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Abstract
In this review article, we study the influence of cross-phase modulation,
higher order nonlinear effects such as self-steepening, self-induced Raman
scattering and higher order dispersion effects such as third and fourth order
dispersion on cross-phase modulational instability for a highly elliptical
birefringent optical fibre, and obtain the conditions for the occurrence of
cross-phase modulational instability in the normal dispersion regime. In
addition, we also consider the pulse propagation through a fibre Bragg
grating structure where we investigate the occurrence of modulational
instability at the two edges of the photonic bandgap as well as on the upper
and lower branches of the dispersion curves.

Keywords: nonlinear fibre, self-phase modulation, cross-phase modulation,
birefringence, modulational instability, fibre Bragg grating

1. Introduction

Extensive research has been carried out in the field of pulse
propagation in optical fibres [1–6]. On a par with the pulse
propagation, continuous wave propagation in optical fibres
has also demanded special attention [3, 4]. A continuous
wave with a cubic nonlinearity in an anomalous dispersion
regime is known to develop instability with respect to small
modulations in amplitude or in phase in the presence of noise
or any other weak perturbation, called modulational instability
(MI) [3, 4, 7–10, 22]. Generally, the perturbation has its
origin from quantum noise or from a frequency shifted signal
wave [3, 4]. The MI phenomenon was discovered in fluids [12],
in nonlinear optics [13] and in plasmas [14]. MI of a light
wave in an optical fibre was suggested by Hasegawa and
Brinkman [15] as a means to generate a far infrared light
source, and since then it has attracted extensive attention
for both its fundamental and applied interests [3, 4, 16–
22]. As regards applications, MI provides a natural means of
generating ultrashort pulses at ultrahigh repetition rates, and
is thus potentially useful for the development of high speed
optical communication systems in future; hence it has been

exploited a great deal in many theoretical and experimental
studies for the realization of laser sources adapted to ultrahigh
bit-rate optical transmissions [23–25]. The MI phenomenon is
accompanied by sideband evolution at a frequency separation
from the carrier which is proportional to the square root of the
optical pump power [26]. This represents the simplest case
of MI in an anomalous dispersion medium with a simple Kerr
nonlinearity. When two or more optical waves copropagate
through a birefringent optical fibre, they interact with each
other through the fibre nonlinearity in such a way that the
effective refractive index of a wave depends not only on
the intensity of that wave but also on the intensity of other
copropagating waves, a phenomenon known as cross-phase
modulation (XPM) [1–6, 22]. MI in a birefringent optical fibre
can be experimentally observed via two techniques, namely

(i) single-frequency copropagation where two pump waves
of identical frequency copropagate with orthogonal
polarizations parallel to the two birefringence axes of the
fibre [27], and

(ii) two-frequency copropagation, where the two polarized
waves copropagate with different frequencies [28].
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Drummond et al have demonstrated experimentally that MI
can occur for the normal dispersion regime by using the single
frequency copropagation technique [29]; they pointed out that
the appearance of MI in the normal dispersion regime for a
highly birefringent fibre is due to the group velocity mismatch
(GVM) between the two copropagating waves, and termed
the instability as cross-phase MI (XMI) [29]. When breakup
of continuous wave and quasi-continuous wave radiates into
a train of picosecond and femtosecond pulses in the fibre,
higher order nonlinear effects such as self-steepening, self-
induced Raman scattering (SRS) and higher order dispersion
effects such as third and fourth order dispersion should also
be taken into account [2, 30]. The influence of cross-phase
modulation (XPM), higher order nonlinear effects such as
self-steepening, self-induced Raman scattering (SRS) and
higher order dispersion effects such as third and fourth order
dispersion on XMI for a highly elliptical birefringent optical
fibre is studied in this paper, and conditions for the occurrence
of XMI in the normal dispersion regime are obtained.

In recent years, the investigation of pulse propagation in a
fibre Bragg grating (FBG) has attracted great attention among
researches. For instance, ‘Bragg solitons’ in a fibre grating
were first observed in a 1996 experiment [31]. Thereafter,
several innovative theoretical and experimental ideas have
been proposed [1, 4]. Hence, for this review article, apart
from the studies on MI in fibres which throw light on the
conditions required for the generation of ultrashort pulses from
a continuous or quasi-continuous wave, we report on studies
on MI in an FBG that have also been extensively investigated in
recent years, owing to the enormous amount of group velocity
dispersion (GVD) provided by the periodic structure in the
FBG. Therefore, in the second part, we intend to investigate
the phenomenon of MI in a FBG structure.

