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Abstract
In this paper, we investigate the bright solitons on a cnoidal wave background train of the
inhomogeneous nonlinear Schrödinger equation, which may be applicable to many physically
realizable systems such as Bose–Einstein condensation media and plasma, etc. We use
well-known methods to reduce the inhomogeneous nonlinear Schrödinger equation to a
standard nonlinear Schrödinger equation by using the combination of Husimi’s and Lens-type
transformations. We study the superposed configuration of soliton with a cnoidal wave
solution of the underlying equation. Finally, we discuss the dynamics of soliton on a cnoidal
wave background in Bose–Einstein condensation trapped in linear density and harmonic
density profiles separately.

1. Introduction and model

It is well established that the shape of a soliton remains
the same during propagation by establishing a dynamical
balance of the spreading from its dispersion with nonlinear
interactions [1]. Initially, this feature has been applied in
soliton-based fibre optic communications. In the recent past,
it has been proved beyond doubt that solitons do exist not
only in optics but also in many other areas of science namely,
fluids [2], plasmas [3], magnetic films [4] and recently in
quantum superfluids of atomic Bose–Einstein condensates
(BECs) [5]. Recently, researchers have generated BECs by
bringing various dilute gases to extremely low temperatures
with the help of the laser and evaporative cooling methods. In
general, the Gross–Pitaevskii (GP) equation, or the nonlinear
Schrödinger equation (NLS) has been successfully used to
model a condensate in weak interactions [6–9]. It is of great
interest to mention that the BECs were used to study a number
of diverse phenomena, for instance, phase coherence [10],
matterwave diffraction [11], quantum logic [12], etc. Recently,
BEC transport has also been reported in periodic washboard
potentials with linear Stark force [13]. However, in this paper,
we study the dynamical evolution of BECs in terms of bright

solitons on a cnoidal wave background under the influence of
both linear and harmonic trapping potentials.

Cnoidal waves are periodic waves with sharp crests
separated by wide flat troughs. Here, the wave characteristics
are described in the parametric form in terms of the modulus
k, over the range 0 and 1, of the elliptic integrals. Thus, there
are two known limits to the cnoidal waves. The first one is
the solitary wave theory which occurs when the period of the
Jacobian elliptic function is infinite (k = 1). The second limit
is the linear wave theory which occurs for k = 0 wherein the
cnoidal wave approaches the sinusoidal wave [14]. In this
paper, we utilize both cnoidal and solitary wave theories to
investigate the dynamical evolution of BECs.

The dynamics of an adiabatic N-soliton train confined to
external fields (quadratic, periodic, and tilted potentials) in the
framework of the perturbed complex Toda chain model was
investigated, based on the nonlinear Schrödinger equation,
both analytically and numerically [15]. The adiabatic N-
soliton interactions in weak external potentials were discussed
too. Using a parametric field theory approach, the formation of
coherent molecular soliton has been investigated in molecular
BECs [16]. The condition of discrete solitons generated in
BECs trapped in optical lattices has been analysed for the
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case of both positive and negative atomic scattering lengths
[17]. In [18], the dynamical phase diagram of a dilute BEC
trapped in a periodic potential was discussed. The existence
of localized excitations, discrete solitons and breathers for
repulsive interaction BECs was also discussed.

Modulational instability and the nonlinear dynamics of
multiple solitary wave formation in two-component BECs
that depend mainly on the sign and magnitudes of the
scattering lengths have been demonstrated numerically [19].
Recently, Rapti et al [20] examined modulational and
parametric instabilities arising in a non-autonomous discrete
NLS equation in the context of BECs trapped in deep optical
lattices. The instability and bright solitons of the cylindrical
BECs in optical lattices have been analysed both analytically
and numerically [21]. The properties of lattice solitons in
BECs were analysed, for the case of either attractive or
repulsive atomic interactions, by exactly solving the mean-
field GP equation in the presence of a periodic potential
[22]. The formation of bright, dark, ring and matter wave
solitons has been widely discussed in an inhomogeneous BEC
[23–27]. Recently, a new precise time-dependent criterion
for the instability of a trapped BEC has been elaborated
both analytically and numerically with the help of lens-type
transformation [28, 29].

