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Abstract

The paper presents a new approach for classification and location of faults on a transmission line using a newer version of
radial basis function neural network (RBFNN) which provides a more efficient approach for training and computation. The input
data to the RBFNN comprise the normalised peak values of the fundamental power system voltage and current waveforms at the
relaying location obtained during fault conditions. The extraction of the peak components is carried out using an extended
Kalman filter (EKF) suitably modelled to include decaying d.c., third and fifth harmonics along with the fundamental. The fault
training patterns required using the efficient version of RBF neural network are much less in comparison to the conventional RBF
network and the choice of neurons and the parameters of the network are systematically arrived without resorting to trial and
error calculations. The new approach provides a robust classification of different fault types for a variety of power system
operating conditions with resistance in the fault path. Further a new fault location strategy is formulated using four neural
networks, one each for the major category of faults like LG, LL, LLG and LLL faults. The proper feature selection for the
networks results in an accurate and fast distance relaying scheme. © 2001 Published by Elsevier Science B.V.
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1. Introduction

A digital distance relay essentially measures the
impedance up to the point of fault from digitized
voltage and current samples at the relaying location.
The changing operating conditions of the power system
and the resistance in the fault path to ground can
introduce errors in the impedance estimation routine
and thus the digital relay may either overreach or
undereach. It has been recently shown in several publi-
cations that the artificial neural network (ANN) can be
trained to become a pattern classifier [1–4] for a faulted
power transmission system and can classify the differ-
ent types of fault successfully. The speciality of the
ANN based distance protection is that it does not
explicitly use the impedance information as the basis of
information rather learns from examples presented to it
during training. The conventional approach is to use an
ANN with instantaneous sampled values of voltage and

current waveforms or magnitudes of the post-fault
voltage and current phasors of the three phases as
inputs and the neurons in the output layer generate a
binary value, 0 or 1. The back propagation (BP) al-
gorithm is normally used for training the network and
the weights of the network are frozen, once a suffi-
ciently large number of patterns is presented to the
network and convergence is reached. Although, BP
produces decision surfaces that effectively separate
training examples of normal fault classes, this does not
result in the most plausible or robust classifier. Further,
BP networks have no mechanism to detect when a case
to be classified falls in a region with no training data
[4]. This is a serious drawback as the power system
operates in a wide range of system and fault conditions.

The radial basis function neural network known as
radial basis function neural network (RBFNN) has
been considered recently for pattern classification in a
distance relaying scheme because of its ability to discern
faults with data falling outside the training pattern [4].
Although the classical RBFNN scheme produces good* Corresponding author.
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results, the choice of number of hidden units, the
number of input sets and the parameters of the network
are varied by trial and error. This approach with digi-
tised samples of current and voltage as inputs (24 in
number) also results in the use of a large training set
and too many hidden units.

This paper, therefore, examines a different architec-
ture for the RBFNN, where a sequential learning
scheme [5] and new input parameters are considered, so
that a minimal number of hidden units is used. For this
scheme, initially no hidden unit is used and more
hidden units are added if the pattern presented to the
network is different from the earlier one. Further the
RBFNN uses a Gaussian function for the computa-
tional units, whose centers, spreads and weights of the
network are updated using an extended Kalman filter
(EKF) based algorithm. A pruning strategy is used to
remove the hidden units, which does not result in any
change in the network output. Using this new efficient
version of RBFNN, the training time and number of
hidden neurons are reduced drastically. The classifica-
tion scheme becomes simpler and accurate fault classifi-
cation is achieved in most of the fault types, the data of
which are presented to the network. An EMTDC pro-
gram is used to generate fault data with different
system condition, source impedance, fault inception
angle and fault resistance values. After the fault is
successfully classified, the fault locator neural network
is activated. The fault locator block comprises four
RBFNNs, one each for the category of faults LG, LL,
LLG and LLL. This approach produces accurate loca-
tion unlike the earlier procedure of using only a single
neural network for fault location [2,4]. Several test
results are given in the paper to highlight the effective-
ness of the new approach.

2. RBF neural network

The structure of a RBF neural network is shown in
Fig. 1. The output of the network is:

ŷn= f(xn)=�m0+ �
K

k=1

�mk�k(xn) (1)

For each input xn, n represents the time index, K=
number of hidden units, �mk=connecting weight of the
k-th hidden unit to output layer, �m0=bias term, m is
the number of output.The value of �k(xn) is given by:

�k(xn)=exp(−
1

�k
2�xn−�k�2) (2)

where �k is the centre vector for the kth hidden unit
and �k is the width of the Gaussian function, � �
denotes the Euclidean norm.