The outline of the paper is as follows. In section 2,
the basic equation is presented. MI conditions for the basic
equation are determined in section 3. In section 4 the
derivation of the coupled linearized equations for the four
side band amplitudes in the two orthogonal linear polarization
components of the pump wave is presented, and the MI
conditions corresponding to the same are determined and are
compared with those in section 3. In section 5, the occurrence
of MI is discussed at the edges of the photonic bandgap (PBG)
as well as at the normal and anomalous dispersion regimes.
Before embarking into the MI discussion, we consider the
theoretical model pertaining to the pulse propagation equation
in a FBG. We also study the impact of nonlinearity on
the PBG, a linear stability analysis of nonlinear coupled
mode equations, modulational instability conditions at the
anomalous and normal dispersion regimes, and modulational
instability conditions at the top and bottom of the photonic
band gap, in section 6. In section 7, we discuss the existence of
gap solitons derived from the various modulational instability
conditions discussed in section 6. The main conclusion of this
review article is presented in section 8.

2. Mathematical formulation of the problem

In this section, the case of XPM-induced coupling of two
waves having the same frequency but different polarizations
is studied. In this regard, the basic equation will have two

orthogonal polarization modes, say P1 and P2, and hence the
nonlinear polarization vector PNL has the form [3]

PNL = 1
2 (̂e1 P1 + ê2 P2) exp(−iω0t) + c.c., (1)

where ê1 and ê2 denote the orthonormal polarization
eigenvectors related to the unit vectors x̂ and ŷ oriented along
the major and minor axes of the birefringence ellipse, and are
given by the expressions [3]

ê1 = x̂ + ir ŷ√
1 + r 2

(2)

and

ê2 = r x̂ − îy√
1 + r 2

. (3)

Here r represents the extent of ellipticity. Considering the
slowly varying envelope approximation, the electric field has
the form [3]

E = 1
2 (̂e1U + ê2V ) exp(−iω0t) + c.c., (4)

where U and V are the slowly varying electric field envelopes.
Malomed and Tasgal [32, 33] have derived the equation

for the elliptically birefringent fibre pertaining to self-induced
Raman scattering for arbitrary ellipticity angle. In this paper,
the important steps leading to the derivation of the coupled
higher order nonlinear Schrödinger equation (CHNSE) model
are outlined below from [32, 33]. Starting from the slowly
varying envelope approximation, the final governing equations
between the slowly varying electric field envelopes U and V
and the two orthogonal polarization modes P1 and P2 are given
by

iUz = −ω2
0

c2

(
PRaman

1 + Pnon-Raman
1

)
and

iVz = −ω2
0

c2

(
PRaman

2 + Pnon-Raman
2

)
.

(5)

The equations for the Raman effect in an optical fibre in the
case of arbitrary ellipticity have been derived in [33] having
the form

PRaman(z, T ) = E(z, T )

∫ +∞

−∞
F1(T − T ′)E(z, T ′)

× E(z, T ′) dT ′ + E(z, T ) ·
∫ +∞

−∞
E(z, T ′)F2(T − T ′)

× E(z, T ′) dT ′, (6)

where E is the electric field and F1 and F2 are material
functions. Under the slowly varying envelope approximation,
as the electric field envelopes U and V and the polarization
components P1 and P2 are assumed to vary slowly, the rapidly
oscillatory out-of-phase terms may be dropped, provided the
Raman timescales are much longer than the oscillation period
of the electric field. The polarization envelopes—the terms
which remain after rapidly oscillating terms are dropped from
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equation (6)—are thus given by [33]

PRaman
1 = U (z, T )

∫ +∞

−∞
[2F1(T − T ′)

+ (1 + cos2 θ)F2(T − T ′)]|U (z, T )|2 dT ′

+ U (z, T )

∫ +∞

−∞
[2F1(T − T ′)