As discussed above, this paper is devoted to explore the
dynamical evolution of the BEC in terms of bright solitons on a
cnoidal wave background under the influence of both linear and
harmonic trapping potentials. In order to study the dynamical
evolution of the BEC under these potentials, we consider the
inhomogeneous nonlinear Schrödinger (INLS) equation with
the linear and harmonic density profiles including damping
term as follows [30–32]

iψt + ψzz + 2|ψ |2ψ − (αz − (β ′z)2)ψ + iβψ = 0, (1)

where ψt = ∂ψ

∂t
and ψzz = ∂2ψ

∂z2 . Here αz and (β ′z)2 are the
linear and harmonic density profiles respectively. The sixth
term represents the gain/loss. Note that the non-conservative
parameter (sixth term) β pertains to two different physical
systems depending on the sign of β . That is β > 0
corresponds to the damping term, which is applicable to a
system of plasmas [31] and β < 0 represents the feeding
of the condensates from the non-equilibrium thermal clouds
[33]. It is to be noted that the INLS equation is an integrable
system only when β ′ = β and hence this condition allows us to
construct exact solutions of equation (1) [31, 32]. Analytically,
this integrable condition will be identified later (see equation
(9)). The explicit form of the one-soliton solution has been
derived from the Darboux transformation (DT) method for the
system of coupled INLS equations [30]. Recently, based on
Husimi’s and Lens-type transformations, the bright solitons on
a continuous wave background were constructed in plasmas
described by the INLS equation. When the continuous wave
background approaches to zero, the bright soliton solutions
on a continuous wave background reduce to well-known one-
bright soliton solutions [31]. In [34], the exact two-soliton
solution has been derived for the above INLS equation using
the inverse scattering transform method.

As discussed in the previous paragraph, equation (1) has
two different density profiles, namely linear and harmonic.

Here, we intend to investigate both density profiles separately.
First, we study the linear density profile and secondly we shall
analyse the harmonic density profile. Now, if we consider the
parameter β ′ = β = 0, equation (1) reduced to standard NLS
equation with linear density profile is as follows

iψt + ψzz + 2|ψ |2ψ − αzψ = 0. (2)

Analytically, the nonlinear wave or Langmuir wave
propagation in an inhomogeneous medium in the model of
NLS equation with a linear time-independent density was
discussed by Chen and Liu [35, 36]. Recently, the one-
and two-soliton solutions have been investigated for the NLS
equation with an arbitrary time-dependent linear potential
which denotes the dynamics of a quasi-one-dimensional BEC
[37]. In [38], a number of Jacobian elliptic function solutions
has been discussed in the mean-field model of a quasi-1D
BEC trapped in the time-dependent linear potential. In the
liming case, when modulus equals to 1 and 0, Jacobian elliptic
function solutions lead to various localized solutions (dark and
bright solitons) and trigonometric functions, respectively.

In the second case, we study the harmonic density profile.
For this purpose, we assume the linear density parameter
α = 0. Under this condition, equation (1) takes the form

iψt + ψzz + 2|ψ |2ψ + (β ′z)2ψ + iβψ = 0. (3)

As mentioned earlier, in BECs, the last term related to the
feeding of the condensates from the non-equilibrium thermal
cloud when β < 0. In this case, the condensate density
will grow exponentially as e−βt due to the collisional effect
between the atoms in the thermal clouds of the condensates.
The exact bright soliton solution has been constructed in a
system of quasi-one-dimensional BECs, which is described
by the above equation (3) [32].