The network begins with no hidden units and as
observations are received, new hidden units are added
by taking some of the input data. The network is
trained using the EKF approach. Further, to have a
compact network structure a pruning strategy is incor-
porated. The summary of the algorithm for a single
output case is given below.

2.1. Step 1

The error at the nth time step between estimated
output ynand desired output yn is:

en= �yn− ŷn)�
Define the rms output error:

ermsn
=

� �
n

i=n−M+1

[yi− ŷ ]2

M (3)

If en�emin and
�xn−�nr�� �n

and ermsn
�e �min then,

allocate a new hidden unit with,

�(k+1)=en, �k+1=xn and ��+1=��xn−�nr� (4)

where�n=max{�n�max, �min}, (0���1), n, the time
index emin, e �min, �max, �min are threshold values and � is
an overlap factor (0���1), �nr is a center of a hidden
unit whose distance from xn is the nearest among those
of all the other hidden unit centers, M= the size of a
sliding data window which covers a number of latest
observations for calculating the rms output errors ermsn

.

2.2. Step 2

If the above conditions are not fulfilled the parame-
ters of RBFNN are updated by the EKF (modelled for
the purpose) as:Fig. 1. Radial basis function neural network structure.
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Fig. 2. The distance protection scheme.

between voltage and current [6]. Once the fault detec-
tion block finds a fault in the forward direction it
triggers the fault classifier which again activates the
fault location unit. The control block derives the deci-
sion of trip or no-trip from the output signals of
classifier and locator. In this work, an RBF network
along with a ground detection unit [7] classifies the fault
types first and upon the output of the classifier the
control unit fires the suitable RBF network in the
locator block. There are four fault locating RBF net-
works, each representing for a class of fault (LG, LL,
LLG and LLL). The inherent benefit of using different
networks for four categories of fault is the accuracy of
the locator in evaluating the distance of the fault from
the relaying point.

For the application of the proposed distance protec-
tion strategy based on RBF networks, a 230 kV, 190
mile transmission system as shown in Fig. 3 is consid-
ered. To generate data for such a system, digital simula-
tions were performed for different conditions of the
system and all shunt faults using EMTDC software
package [8]. However, during the first cycle of fault
inception the voltage and current signals are badly
corrupted by noise, in the form of d.c. offset and
frequencies above fundamental. For estimation of the
fundamental components from such signals an ex-
tended Kalman filter [9] is used in this work. A sam-
pling rate of 1 kHz in a 50 Hz power system is
considered for the purpose.

4. Training and testing of RBFNN classifier

The majority of power system protection techniques
are involved in defining the system’s state through
identifying the pattern of the associated voltage and
current waveforms. Therefore, a distance protection
task can be essentially treated as a pattern recognition/
classification problem where neural networks are strong
candidates. One of the key issues in neural network
designing is the proper selection of features for the
particular task. A general approach for this may be to
consider a variable as a feature that provides more
information for classification of patterns than those not
considered. Further pre-processing of signals may dras-
tically reduce the size of the network structure and the
global performance of the network may be superior.

Conventional relaying algorithms use the fundamen-
tal components of voltage and current signals available
at the relaying point to derive the trip decision during
faulty conditions of the power network. In this work,
therefore, the idea of phasors is being integrated with
RBF neural network to derive a robust fault classifier
for protection of the transmission line covering 80% of
the line. Normalised values of post fault peaks of
fundamental components of voltages and currents of

Fig. 3. About 230 kV transmission system.

Wn=Wn−1+Knen (5)

where the parameter vector W for single output case is
given by:

W= [�0, �1, �1
T, �1,…�K, �K

T, �K ]T (6)

the Kalman gain Kn is provided in the Appendix A.

2.3. Step 3

� The outputs Ok
n(k=1, 2,…K) of all hidden units are

then computed.
� Find the largest absolute hidden unit output �Omax

n �.
� Calculate the normalized value for each hidden unit

rk
n= �Ok

n/Omax
n �(k=1, 2,…k). If rk

n �� (a threshold
value) for MI consecutive observations, then prune
the k-th hidden neuron.

