier. We
have proposed an approach to generate test scenarios
from design models.

Fig. 2. Activity Diagram for ATM Withdrawal.

Test Case Generation
After all the test scenarios are generated, we analyze
the corresponding sequence diagram for each
selected scenario. Each sequence diagram is
composed of objects and the messages they
exchange. The objects involved in the Diagram are
those that realize and execute the functionality
described in the scenario through elaboration and
message exchanges. In this phase class diagrams are
also considered as a class diagram defines operations
and attributes required for by classes for the
interactions of their objects.

 In our approach we have implemented
category- partition method on sequence diagram and
class diagram for generating test cases. The major
steps involved are:
1. Analysis of sequence and class diagrams
involved in the selected test scenario
2. Test Unit definition. Each object inside a
sequence diagram is considered a Test Unit, since it
can be separately tested and it represents and defines
a possible use of system.
3. Search of setting and interaction categories.
Interaction categories are the interactions that an
object has with other objects involved in a same
sequence diagram. Settings categories are attributes
of a class (and corresponding sequence diagram's
object), like input parameters used in messages or
data structures.
4. Test Case construction. After both the categories
are identified for each test unit significant values
were chosen. For each found category its possible
values and constraints are generated. For this purpose
class diagram is used, where a preliminary
description of a method implementation, its possible
input values or the description of an attribute used
and its significant values are found. By considering
all the potential combinations of compatible choices,
we derive the test cases. Finally for each test
scenario, all the possible test cases are generated.

IV. Implementation and Results
This section discusses the results obtained by
implementing the proposed Approach. We have
implemented the complete approach using JAVA
Swing and Rational Rose Version 7.0. We have
implemented our approach taking ATM (Automatic
Teller Machine) as the Case Study.
 By implementing the approach we obtained
9 test scenarios. One of the test scenarios is as
follows: TS: (a0) t0 (a1) t1 (a2) t2 [invalid] t3 (a3)
[resolved] t5 (a4) t6t7 ((amt <= max) and (amt <=
Bal) and ((amt mod 100) = 0)) t8 (a5) t9 t11 t7 (a6)
t11 t12 (a7) t13 (a9).
 After obtaining the scenarios we generated
the sequence diagram and class diagrams for each
test scenario and the two categories. By identifying
significant values for each of the categories, we have
obtained the final test cases. Both the positive and the
negative test cases are generated for each of the
generated test scenario using boundary-value
analysis. Some of the generated test cases are given
in Table-1. Further the test cases are analyzed for
path coverage.

246

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on May 18, 2009 at 08:33 from IEEE Xplore. Restrictions apply.

Table-1 Final Test Cases
TC-
ID#

Test
scenario PIN Amount

Entered
Amount in

Account
Amount
in ATM

Expected
Result

1 Successful
withdraw 4987 200 1000.00 5000.00

Success
Account
updated

2 ATM Out
of Money 4987 200 800.00 0.00

Withdraw
Option
Invalid

3
Insufficient

Funds in
ATM

4987 200 800.00 100.00

Warning
Message

Enter
Amount

4

Amount is
not

Multiple of
100

4987 50 800.00 5000.00 Enter
Amount

5
Incorrect
Pin(= 0
try left)

4978 n/a 800.00 5000.00

Warning
message

Card
Retained

or not

V. Conclusion and Future Work

We generate test cases directly from UML behavioral
diagram, where the design is reused. By using our
approach defects in the design model can be detected
during the analysis of the model itself. So, the defects
can be removed as early as possible, thus reducing
the cost of defect removal. First we generate test
scenarios from the activity diagram and then for each
scenario the corresponding sequence and class
diagrams are generated. After that we analyze the
sequence diagram to find the interaction categories
and then use the class diagrams to find the settings
categories. After analyzing each category, its
significant values and constraints are generated and
respective test cases are derived. The major
advantage of our approach is that it handles the
complicacy of nested fork-join pair which is more
often overlooked by other approaches. It overcomes
the limitations of the existing approach such as
nested fork-join and loops. Test coverage criteria
achieved is another advantage of our approach.
 This approach can further be extended by
generating test cases for the complete system i.e. by
implementing the approach for integration testing as
interactions between different components can be
obtained from sequence diagrams. Also test drivers
and test oracles can be generated for the proposed
approach that will support developers in their task of
creating automated functional test cases for object-
oriented software on a compressed schedule.
Moreover the overall approach is not fully
automated. An automated tool can be developed for
the proposed approach. The ultimate goal will be to