+ (1 + sin2 θ)F2(T − T ′)]|V (z, T )|2 dT ′

+ V (z, T )

∫ +∞

−∞
(1 + sin2 θ)

× F2(T − T ′)U (z, T ′)V ∗(z, T ′) dT ′

PRaman
2 = V (z, T )

∫ +∞

−∞
[2F1(T − T ′)

+ (1 + cos2 θ)F2(T − T ′)]|V (z, T )|2 dT ′

+ V (z, T )

∫ +∞

−∞
[2F1(T − T ′)

+ (1 + sin2 θ)F2(T − T ′)]|U (z, T )|2 dT ′

+ U (z, T )

∫ +∞

−∞
(1 + sin2 θ)

× F2(T − T ′)U ∗(z, T ′)V (z, T ′) dT ′,

(7)

where the ellipticity angle θ defines the following relations:

ê1 · ê1 = ê2 · ê2 = cos θ and ê1 · ê2 = sin θ. (8)

Then, making the connection to the evolution equations, the
Raman contribution to the evolution equations takes the form

iUz|Raman = PRaman
1 and iVz |Raman = PRaman

2 . (9)

In the quasi-instantaneous limit, the functions F1 and F2 may
be split into an instantaneous part and a quasi-instantaneous
part, i.e.

F(T ) = (Finst)δ(T ) + (Fquasi-inst)δ(T
′). (10)

The quasi-instantaneous part gives [33]

iUz |Raman = γ (U [ε′
3|U |2 + ε′

4|V |2]T + ε′
5V [U V ∗]T ),

iVz |Raman = γ (V [ε′
4|U |2 + ε′

3|V |2]T + ε′
5U [U ∗V ]T ),

(11)

where γ is the nonlinearity coefficient. The Raman coefficients
ε′

3, ε
′
4 and ε′

5 are given by [33]

ε′
3 = [

2(Fquasi-inst)1 + (1 + cos2 θ)(Fquasi-inst)2
]
,

ε′
4 = [

2(Fquasi-inst)1 + sin2 θ(Fquasi-inst)2
]

and ε′
5 = (1 + sin2 θ)(Fquasi-inst)2.

(12)

Hence the relation between the three Raman coefficients can
be written as

ε′
3 = ε′

4 +
2 cos2 θ

1 + sin2 θ
ε′

5. (13)

The contributions due to the non-Raman terms can be derived
in the same way as those due to the Raman terms [33] presented
in this paper, and also by following a similar procedure for

both of the slowly varying electric field envelopes U and V .
Furthermore, Menyuk [34] has devised an easy method for
deriving the coupled nonlinear Schrödinger equation. Finally,
the non-Raman contributions to the evolution equations take
the form [33]

iUz |non-Raman = −
(

γ (|U |2 + B|V |2)U

+ i
γ

ω0

[(
ε′

1|U |2 + ε′
2|V |2)U

]
T

)
,

iVz |non-Raman = −
(

γ (B|U |2 + |V |2)V

+ i
γ

ω0

[(
ε′

2|U |2 + ε′
1|V |2) V

]
T

)
,

(14)

where the terms in the square brackets denote the effect due
to self-steepening [33]. ε′

1 and ε′
2 are constants and are the

coefficients of the self-steepening terms. The cross-phase
modulation coefficient B is a function of ellipticity, and is
given by [34]

B = 2 + 2 sin2 θ

2 + cos2 θ
. (15)

This gives B = 2
3 for linear ellipticity θ = 0; B = 2 for circular

ellipticity θ = 90◦, and B = 1 for the ideal birefringence case,
for which θ ≈ 35.3◦. Finally, the linear contributions to the
evolution equations yield

iUz|Linear =
(

−i
δ

2
UT +

β2

2
UT T + i

β3

6
UT T T +

β4

24
UT T T T

)
,

iVz |Linear =
(

i
δ

2
VT +

β2

2
VT T + i

β3

6
VT T T +

β4

24
VT T T T

)
,

(16)
where β2, β3 and β4 are the second, third and fourth
order dispersion coefficients, respectively. Considering
both these higher order dispersion and nonlinear effects,
the coupled higher order nonlinear Schrödinger equation
(CHNSE) model [30, 32, 33] with the addition of self-
steepening, SRS, third and fourth order dispersion effects is
given by

i

(
Uz +

δ

2
UT

)
− β2

2
UT T + γ (|U |2 + B|V |2)U

− i
β3

6
UT T T − β4

24
UT T T T + i

γ

ω0

[(
ε′

1|U |2 + ε′
2|V |2)U

]
T

− γ
(
U
[
ε′

3|U |2 + ε′
4|V |2]