In this paper, our aim is to establish the bright solitons
on a cnoidal wave train background in the context of BECs
wherein we discuss the two different potentials namely linear
and harmonic. The paper is laid out as follows. In section 2,
we reduce equation (1) to the standard NLS equation using
the Husimi’s and Lens-type transformations. Then, we obtain
the bright solitons on a cnoidal wave train background for
equation (1). In section 3, the superposed configuration of the
soliton and cnoidal wave solution is discussed in BEC for two
different cases as follows: (i) linear density profile and (ii)
harmonic density profile. Finally, conclusion is presented in
section 4.

2. Soliton solution on a cnoidal wave background

In this section, we study the superposed configuration of
soliton and cnoidal wave solution of equation (1). To proceed
further, we use the following combination of Husimi’s and
Lens-type transformations

ψ(z, t) = 1

�(t)

× exp

[
i

(
a(t)z2 + b(t)z −

∫ t

0
b(t)2 dt

)]
φ(Z, T ), (4)

2
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Figure 1. Dynamics of the soliton moving crossing the cnoidal wave in the presence of α(t). Parameters are β = 0, C1 = 0.1, C2 = 0,
v = 0, k = 0.75, p = 1, u = −0.28 + 0.43i, M = 1.4 for (a) α = 0.25, (b) α = cos(t) and (c) α = t .

where a(t) and b(t) are real functions, Z = z−ρ(t)

�(t)
and T =

T (t). Substituting equation (4) in equation (1), we obtain the
following standard INLS equation

iφT + φZZ + 2|φ|2φ = iε(t)φ, (5)

under the following conditions

at + 4a2 − (β ′)2 = 0,

�t − 4a� = 0,

�2Tt − 1 = 0,

bt + 4ba + α = 0,

ρt − 2b − 4aρ = 0,

(6)

where

ε(t) = (2a − β)�2. (7)

From equation (7), it is well known that equation (5) is
integrable only when a = β

2 . It is to be noticed that the
linear density profile parameter α and harmonic density profile
parameter β ′ have widely been discussed [31]. According to
this integrability condition, equation (5) takes the following
form of the standard NLS equation

iφT + φZZ + 2|φ|2φ = 0, (8)

The integrability condition a = β

2 is a constant. According to
this condition and solving equation (6), we have

β ′ = ±β,

�(t) = e2βt ,

T (t) = 1 − e−4βt

4β
,

b(t) =
[
−

∫ t

0
α(t) e2βt dt + C1

]
e−2βt ,

ρ(t) =
[

2
∫ t

0
b(t) e−2βt dt + C2

]
e2βt .

(9)

From the first relation of equation (9), it is clear that the
INLS equation is an integrable system and hence this condition
allows to construct exact solutions of equation (1).

The soliton solution on a cnoidal wave train background
has been discussed for the NLS equation (8) [39]. The soliton
solution which propagates on a cnoidal wave background for
the INLS equation (1) under the integrable condition a = β/2
is given by

ψ(z, t) =
[
p dn(χ, k) eiξ + 2i(σ − σ ∗)

q1q
∗
2∑2

m=1 |qm|2

]

× exp

[
i

(
az2 + b(t)z −

∫ t

0
b(t)2 dt

)
− 2βt

]
. (10)

where χ = p(Z − vT ), ξ = [
vZ
2 + p2(2 − k3)T − v2T

4

]
with

Z = [z − ρ(t)]/�(t) and T = (1 − e−4βt )/4β. Here dn, cn

3
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Figure 2. Dynamics of the soliton moving parallel on the trough of the cnoidal wave in the presence of α(t). Parameters are β = 0,
C1 = 0.1, C2 = 0, v = 0, k = 0.9, p = 1, u = 0.95i, M = 1.5 for (a) α = 0.25, (b) α = cos(t) and (c) α = t .

and sn are the standard Jacobian elliptic functions with the
modulus k (0 < k < 1)) and p is an arbitrary constant.
The parameter v is the velocity of the cnoidal wave. Finally,
the parameters q1 and q2 are defined by

q1 = eiξ/2

θ0
(

χ

2K

)[
ei
θ2(−w1)θ0(w2)