address testability, coverage criteria and automation
issues, in order to fully support system testing
activities.

REFERENCES
1. Orest Pilskalns , Anneliese Andrews , Andrew Knight ,

Sudipto Ghosh , Robert France , Testing UML designs,
doi:10.1016/j.infsof.2006.10.002

2. Jean Hartmann, Marlon Vieira, Herb Foster, Axel Ruder,
UML-based Test Generation and Execution, Siemens
Corporate Research, Inc.

3. Lionel Briand, Yvan Labiche, A UML-Based Approach to
System Testing, Initial submission: 25 February 2002/
Revised submission: 20 June 2002 Published online: 12
September2002 – Springer-Verlag 2002

4. C. Canevet, S. Gilmore, J. Hillston, L. Kloul and P.
Stevens, Analyzing UML 2.0 activity diagrams in the
software performance engineering process, WOSP'04
January 14-16, 2004, Redwood City, California.

5. Chen Mingsong, Qiu Xiaokang, and Li Xuandong,
Automatic Test Case Generation for UML Activity
Diagrams, AST’06, May 23, 2006, Shanghai, China.

6. Wang Linzhang, Yuan Jiesong, Yu Xiaofeng, Hu Jun, Li
Xuandong and Zheng Guoliang, Generating Test Cases
from UML Activity Diagram based on Gray-Box Method,
Proceedings of the 11th Asia-Pacific Software
Engineering Conference (APSEC’04).

7. F.Basanieri, A.Bertolino, and E.Marchetti. The cow suit
approach to planning and deriving test suites in UML
projects. In proceedings of Fifth International Conference
on the UML, LNCS, volume 2460, page 383397, Dresden,
Germany, October 2002. Springer-Verlag GmbH.

8. F.Frankin and T.Leonhardt. SeDiTeC-testing based on
sequence diagrams. In Proceedings 17th IEEE International
Conference on Automated Software Engineering, pages
261-266. IEEE Computer Society, September 2002.

9. A.Bertolino and F.Basanieri. A practical approach to
UML-based derivation of integration tests. In Proceedings
of the 4th International Software Quality Week Europe and
International Internet Quality Week Europe, Brussels,
Belgium, 2000. QWE.

10. T.J. Ostrand and M.J.Balcer. The category-partition
method for specifying and generating functional tests.
Communications of the ACM, 31(6), June 1998

11. .Gourlay, J.S., Introduction to the Formal Treatment of
Testing, Software Validation. Proceeding of the
Symposium on Software Validation, 1983

12. Beizer, B. Software Testing Techniques, New York, New
York: Van Nostrand Reinhold, 1983.

13. Graubmann, P., and E. Rudolph, HyperMSCs and
Sequence Diagrams for use case modeling and testing,
Proc. UML 2000 LNCS Vol.1939, 2000, Pages 32-46

14. Wittevrongel, J., and F. Maurer, Using UML to Partially
Automate Generation of Scenario-Based Test Drivers,
OOIS 2001, Springer, 2001.

15. P. Nanda, Dr. D. P. Mohapatra and S. K. Swain,
Generation of Test Scenarios Using Activity Diagram, In
Proceedings of SPIT-IEEE Colloquium and International
Conference, Mumbai, India,vol-4, pages 69-73, February
2008.

247

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on May 18, 2009 at 08:33 from IEEE Xplore. Restrictions apply.