T

+ ε′
5V [U V ∗]T

) = 0,

i

(
Vz − δ

2
VT

)
− β2

2
VT T + γ (B|U |2 + |V |2)V

− i
β3

6
VT T T − β4

24
VT T T T + i

γ

ω0

[(
ε′

2|U |2 + ε′
1|V |2) V

]
T

− γ
(
V
[
ε′

4|U |2 + ε′
3|V |2]T

+ ε′
5U [U ∗V ]T

) = 0,

(17)

where z is the longitudinal distance, and T = t − z
vg

is the
retarded time.
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In the dimensionless form, the above equation becomes

i(u ′
ζ + �u ′

τ ) − S1u ′
ττ +

[|u ′|2 + B|v′|2] u ′ − iS2u ′
τττ

− S3u ′
ττττ + i

[(
ε1|u ′|2 + ε2|v′|2) u ′]

τ

− (
u ′ [ε3|u ′|2 + ε4|v′|2]

τ
+ ε5v

′[u ′v′∗]τ
) = 0,

i(v′
ζ − �v′

τ ) − S1v
′
ττ +

[
B|u ′|2 + |v′|2] v′ − iS2v

′
τττ

− S3v
′
ττττ + i[(ε2|u ′|2 + ε1|v′|2)v′]τ

− (
v′ [ε4|u ′|2 + ε3|v′|2]

τ
+ ε5u ′[u ′∗v′]τ

) = 0,

(18)

where

ς = z

T 2
0

|β2|; τ = T

T0
; � = T0δ

2|β2| ;

S1 = s1

2
; S2 = s2|β3|

6T0|β2| ; S3 = s3|β4|
24T 2

0 |β2| ;

U =
√

|β2|
γ T 2

0

u ′; V =
√

|β2|
γ T 2

0

v′; ε1 = ε′
1

ω0T0
;

ε2 = ε′
2

ω0T0
; ε3 = ε′

3

T0
; ε4 = ε′

4

T0
;

ε5 = ε′
5

T0
,

where T0 is an arbitrary timescale and si = ±1 (i = 1, 2, 3).
Cavalcanti et al have theoretically analysed MI in the

region of minimum group velocity dispersion of single-
mode fibres by means of an extended nonlinear Schrödinger
equation, taking into account fourth order dispersive
effects [35]. They have demonstrated that the fourth order
dispersive term dominates the critical MI frequency when
the second order dispersion approaches its minimum value
at the zero dispersion wavelength. Furthermore, they have
demonstrated experimentally the generation of a train of
femtosecond pulses having period of modulation of the order
of 500 fs and with repetition rates given by the modulation
frequency. As a follow-up, in the region of minimum
group velocity dispersion, Akhmediev et al have discussed
the significance of the fourth order dispersion effect, which
predominates over other higher order effects, in the context
of solitary waves with radiationless oscillating tails [36, 37],
and have analysed the stability criteria for stationary bound
states of solitary waves of the order of 500 fs. In this review
article, as the first case, we intend to investigate, in the region
of minimum group velocity dispersion, the XMI conditions
required for the generation of ultrashort pulses having period
of modulation of the order of 500 fs. As the second case,
for |β2| having a sufficiently large value, we would like to
determine the XMI conditions required for the generation of
ultrashort pulses below 500 fs where the influence of SRS and
self-steepening should be considered [30, 38], and where the
higher order dispersion effects can safely be neglected as their
parameter values are much too small when compared to the
group velocity dispersion term.