3. Application of RBF neural network to distance
protection

The distance protection scheme utilising RBF net-
works are shown in Fig. 2. The task of the proposed
distance protection is to command the trip signal only
when a fault occurs in the transmission line in the
forward direction which is the direction away from the
bus bar and towards the overhead line it protects. The
forward direction needs to be identified so that the
relay does not respond for faults occurring at the bus or
the line behind the relay. To estimate the direction of
the fault we followed the approach of phase angle
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the three phases are considered as input vector (6
number) for the network. These peaks are estimated
from sampled values of the signal with EKF within half
a cycle after fault inception. The RBF network consists
of three outputs representing ‘a ’, ‘b ’, ‘c ’ phases. During
training these outputs are assigned ‘1’ or ‘0’ considering
whether the fault is involved with that phase or not.
For example, a ‘ca’ line to line fault the output value
should be assigned [1 0 1]. The RBF network starts
with no hidden units and as the network is exposed to
different training patterns, hidden units are added upon
novelty of that training set. The training sets are 28 in
numbers which include data for 10, 40 and 80% fault
location for 0° fault inception angle and at different
conditions of the system and seven types of faults (ag,
bg, cg, ab, bc, ca, abc). In comparison to earlier ap-
proaches [4], the choice of hidden neurons are no more
arbitrary, rather a sequential learning and pruning
strategy optimally fix the number of such neurons.
Furthermore, for updating the parameters of the net-
work while training, only an EKF [9] is used unlike
K-means clustering for �, heuristic approach for � and
multiple regression for weights as in [4]. This clearly
demonstrates the simplicity of the strategy in the learn-
ing process of the network. The parameters used during
training are �max=0.05, �min=0.02. �=0.96, emin=
0.02 and e �min=0.02, �=1, P0=I, Q=0.05, R=1.0I,
where I=unit matrix of appropriate dimension, M=4,
�=0.0001 and MI=10. The final structure of the RBF

network becomes 6-22-3. The proper feature selection
reduces the number of inputs to six only as compared
with 24 as proposed in [4].

The performance of the above network is tested using
voltage and current data of the power system during
various types of shunt faults at different locations,
inception angles and prefault conditions of the system.
Tables 1–4 present some of the test results for the
faulted transmission line. Table 1 shows the perfor-
mance of minimal RBFNN for different fault types at
15% of line for 60° inception angle and at a different
voltage level of the sources for Rf =0 � and Rf=10 �.
The respective values in a, b, c columns reflect the state
of involvement of that phase.

Say for ‘ab’ case with Rf=0 � the values ‘a ’=
1.1257, ‘b ’=1.0466 and ‘c ’=0.0691 show that the
phases associated with the fault are ‘a ’ and ‘b ’ only.
This classification approach takes a particular phase to
be involved with fault if its corresponding value is
greater than 0.5 else it categorizes the phase to be
‘undisturbed’. For a similar condition as used in Table
1, except the source impedance ratio changed to 90
from 1, Table 2 provides the fault classification results
for different faults at 40% of the line. Table 3 shows
fault classification for a different condition of load
angle (=20°) at 30° inception angle and at 60% of the
line, whereas, Table 4 presents for a 90° inception angle
and a fault at 80% of the line. These results demon-
strate the suitability of the network even for the un-

Table 1
Fault at 15% of line at 60° inception angle

Rf=0 �Fault type Rf=10 �

a b c a b c

1.2717 0.2699ag −0.0313 1.2783 0.2873 −0.0379
0.96760.36360.2475 0.27050.99950.3378bg
0.01970.26790.98920.01760.2213cg 0.9412

0.06911.04661.1257 0.0622ab 1.05221.0804
0.05490.0911 1.0153 1.11031.0051 1.1514bc

0.9712 1.1195 0.0720 0.9546ca 1.1411 0.0873
1.0730 1.0615abc 1.1483 1.0524 1.0601 1.1545

Table 2
Fault at 40% of line at 45° inception angle

Rf=0 �Fault type Rf=10 �

a b c a b c

0.4616 −0.0524ag 0.9615 0.2185 0.0041 1.0366
0.2271 1.0370 0.4280bg 0.1920 1.0719 0.4341

cg 0.1352 0.0134 1.14076 0.1490 0.0096 1.14277
0.8618 0.01459ab 0.89380.86180.14620.8937

0.74490.80440.24320.7451bc 0.80420.2441
0.9288 −0.0416 1.1513 0.9291 −0.0432ca 1.1516
0.8561 0.9111 0.9757 0.8542 0.9162abc 0.9757
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Table 3
Fault at 60% of line at 30° inception angle

Fault type Rf=10 �Rf=0 �

b c a b ca

−0.0051 0.0327ag 0.95190.9650 −0.0155 0.0296
0.9937 0.0214bg −0.0136−0.0232 0.9785 0.0229

