2009 IEEE International Advance Computing Conference (IACC 20469

Patiala, India, 6-7 March 2009

Performance Analysis of Load Balancing Algorithms
for cluster of Video on Demand Servers

Pushpendra Kumar Chandra

Department of CSE
National Institute of Technology Rourkela
Orissa, INDIA -769008
+91-9861286202
pushpendrachandra@gmail.com

Abstract— In this paper we have proposed an algorithm for a
wide variety of workload conditions including I/O intensive and
memory intensive loads. However , in our task the CPU
requirements of the system is minimum as the tasks which come
are mostly video fetch tasks which require negligible system
interaction but a lot of I/O consumption. The goal of the
proposed algorithm is to balance the requests across the entire
cluster of servers basing on its memory, CPU and I/O
requirements so that the response time and the completion time
for each job is minimum. Here preemptive migrations of tasks
are not taken into consideration. A typical transaction in our
model can be defined as the duration between the acceptance of
task into the system and fulfillment of its requirements by the
system. The requirements of the task are video files which the
system has to load from a secondary storage device and stream
the video continuously to the end user who initiated the request.
We have compared our algorithm (IOCMLB) to two other
allocation policies and trace driven simulation shows that our
algorithm performed better than other two policies.

Keywords-Video on demand, 1/O-intensive task, Load balancing

I. INTRODUCTION

Video On Demand [1] commonly called VOD service has
been feasible due to availability of a number of enabling
technologies such as MPEG (Moving Picture Expert Group),
ATM (Asynchronous Transfer Mode) and ADSL
(Asymmetric Digital subscribers Line). A key challenge
involved is in providing the service is requirement of storing a
large amount of video objects such that each video stream can
be accessed and transmitted to the client in real time.

Multimedia databases have become more important since
the demand for multimedia information (such as text, audio,
image and video) has increased. Currently content-based
retrieval of multimedia data is being actively researched.
However, content-based retrieval of multimedia data
encounters three major difficulties. First, the content is
subjective; this needs a powerful set of search facilities
including keywords, sounds, color, texture, spatial information
and motion. Second, if a method or processing technique is
designed and developed for one type of data or feature, it's
usually not appropriate for others. For instance, a technique
designed for indexing audio data may not be usable for image
data or, a technique developed for a color feature may not be

978-1-4244-1888-6/08/$25.00 © 2008 IEEE

Bibhudatta Sahoo

Department of CSE
National Institute of Technology Rourkela
Orissa, INDIA-769008
+91-9861286202
bdsahu@nitrkl.ac.in

useful for a texture feature in image and video data .Third, the
usual huge size of multimedia data requires an exhaustive
search.

VOD systems can be classified to two types either single
server or multi server architecture. But the multi server
architecture proves to the better as we see that the multi server
architecture caters to the client’s requests more efficiently
whereas the single server is not able to handle the video
traffic.

The VOD system can thus be described as a cluster of
homogencous or heterogeneous computing nodes. In the past,
some problems have been addressed in designing a VOD
system, such as data placement, resource management, disk
scheduling, admission control, synchronization, and fault
tolerance, etc. However the problem about dynamic load
balancing among the servers was seldom explored. Although
the previous researches explored the load balancing problem,
most are applied to general tasks, not to video tasks.
Furthermore although the data placement strategies mentioned
above could be used to achieve load balancing among the
servers, they are static and not good enough. One of the data
placement strategies is to strip each video object across all the
disks/servers on the system and then to avoid the load
unbalance. However, the approach suffers from the following
drawbacks. First, it results in additional complexity such as
some form of synchronization in delivering a single video
object from multiple disks/servers. Second, it is not practical
to assume that a system must be constructed using
homogeneous disks/servers. Third, as client demands and/or
data sizes grow, the system requires one or more disks/servers,
thereby resulting in restriping of all video objects. Another
data placement strategy is to replicate popular video objects
among the servers. It also has some problems such as
requiring extra storage spaces and deciding the appropriate
time to perform de-replication, etc. Besides some researches
studied the load balancing in a distributed VOD system.
However their models are distributed VOD servers,
completely different from ours clusters of VOD servers.

The rest of the paper is organized as follows. In the section
2 that follows, system model and methodology. In section 3,
we describe the dynamic load balancing algorithm for I/O
intensive tasks. Section 4 shows the simulation and

408

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 5, 2009 at 06:23 from IEEE Xplore. Restrictions apply.

experimental results. Finally section 5 concludes the paper by
summarizing the main contribution of this paper.