3. Stability analysis and modulational instability
conditions

In the case of continuous wave or quasi-continuous wave
radiations, the orthogonally polarized amplitudes u′ and v′

are independent of τ at the input end of the fibre at ζ = 0.
Considering the case for a linearly polarized pump oriented at
an arbitrary angle with respect to either the slow or the fast axis
of the birefringent fibre, and assuming that both u′(ζ, τ) and
v′(ζ, τ) remain time independent during propagation inside
the fibre, equation (18) admits steady-state solutions of the
form [3]

u ′ = √
P1 exp(iζ(P1 + B P2)),

v′ = √
P2 exp(iζ(P2 + B P1)),

(19)

where P1,2 are proportional to input powers along the principal
axes. These steady-state solutions imply that light propagates
through the birefringent fibre unchanged except for acquiring a
power-dependent phase shift. The stability of the steady-state
solution is examined by looking into the system in the presence
of small amplitude perturbations u(ζ, τ) and v(ζ, τ) given by

u ′ = (
√

P1 + u) exp(iζ(P1 + B P2)),

v′ = (
√

P2 + v) exp(iζ(P2 + B P1)).
(20)

On substituting equation (20) into (18) and on linearizing
in u(ζ, τ) and v(ζ, τ), the following linearized equations in
u(ζ, τ) and v(ζ, τ) are obtained:

i(uζ + �uτ ) − S1uττ +
(
P1(u + u∗)

+ B
√

P1 P2(v + v∗)
)− iS2uτττ − S3uττττ

+ i
(
ε1 P1[u∗ + 2u]τ + ε2

[
P2u +

√
P1 P2(v + v∗)

]
τ

)
−
(
ε3 P1[u + u∗]τ + ε4

√
P1 P2[v + v∗]τ

+ ε5
[
P2u +

√
P1 P2v

∗]
τ

)
= 0,

i(vζ − �vτ ) − S1vττ +
(
B
√

P1 P2(u + u∗) + P2(v + v∗)
)

− iS2vτττ − S3vττττ + i
(
ε1 P2[v∗ + 2v]τ

+ ε2
[
P1v +

√
P1 P2(u + u∗)

]
τ

)
− (

ε3 P2[v + v∗]τ + ε4

√
P1 P2[u + u∗]τ

+ ε5
[√

P1 P2u∗ + P1v
]
τ

) = 0.

(21)

The Fourier transforms of u(ζ, τ) and v(ζ, τ) are

A1(ζ, ω) = 1√
2π

∫ +∞

−∞
u(ζ, τ) exp(iωτ) dτ,

A2(ζ, ω) = 1√
2π

∫ +∞

−∞
v(ζ, τ) exp(iωτ) dτ,

(22)

which yield the inverse Fourier transforms

u(ζ, τ) = 1√
2π

∫ +∞

−∞
A1(ζ, ω) exp(−iωτ) dω

= 1√
2π

∫ +∞

−∞
A1(ζ,−ω) exp(iωτ) dω, (23)

v(ζ, τ) = 1√
2π

∫ +∞

−∞
A2(ζ, ω) exp(−iωτ) dω

= 1√
2π

∫ +∞

−∞
A2(ζ,−ω) exp(iωτ) dω. (24)
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On substituting equations (23) and (24) into (21) and on
considering the relation given by

A†
i (ζ, ω) = A∗

i (ζ,−ω), (25)

where i = 1, 2, equation (23) gets transformed to the following
set of equations:

1√
2π

∫ +∞

−∞

(
i
∂ A1

∂ζ
+ N11 A1 + N12 A†

1 + N13 A2 + N14 A†
2

)
× exp(−iωτ) dω = 0 (26)

and
1√
2π

∫ +∞

−∞

(
i
∂ A2

∂ζ
+ N21 A1 + N22 A†

1 + N23 A2 + N24 A†
2

)
× exp(−iωτ) dω = 0, (27)

where

N11 = �ω + S2ω
3 + P1 + S1ω

2 + 2ε1 P1ω + ε2 P2ω + iε3 P1ω

+ iε5 P2ω − S3ω
4,

N12 = P1 + ε1 P1ω + iε3 P1ω,

N13 = B
√

P1 P2 + iε4

√
P1 P2ω + ε2

√
P1 P2ω,

N14 = B
√

P1 P2 + ε2

√
P1 P2ω + iε4

√
P1 P2ω + iε5

√
P1 P2ω,

N21 = N13,

N22 = N14,

N23 = −�ω + S2ω
3 + P2 + S1ω

2 + 2ε1 P2ω + ε2 P1ω

+ iε3 P2ω + iε5 P1ω − S3ω
4,

N24 = P2 + ε1 P2ω + iε3 P2ω.