− M e−i
θ1(−w1)θ3(w3)

]
,

q2 = e−iξ/2

θ0
(

χ

2K

)[
−ei
θ1(−w1)θ3(w2)

+ M e−i
θ2(−w1)θ0(w3)

]
, (11)

with w1 = iu
2K

,w2 = χ+iu

2K
and w3 = χ−iu

2K
. Here M and u are

the arbitrary number and complex parameter, respectively. The
parameters θ0, θ1, θ2 and θ3 are the Jacobian theta functions
and 
 = pδZ + (γ − pδv)T with

δ = iE[sin−1[sn(iu, k)]] +
E

K
u +

dn(u, k′)(1 + sn2(u, k′))
2 cn(u, k′) sn(u, k′)

,

(12)

γ = −p2

2

[
dn2(u, k′) +

cn2(u, k′)
sn2(u, k′)

]
,

and K and E are the complete elliptic integrals of the first and
second kind, respectively. The DT parameter σ is written in

terms of the complex parameter u as follows

σ = v

4
+

p

2

dn(u, k′) cn(u, k′)
sn(u, k′)

. (13)

3. Results and discussion

In this section, we intend to investigate the influence of
the linear density α and harmonic density β profiles on the
dynamics of soliton with a cnoidal wave background.

3.1. Linear density profile (α �= 0, β = 0)

In order to discuss the role of linear density profile, we consider
β = 0. Under this condition, the INLS equation is reduced to
equation (2), which also describes a system of BEC trapped
in linear potential. According to above physical condition,
the parameters are a = 0, �(t) = 1, T (t) = t, b(t) =
− ∫ t

0 α(t) dt + C1 and ρ(t) = 2
∫ t

0 b(t) dt + C2. Then from
equation (10), we get the soliton solution on a cnoidal wave
background of equation (2) and is given by

ψL(z, t) =
[
φc(Z, T ) + 2i(σ − σ ∗)

q1q
∗
2∑2

m=1 |qm|2

]

× exp

[
i

(
b(t)z −

∫ t

0
b(t)2 dt

)]
, (14)

where φc(Z, T ) = pdn(χ, k) eiξ and subscript L in ψL(z, t)

indicates the linear density profile case. Thus, equation (14)

4
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Figure 3. Dynamics of the soliton moving parallel on the crest of the cnoidal wave in the presence of α(t). Parameters are β = 0,
C1 = 0.1, C2 = 0, v = 0, k = 0.9, p = 1.2, u = 0.38i, M = 1.5 for (a) α = 0.25, (b) α = cos(t) and (c) α = t .

explains the BEC soliton which has been formed in the
presence of linear potential. The condensate density is
calculated by

NL =
∫ ∞

−∞
(|ψL(z, t)|2 − |ψL(±∞, t)|2) dz. (15)

From equations (11) and (14), the trajectory of the superposed
configuration of the soliton in the cnoidal wave for the linear
density profile case is given by

Im(
) = Im[pδ(z − ρ(t)) + (γ − pδv)t] = constant. (16)

From this relation, the trajectory of the soliton in the cnoidal
wave strongly depends on the linear density profile parameter
α(t). Then the velocity of the soliton of linear density profile
case is defined by

vsL = −
[

Im(γ )

Im(pδ)
+ 2

∫ t

0
α(t) dt − 2C1 − v

]
. (17)

In what follows, we discuss the different forms of superposed
configuration of the BEC soliton and cnoidal wave solution of
equation (14) for different forms of α as follows.

3.1.1. Solitons crossing the cnoidal wave. In this sub-
section, we examine the BEC soliton on a cnoidal wave
background of equation (2). Before exploring the dynamics of
a soliton with cnoidal wave, it is interesting to mention about
the physical parameter u which plays an indispensable role.
In general, the physical parameter u can be complex. If u is

considered to be in the complex form, then resulting soliton
pulse interacts with cnoidal wave. In other words, we can
also say that the soliton crosses the cnoidal wave. Contrary to
the above, the soliton also travels in parallel with the cnoidal
wave only when the u parameter is chosen to be imaginary
form. Further, it should be noted that the soliton could travel
in parallel with either crest, (for relatively higher values of u),
or trough (for relatively lower values of u) of a cnoidal wave.
Finally, another important point to be noted is that the soliton
disappears and the cnoidal wave only appears if the parameter
u is real.