−0.0032 1.0163 0.0226−0.0038 0.0092cg 0.9870
0.9938ab 0.9793 0.0005 1.0203 0.9552 -0.0082

0.9999 1.1006 0.0363−0.0001 0.9431bc 0.9634
0.0021 1.1016 0.8982ca 0.00701.0320 0.9790
0.9923 0.9861 0.99490.9951 1.1036abc 1.0082

Table 4
Fault at 80% of line at 90° inception angle

Rf=0 �Fault type Rf=10 �

b c aa b c

ag 0.29170.8926 0.2170 0.8719 0.2526 0.1909
1.0392 0.0383 0.04330.0820 1.0595bg 0.0334
0.1078 1.1816 −0.2467cg 0.1063−0.2449 1.1599
0.8385 0.0785 1.15041.1661 0.8142ab 0.0746

0.0488bc 1.0736 0.8837 0.0388 1.1008 0.8788
−0.0061 1.1167 0.86710.8906 −0.0366ca 1.1283

0.9747abc 0.8871 0.9168 0.9483 0.8221 0.9012
0.8434 0.0854abg 1.17111.1486 0.8407 0.0781
1.0707 0.8839 0.00250.0467 1.1317bcg 0.8636

−0.0055 1.1274 0.8720cag −0.03560.9061 1.1423

Fig. 4. Convergence loci of the RBFNN for fault at 15% of the line, ‘ag’ type 60° inception angle phase ‘a’ —�— ‘b’ — + — ‘c’ — × — ‘g’
—*— .

trained categories of fault; ‘abg’, ‘bcg’ and ‘cag’ etc.
which are included in Table 4 (rows 8–10). Observa-
tions on all test results ascertain that the RBF network
performs excellent even at different inception angle,
fault resistance, fault location and prefault loading
conditions.

However, another important aspect of the test is to
see the consistency in the output of the classifier. Fig. 4
shows the performance of the RBFNN for phase-a to
ground fault at 15% of the line for 60° inception angle

at Rf=0 and 10 �. The classification result shown on a
sample-to-sample basis indicates the speed of
convergence of the approach. The curves for different
phases/ground represent the classifier output during
3/4th of a cycle after fault inception. This result demon-
strates that the output of the classifier remains consis-
tent within half a cycle after fault inception and
afterward. Similar performances are obtained for other
categories of fault. Thus an accurate fault classifier is
designed.
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Table 5
Index1 values for fault at 15% of the line

Fault type Index1

ab 0.0038
abg (Rf=0 �) 0.3969
abg (Rf=10 �) 0.3840

5. Training and testing of RBFNNs for fault location

As stated earlier, an RBF neural network is proposed
for location of each category of fault. Once the fault is
classified, the control unit activates the correct fault
locating RBF network. The task of RBFNN fault
locator is to calculate the normalised distance of the
fault point from the relaying point ‘M ’. Similar to the
input vector in RBFNN classifier, in all the four
RBFNN locators the input vector (6 number) consists
of normalised peaks of fundamental components of
current and voltage as estimated by the EKFs within
half a cycle of fault inception. In the case of LG fault
locator, the first and second elements of input vector
should be the corresponding values of faulty phase
current and voltage, respectively, whereas for LL and
LLG locators the first four input elements are the
corresponding values of faulty phases. As accuracy is of
prime concern these networks require more training sets
than the RBFNN classifier. These sets include different
fault inception angles, prefault conditions and at differ-
ent fault distances (10–80%). The total number of such
sets is 32 for all four RBFNNs. The networks are
trained by the strategy as mentioned in Section 2 with
weights being updated by the EKF. The training
parameters used are �max=0.05, �min=0.02, �=0.96,
emin=0.02, and e �min=0.01, �=1, P0=I, Q=0.05,
R=1.0I, where I=unit matrix of appropriate dimen-
sion M=4, �=5e−5 and MI=12. The numbers of
hidden units found for the LG, LL, LLG and LLL
networks are 23, 25, 26 and 31, respectively. Some of

4.1. Ground detection

Usually it is not possible to identify ground only
from peaks of fundamental components of voltages and
currents (the input vector to RBFNN). Therefore, the
ground detection task is not included in the RBF
classifier. In reference [7] for detecting the involvement
of ground during fault, a zero sequence current based
indicator of the type:

Index1=
�Ia+Ib+Ic �

median(�Ia �, �Ib �, �Ic �)
is proposed. Here Ia, Ib and Ic are the current phasors
of the three phases at the relaying end. The phasors are
estimated by the EKF and the corresponding Index1
value is calculated. When the Index1 value exceeds the
threshold value of 0.05, it indicates the involvement of
fault with ground. The ground detection is carried out
in conjunction with the RBFNN calculations. Test
results showing the values of Index1 for ‘a ’ phase
to ‘b ’ faults at a distance of 15% of the are presented in
Table 5.