II. SYATEM MODEL AND METHODOLOGY

The model of VOD system is illustrated in Fig 1. All
servers in the system are connected with a high-speed
network, such as an ATM switch, a fast Ethernet, or a cross
bar switch, etc.

High Speed Network
Cluster of Servers

Client 1 Client 2 CHSEY o Client 1
S S

External

Network
; =y
1
i
i o \ / i
i Server | | Sever | | Server ammmnnnan | Gy) i

3 F N 1 4 3 -

% oy W \.._ e b 4 H
i i il T i
: :
i i

Fig.1. Model of VOD System

Each server has its CPU, memory, and I/O sub-system,
but they would not necessarily have the same capabilities.
This implies that the system could achieve good scalability.
When a client issues a request for a video object, a specified
server called the dispatcher will filter the request and transfer
the request to the destination server with the requested video
object. Then the destination server delivers the video stream to
the requested client at a given rate through the external
network until the display of the video stream is finished. VOD
system is disk-bounded. For networks, the network bandwidth
from servers to clients is fast enough to deliver video streams
and it is also fault free.

The VOD clusters can be modeled by the mathematical
queuing theory showed in Fig 2.

Here, VOD cluster is connected to the web by the
interconnection network which provides two way traffic for
the requests to the cluster and the response from the clusters.
We assume a constant arrival rate that is Poisson’s
distribution. The nodes are heterogeneous in nature, so they
have different service rates denoted by {Si, S,, S; S, }.The
requests arrive from the user via the web to the VOD
dispatcher. Here the Dispatcher allocated requests to the
various nodes which generate the response back to the user via
the web.

III. DYNAMIC LOAD DISTRIBUTION ALGORITHM

We proposed an algorithm (IOCMLB) for a wide variety
of workload conditions including I/O intensive and memory
intensive loads. However , in our task the CPU requirements
of the system is minimum as the tasks which come are mostly
video fetch tasks which require negligible system interaction
but a lot of /O consumption. The goal of the proposed
algorithm is to balance the requests across the entire cluster of
servers basing on its memory, CPU and I/O requirements so
that the response time and the completion time for each job is
minimum. Here preemptive migrations of tasks are not taken
into consideration.

A typical transaction in our model can be defined as the
duration between the acceptance of task into the system and
fulfillment of its requirements by the system. The
requirements of the task are video files which the system has
to load from a secondary storage device and stream the video
continuously to the end user who initiated the request.

Algorithm: Load balancing algorithm (IOCMLB)
Whenever a request is made to the cluster:
1. For each task i do

2. Compute the value of its /O, CPU and memory
requirements.

3. if I/O requirement(i) = max [CPU requirement, memory

([World Wide Web ‘ D requirement, I/O requirement] then
’ ;ie;)_;;_ T _F;;;SI 4. Choose the set of nodes which has the highest unused 1/0
capability and is meeting the memory and CPU
VoD requirements.
cluster
ispatcher
hepat 5. task is assigned to that node which has the lowest
1 response time for that particular task.
6. else if memory requirement(i) = max [CPU requirement
,memory requirement ,I/O requirement] then
[‘j [IJ 7. choose the set of nodes which has the highest unused
memory capability and is meeting the I/O and CPU
5 55 55 54 35 = 1
Modes of E‘]l.:s:te:' on VOD servers) requirements
. . 8. task is assigned to that node which has the lowest
Fig. 2. Queuing Model response time for that particular task.
2009 IEEE International Advance Computing Conference (IACC 2009) 409

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 5, 2009 at 06:23 from IEEE Xplore. Restrictions apply.

9. else if CPU requirement(i) = max [CPU requirement,
memory requirement, I/O requirement] then

10. choose the set of nodes which has the highest unused
CPU capability and is meeting the I/O and memory
requirements

11. task is assigned to that node which has the lowest
response time for that particular task.

12. update load status for that node.
13. end for

This is the proposed algorithm that we used to schedule
tasks across n heterogeneous servers. We introduce the
following three load indices with respect to 1/0, CPU, memory
resources. CPU load of a node is characterized by the length
of CPU waiting queue to identify whether node i is CPU
overloaded or not. Memory load of a node is the sum of the
memory space allocated to all the task running on that node.
I/0 load measures two types of I/O accesses, i.e. Implicit /O
request includes by page fault; Explicit I/O request is used
from tasks.

Now we describe the load balancing algorithm of which
the pseudo code is shown above. Given a set of independent
tasks submitted to the load manager. Our algorithm make an
effort to balance the load of the cluster resource’s by
allocating each task to a node such that the expected response
time is minimized.