Now, we turn to explore the dynamics of a soliton with
a cnoidal wave background. To start with, we consider the
first situation wherein the physical parameter u is complex.
Therefore, in the entire span, the soliton will always interact
with the cnoidal wave or the soliton crosses the cnoidal wave.
Figure 1 portrays the superposed configuration of the BEC
soliton and cnoidal wave solution of equation (14) for three
different forms of α(t), i.e. α(t) = α(constant), α(t) = cos(t)
and α(t) = t . Now, we consider the first case, α(t) =
α(constant) the trajectory of both the BEC soliton and cnoidal
wave will be a parabola as seen in figure 1(a). In the second
case, α(t) = cos(ωt), the trajectory of the soliton and cnoidal
wave will become to oscillate with the period of 2π/ω as seen
in figure 1(b) for ω = 1. Finally, we consider α(t) = t ,
the trajectory of the soliton and cnoidal wave becomes
inverse S-type, which is depicted in figure 1(c). In general,

5
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Figure 4. The soliton as a cnoidal wave background in the absence of α(t). The parameters are α = 0, β = −0.1, C1 = 0, C2 = 2, v = 0
for (a) soliton moving crossing the cnoidal wave when k = 0.75, p = 1, u = −0.28 + 0.43i, M = 1.4; (b) soliton moving parallel on the
through of the cnoidal wave k = 0.9, p = 1, u = 0.95i, M = 1.5; and (c) soliton moving parallel on the crest of the cnoidal wave k = 0.9,
p = 1.2, u = 0.38i, M = 1.5.

figures 1(a)–(c) represent the BEC soliton crossing the
cnoidal wave for the following physical parameter values:
β = 0, C1 = 0.1, C2 = 0, v = 0, k = 0.75, p = 1, u =
−0.28 + 0.43i,M = 1.4 with the following three different
forms of α(t) (0.25, cos(t) and t).

Further, we calculate the crest of the cnoidal wave
background shifts constantly across the bright soliton. Let
us consider a region i
 → ∞ then e−i
 → 0, we find

q1q
∗
2∑2

m=1 |qm|2 = −eiξ

[
sn(uI , k) cn(uI , k) dn(χ − uI , k)

1 − k2 sn2(uI , k) sn2(χ − uI , k)

]
,

(18)

and

σ − σ ∗ = −ip
dn(uI , k)

sn(uI , k) cn(uI , k)
, (19)

where uI is the imaginary part of the complex parameter
u(uR + iuI ). Using equations (18) and (19), equation (14)
can be written as

ψL(z, t) =
[
p dn(χ, k)− 2p

dn(uI , k) dn(χ − uI , k)

1− k2 sn2(uI , k) sn2(χ− uI , k)

]

× exp

[
i

(
ξ + b(t)z −

∫ t

0
b(t)2dt

)]
. (20)

Using the addition theorem of Jacobian elliptic functions,
equation (20) can be written as

|ψL(z, t)| = −p dn(χ − 2uI , k), (21)

which is a cnoidal wave. Similarly, in the region i
 → −∞
after that ei
 → 0, we obtain

q1q
∗
2∑2

m=1 |qm|2 = −eiξ

[
sn(uI , k) cn(uI , k) dn(χ + uI , k)

1 − k2 sn2(uI , k) sn2(χ + uI , k)

]
.

(22)

Using equations (19) and (22), equation (14) can be written as

|ψL(z, t)| = −p dn(χ + 2uI , k). (23)

From equations (21) and (23), it is clear that crests of the
cnoidal wave are shifted by 4uI across the soliton. From
figure 1(a), the shift of crests of the cnoidal wave is found to
be 4uI = 1.72.