Table 6
(LG) fault location distance

5545352515Distance (%) 7565
10 0 10 0 10 0 10Rf (�) 00 10 0 1010 0
1.87Error (%) 1.212.77 2.63 0.68 1.64 2.47 1.82 1.91 1.66 2.13 2.540.49 0.42

Table 7
(LL) fault location distance

25 35 45 55 65 75Distance (%) 15
100100100100Rf (�) 100100100

3.04Error (%) 1.741.61 0.04 2.21 2.33 3.42 3.03 4.05 3.40 2.63 2.951.83 4.11

Table 8
(LLG) fault location distance

15 25Distance (%) 35 7545 55 65
100100100100 10100Rf (�) 0100

1.25 2.19 2.10 3.33 3.82 3.41 2.77 2.86 2.85Error (%) 2.87 1.194.18 4.38 1.18
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Table 9
(LLL) fault location distance

Distance (%) 15 25 35 45 55 65 75
10 0 10Rf (�) 00 10 0 10 0 10 0 10 0 10
2.67 2.16 1.58 0.46 0.01 0.82 1.41 4.29 4.35 3.382.11 3.67Error (%) 2.28 2.57

Fig. 5. Convergence loci of RBFNN1 for ‘ag’ fault, 60° inception angle at a distance of 35 and 55%, Rf, 0 �, —�— ; and Rf, 10 �, —*— .

the test results are presented below where the estima-
tion accuracy of the locators are shown.

Table 6 shows some of the test results for RBFNN
locator (LG) at a different condition of the
power system, at 60° of inception angle, for both
without fault resistance and with 10 � of fault resis-
tance cases and at different locations of the fault.
Similar results for LL, LLG and LLL RBFNN fault
locators are shown in Tables 7–9. In all the test cases
for the networks which include different fault inception
angles, different locations of fault, various pre-
fault conditions (including the source capacity) and
different fault resistance values, the maximum error
found was less than 5%. The percentage error was
computed as:

error(%)=
�actual distance−calculated distance�

protected line length
×100

The RBFNNs calculate the fault distance within 80%
of the line with high accuracy and justifies the purpose
of using separate fault locating RBFNNs for different
fault categories.

Further the convergence speed of the networks is
observed by exposing the scheme on a sample to sample
basis. Fig. 5 shows the RBFNN1 output for fault cases
at 35 and 55% of the line at a fault inception angle of
60° for ‘ag’ fault type. This figure demonstrates the
fault distance estimation results on a sample to sample
basis within 3/4th of a cycle after fault inception for
different fault resistances. Similar results are obtained
for other RBFNN fault locators. It is observed that all
the networks calculate the fault distance up to 80% of
the line with high accuracy at different prefault operat-
ing conditions, inception angles, fault resistances and
fault locations.

6. Conclusions

The paper investigates a new high speed distance
relaying scheme based on RBFNNs. A single RBF
network has been proposed to classify the type of fault,
whereas one of the four other RBFNNs is selected to
estimate the location of the fault. The training of
RBFNNs provides a compact framework in selecting
the number of hidden units by employing sequential
learning and pruning strategy. The training time for
updating the parameters is significantly reduced by
using a single EKF algorithm. The trained networks are
capable of providing fast and precise classification and
location of fault for a variety of system conditions.
Furthermore, the proper feature selection in the strat-
egy reduces the number of training data and the size of
the RBFNN structures, which is suitable for real time
application.

Appendix A

The Kalman gain Kn is:

Kn=Pn−1an [Rn+an
TPn−1an ]−1 (A1)

where T= transpose of a quantity, Rn=measurement
noise variance. The covariance matrix Pn is computed
as:

Pn= [I−Knan
T]Pn−1+QI (A2)

where Q is the noise covariance matrix and I is the
identity matrix of proper dimension. In EKF principle,
the observation vector an for single output case is
obtained as:
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an=
�f(xn)

�W
�
W=Wn /n−1

=
�

1, �1(xn), �1(xn)
2�1

�1
2 (xn−�1)T, �1(xn)

2�1

�1
3 �xn

−�1�2,·····�k(xn), �K(xn)
2�K

�K
2 (xn−�K)T, �K(xn)

2�K

�K
3 �xn−�K�2nT

(A3)
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