Steps 1 and 2 are responsible for the acceptance of the
task into the system and the prediction of its CPU, I/O and
memory resources. This is done at the central node known as
the dispatcher which is already discussed.

The maximum of all the three requirements is found in
step 3 which is also at the dispatcher. The result of this step
delivers the control to (a) Step 4 —if the 1/0O requirement of the
task is maximum (b) Step 7 - if the memory requirement of the
task is maximum (c) Step 10 - if the CPU requirement of the
task is maximum.

Further two more sub-conditions are to be satisfied for the
final node to be chosen: («) That the remaining two capacities
must be enough for the task to finish at that node. (b) The
response time for that task should be minimum at that node.

After all the above conditions are satisfied the dispatcher
allocates the task to selected node and the task is run on that
node.

IV. SIMULATION AND EXPERIMENTAL RESULTS

The VOD system is a group of nodes, where we select a
main node whose role is described as follows: the main node
also called as head node in the cluster is responsible for load
balancing and monitoring available resources of the node.
Head node processes all tasks in First Come First Serve
manner. The computing nodes in the cluster solely depend on
the information available with the head node for allocation
decision.

Tasks that are to be executed in the cluster arrive at the
head node. We assume that the arrivals rate is constant in
nature. After being handled by the head node, the tasks are
dispatched to one of the best suited nodes for execution. The
nodes each have a local queue which executes tasks in
parallel.

A. Performance of the System

The model that we have used for simulation has been
validated by the following graph (see Fig. 3), which has been
got by plotting the time taken to execute a given set of tasks
by carrying the number of servers involved. We can see that
the execution time for the set of tasks gradually decreases as
we increase the number of servers. But it is observed that after
a threshold value the execution time becomes constant which
indicates a saturation value for the completion of tasks.

Time taken to complete

2 ! ! ! ! !
1 4] 8 1 12 14 16 18 i

Number of servers

Fig.3. Performance of the model

From the Fig. 3 we can conclude that for a given task set,
varying the number of servers from two to twenty we find that
our system reaches the saturation point at about 18-19 servers
i.e. the execution time doesn’t improve any more. Hence we
say that our model has been validated.

B. Performance Comparison of IOCMLB

For simulations we have taken two other policies for node
allocation into consideration for comparison. They are First
come first serve and Random. In this experiment we explore
load balancing of servers under constant arrival rate of tasks.
To facilitate this observation the standard deviation [1] of the
load balancing of servers is shown for various numbers of
tasks. The closer to zero, the standard deviation the better the
load balancing. The standard deviation ¢ can be defined for
the heterogeneous environments with n servers as follows:

a1 € i £ i 5 2
= =E((P1 e :;:-"-’v c,,) +(P: Taigtet c,,) = (E’ Tatg bt c.._])
Where ¢; is the capability value and P; cumulative
probability of server i in the proportion.

1. FCFS Allocation: In this policy the tasks are allocated to
the nodes in order of their arrival. For example the task 1
is allocated to node 1, task 2 to node 2 and so on. We got
the graph (see Fig. 4).

410 2009 IEEFE International Advance Computing Conference (IACC 2009)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 5, 2009 at 06:23 from IEEE Xplore. Restrictions apply.

Fig. 4. FCFS policy performance graph
2. Random Allocation: In this policy, the tasks can be
allocated to any node randomly. This does not use any

logic but just allocates the task to any node randomly. We
got the graph (see Fig. 5) for random allocation of tasks.

fard deviation

Fig. 5. Random policy performance graph
3. IOCMLB Algorithm: In this policy, the tasks were
allocated as per the algorithm IOCMLB described earlier
and we obtained the graph (see Fig. 6).

Fig. 6. IOCMLB algorithm performance graph

(¥

Fig. 7. Performance comparisons of three algorithms

The Fig.7 definitely shows that the nodes experience better
load balancing using our algorithm for load balancing of VOD
clusters. Further, as shown in all figures the load balancing of
servers is graduating worse as the number of tasks getting
admitted into the system keep on increasing. Therefore it is
should be noted that the algorithm will have threshold limits
as to the number of tasks that it can successfully balance
keeping the number of servers constant.