3.1.2. Soliton travels in parallel with the cnoidal wave. In
contrast to the above studies, in this sub-section, we consider
another physical situation wherein the soliton always travels in
parallel with the cnoidal wave. This case is possible only when
the u parameter is purely imaginary. As has been mentioned
in the previous paragraph, we address the two special cases
for a soliton which travels in parallel with the crest and trough
of a cnoidal wave. Now, we investigate the soliton travels in
parallel with the trough of the cnoidal wave of equation (2).
Figure 2 shows the BEC soliton moving parallel on the
trough of the cnoidal wave when the parameter values are
β = 0, C1 = 0.1, C2 = 0, v = 0, k = 0.9, p = 1, u = 0.95i,

6
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Figure 5. The soliton as a cnoidal wave background of equation (10). The parameters are α = 0.25, β = −0.1, C1 = 0.1, C2 = 2, v = 0
for (a) Soliton moving crossing the cnoidal wave when p = 1, k = 0.75, u = −0.28 + 0.43i, M = 1.4; (b) soliton moving parallel on the
through of the cnoidal wave p = 1, k = 0.9, u = 0.95i, M = 1.5; (c) soliton moving parallel on the crest of the cnoidal wave p = 1.2,
k = 0.9, u = 0.38i, M = 1.5.

M = 1.5 for three different values of α = 0.25 (figure 2(a)),
α = cos(t) (figure 2(b)) and α = t (figure 2(c)). Figure 3
portrays the BEC soliton moving parallel on the crest of the
cnoidal wave for the three different forms of α(t). Both the
soliton and cnoidal wave propagate in a parabolic path when
α = 0.25, which is shown in figure 3(a). If α = cos(t), the
path of the soliton and cnoidal wave is an oscillating one as
seen in figure 3(b). The path is inverse S-type when α = t

(figure 3(c)). The other physical parameter values are β = 0,

C1 = 0.1, C2 = 0, v = 0, k = 0.9, p = 1.2, u = 0.38i and
M = 1.5.

3.2. Harmonic density profile (β �= 0, α = 0)

Having realized the influence of the linear density profile in
the soliton dynamics on a cnoidal wave train background, we
next proceed to explore the harmonic density profile. For
this purpose, we assume that the value of α is equal to zero,
i.e. α = 0, under this condition, the INLS equation (1) is
reduced to equation (3). The resulting equation (3) also
describes a system of BECs trapped in harmonic potential.
Recall that the last term in equation (3) corresponds to the
feeding of the condensates from the non-equilibrium thermal
clouds when β < 0. If α = 0, i.e. b(t) = 0 when C1 = 0.
So � = e2βt , T = 1−e−4βt

4β
and ρ(t) = C2 e2βt . Then from

equation (10), we obtain the BEC soliton solution as a cnoidal

wave background of equation (3), which is given by

ψH (z, t) =
[
φc(Z, T ) + 2i(σ − σ ∗)

q1q
∗
2∑2

m=1 |qm|2

]

× exp[iaz2 − 2βt], (24)

where φc(Z, T ) = p dn(χ, k) eiξ and subscript H in ψH (z, t)

indicates the harmonic density profile case. The condensate
density is calculated by

NH =
∫ ∞

−∞
(|ψH (z, t)|2 − |ψH (±∞, t)|2) dz = NL e−4βt .