V. CONCLUSION

In a VOD system with clustering servers, how to support more
clients and reduce the average response time of requests is a
critical topic. In this paper, we focused on dynamic load
balancing among the VOD servers with constant arrival rate to
reach these goals. Cluster computing has emerged as a result
of the convergence of several trends, including the availability
of inexpensive high performance microprocessors and high
speed networks, the development of standard software tools
for high performance distributed computing, and the
increasing need of computing power for computational science
and commercial applications. Even though there are number of
different dynamic load balancing techniques for VOD cluster
systems, their efficiency depends on topology of the
communication network that connects nodes. This research
has developed an efficient load-balancing algorithm for /O
intensive tasks that uses a new procedure for calculating the
load at individual node. The proposed load balancing
algorithm (IOCMLB) aim to achieve the effective usage of
global disk resources in the VOD cluster. This can minimizes
the average slow down of all parallel jobs running on the VOD
cluster and reduces the average response time of the jobs. We
have compared our policy to two other popular strategies
namely FCFS and random, it is seen that we get better load
balancing results using our algorithm.

ACKNOWLEDGMENTS

This research was supported by R&D project grant 2005-
2008 of MHRD Government of India with the title as “Fault
Tolerant Real Time Dynamic Scheduling Algorithm For
Heterogenecous Distributed System”™ and being carried out at

2009 IEEE International Advance Computing Conference (IACC 2009) 411

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 5, 2009 at 06:23 from IEEE Xplore. Restrictions apply.

department of Computer Science and Engineering, NIT
Rourkela.

REFERENCES

Yin-Fu Huang ,Chih-Chiang Fang ,Load balancing for clusters of VOD
servers ,Information Sciences 164 (2004) ,pp.113-138.

Xiao Qin, Performance comparisons of load balancing algorithms for
IO-intensive workloads on clusters, Journal of Network and computer
applications(2006), doi:10.1016/j.jnca.2006.07.001.

B. Berson, S. Ghandeharizadeh, R. Muntz, X. Ju, Staggered stripping in
multimedia information systems, Proceedings of the ACM International
Conference on Management of Data, 1994, pp. 79-90.

D. N. Sujatha K. Girish ,An Integrated Quality-of-Service Model for
Video-on-Demand Application , IAENG International Journal of
Computer Science.

Xiao Qin ,Dynamic Load Balancing for IO-Intensive Tasks on
Heterogeneous Clusters, Proceeding of the 2003 International
Conference on High Performance Computing(HiPCO3).

Xiao Qin ,Hong Jiang ,Yifeng Zhu ,David R. Swanson ,A Dynamic
Load Balancing Scheme for IO-Intensive Applications in Distributed
Systems, Proceeding of 2003 international conference on Parallel
processing Workshop(ICPP 2003 Workshop).

Sanan Srakaew et al.,Content-based Multimedia Data Retrieval on
Heterogeneous System Environment, George Blankenship,International
Conference on Intelligent Systems (ICIS-99) , Denver, Colorado, June
24-26, 1999 ,pp 13-18.

[13]

[14]

Paul Werstein ,Hailing Situ and Zhiyi Huang , Load balancing in cluster
computer, Proceeding of the seventh international conference on Parallel
and Distributed Computing, Applications and Technology (PDCAT’06).

Xiao Qin, H.Jiang, Y.Zhu and D.swanson, Toward load balancing
support for I/O intensive parallel jobs in a cluster of workstation, Poc.
Of the 5th IEEE international conference cluster computing(cluster
2003) ,Hong Kong,Dec.1-4,2003.

Kumar K. Goswami, Murthy Devarakonda and Ravishankar K. Iyer,
Prediction—baesd dynamic load-sharing heuristics, IEEE transaction on
parallel and distributed systems, VOL.4, No.6, june 1993.

Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy, A Review of
Customized Dynamic Load Balancing for a Network of Workstations.

M. Kandaswamy, M.Kandemir, A.Choudhary, D.Benholdt, Performance
implication of architectural and software techniques on I/O intensive

application, Proceeding International conference parallel processing
1998

Neeraj Nehra, R.B.Patel, VK. Bhat ,A Framework for Distributed
Dynamic Load Balancing in Heterogeneous Cluster,Journal of computer
science 3(1):14-24-2007.

Pushpendra Kumar Chandra, Bibhudatta Sahoo, “ A Novel Dynamic
Load Balancing Algorithm for I/O-intensive task in Heterogeneous

Cluster”, International Conference on Advance Computing, Feb. 21-22,
2008.

Marc H. Willebeek-LeMair , Strategies for Dynamic Load Balancing on
highly parallel computer IEEE Transactions on parallel and distributed
systems Vol. 4,No. 9, September 1993.

2009 IEEE International Advance Computing Conference (IACC 2009)

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 5, 2009 at 06:23 from IEEE Xplore. Restrictions apply.