(25)

From the above equation, it is worth mentioning that the
condensate density grows exponentially as e−4βt due to
increase in the value of feeding term parameter β (β is
negative). From equations (11) and (24), the trajectory of the
superposed configuration of the soliton in the cnoidal wave for
the harmonic density profile case is given by

Im(
) = Im

[
pδ(z e−2βt − C2) + (γ − pδv)

(
1 − e−4βt

4β

)]
= constant, (26)

and the velocity of the soliton of the harmonic density profile
with feeding of the condensate term can be written as

vsH = −
[(

Im(γ )

Im(pδ)
− v

)
e−2βt + 2βz

]
. (27)

7



J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 025401 R Murali et al

Figure 4 illustrates the BEC soliton as a cnoidal wave
background of equation (3) under the influence of the harmonic
density profile. For the negative values of the harmonic density
profile, the term β acts as linear gain. Hence the soliton as well
as the cnoidal wave undergo compression wherein the value
of β = −0.1. On the other hand, in another situation, i.e.
in plasma physics, the last term in equation (3) corresponds
to damping when β > 0. For this system, the number of
electrons in the plasma decay exponentially as e−4βt owing to
the increase of the value of the damping term parameter β (β
is positive). Obviously, in this case, the width of the soliton
and cnoidal wave get broadened.

3.3. General case: Linear and harmonic density profiles
(α �= β �= 0)

In the previous sub-sections, the influence of linear and
harmonic density profiles has been investigated independently.
Therefore, it is of paramount importance to study both profiles
together. Thus, this sub-section discusses the most general
case of equation (1) wherein the linear and harmonic density
profiles are not zero (i.e. α �= β �= 0). The outcome of the
general case is portrayed in figure 5. In figure 5(a) the soliton
interacts with the cnoidal wave, i.e. the soliton crosses the
cnoidal wave owing to the parameter u and they traverse in
a parabolic path. Besides, both cnoidal and soliton undergo
compression/broadening for negative/positive values of β.
For illustration purposes, we consider α = 0.25, β = −0.1,

k = 0.75, p = 1,M = 1.4 and u(= −0.28+0.43i) is assumed
to be complex in figure 5(a). As discussed above, we now
consider another case wherein the soliton travels parallel to
the cnoidal wave when the physical parameter u is purely
imaginary. Figure 5(b) shows the BEC soliton moving parallel
on the trough of the cnoidal wave for relatively higher values
of u. Similarly, figure 5(c) portrays the BEC soliton moving
parallel on the crest of the cnoidal wave for relatively lower
values of u. In both the cases (figures 5(a) and (b)), both the
waves undergo compression or broadening depending upon
the physical parameter β. It is interesting to mention that, as
discussed above, the other cases like α = cos(t) and α = t

can also be investigated.
From equations (10) and (11), the trajectory of the soliton

in the cnoidal wave for the inhomogeneous system of equation
(1) is given by

Im(
) = Im

[
pδ(z − ρ(t)) e−2βt + (γ − pv)

(
1 − e−4βt

4β

)]
= constant. (28)

Note that, in equation (28), if the values of α(t) = β = C1 =
C2 = 0, then the trajectory of the soliton in the cnoidal wave
approaches the homogeneous system.

4. Conclusion

In this work, we have investigated the bright solitons on a
cnoidal wave train background for a system of BECs described
by the inhomogeneous NLS equation including the linear
and harmonic density profiles. By using the combination of

Husimi’s and Lens-type transformations, the inhomogeneous
NLS equation has been reduced to a standard inhomogeneous
NLS equation. Then, for the known integrability condition
a = β/2, the standard inhomogeneous NLS was again reduced
to a standard NLS equation. The superposed configuration of
the soliton plus cnoidal wave solution has been found for
the inhomogeneous NLS equation through the well-known
NLS equation. Further, the influence of linear density and
harmonic density profiles has been discussed in the dynamics
of bright solitons with a cnoidal wave background. In a linear
potential case, the three different forms of the linear density
profiles have been investigated in detail. In the harmonic
potential case, compression and broadening of the soliton as
well as the cnoidal wave have been discussed for β < 0
and β > 0 respectively. Compression (broadening) occurs
since the condensate density grows (electron density decays)
exponentially with the increase in the value of β in negative
(positive) sign. Besides, we have also analyzed the general
case wherein both the density profiles have been considered.
As expected, in the limiting case, the Jacobian elliptic function
solution leads to the well-known soliton solution when the
modulus equals 1.
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