On taking the complex conjugate of equation (21) and
proceeding as above, one more set of equations is obtained:

1√
2π

∫ +∞

−∞

(
i
∂ A†

1

∂ζ
+ N31 A1 + N32 A†

1 + N33 A2 + N34 A†
2

)
× exp(−iωτ) dω = 0 (28)

and

1√
2π

∫ +∞

−∞

(
i
∂ A†

2

∂ζ
+ N41 A1 + N42 A†

1 + N43 A2 + N44 A†
2

)
× exp(−iωτ) dω = 0, (29)

where

N31 = −P1 + ε1 P1ω − iε3 P1ω,

N32 = �ω + S2ω
3 − P1 − S1ω

2 + 2ε1 P1ω + ε2 P2ω

− iε3 P1ω − iε5 P2ω + S3ω
4,

N33 = −B
√

P1 P2 + ε2

√
P1 P2ω − iε4

√
P1 P2ω

− iε5

√
P1 P2ω,

N34 = −B
√

P1 P2 − iε4

√
P1 P2ω + ε2

√
P1 P2ω,

N41 = N33,

N42 = N34,

N43 = −P1 + ε1 P2ω − iε3 P2ω,

N44 = −�ω + S2ω
3 − P2 − S1ω

2 + 2ε1 P2ω + ε2 P1ω

− iε3 P2ω − iε5 P1ω + S3ω
4.

On considering the case when the linearly polarized pump is
oriented at 45◦ with respect to both the axes such that power is
equally distributed along both axes, i.e., P1 = P2 = P with the

total input power being 2P , and on equating the integrands in
equations (26)–(29) equal to zero and after some manipulation,
four linearized equations in terms of A1 + A†

1, A1 − A†
1, A2 + A†

2

and A2 − A†
2 are obtained which are of the form

i
∂(A1 + A†

1)

∂ζ
= M11(A1 + A†

1) + M12(A1 − A†
1)

+ M13(A2 + A†
2) + M14(A2 − A†

2),

i
∂(A1 − A†

1)

∂ζ
= M21(A1 + A†

1) + M22(A1 − A†
1)

+ M23(A2 + A†
2) + M24(A2 − A†

2),

i
∂(A2 + A†

2)

∂ζ
= M31(A1 + A†

1) + M32(A1 − A†
1)

+ M33(A2 + A†
2) + M34(A2 − A†

2),

i
∂(A2 − A†

2)

∂ζ
= M41(A1 + A†

1) + M42(A1 − A†
1)

+ M43(A2 + A†
2) + M44(A2 − A†

2),

where

M11 = �ω + S2ω
3 + Pω(3ε1 + ε2),

M12 = S1ω
2 − S3ω

4 + iε5 Pω,

M13 = 2ε2 Pω,

M14 = −iε5 Pω,

M21 = S1ω
2 − S3ω

4 + 2P + iPω(2ε3 + ε5),

M22 = �ω + S2ω
3 + Pω(ε1 + ε2),

M23 = 2B P + iPω(2ε4 + ε5),

M24 = 0,

M31 = 2ε2 Pω,

M32 = −iε5 Pω,

M33 = −�ω + S2ω
3 + Pω(3ε1 + ε2),

M34 = M12,

M41 = 2B P + iPω(2ε4 + ε5),

M42 = 0,

M43 = M21,

M44 = −�ω + S2ω
3 + Pω(ε1 + ε2).

These equations can be brought into the following matrix form:

i
∂A(ς, ω)

∂ζ
= −M(ω)A(ς, ω) (30)
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where

A(ς, ω) =


A1 + A†

1

A1 − A†
1

A2 + A†
2

A2 − A†
2

 (31)

and

M(ω) =


M11 M12 M13 M14

M21 M22 M23 0
M31 M32 M33 M34

M41 0 M43 M44

 . (32)

The eigenvalue equation is given by

|M(ω) − kI| = 0, (33)

where I is the identity matrix. From equation (33), a dispersion
relation in k is obtained which is a fourth order polynomial
equation. As is well known, MI occurs when there is an
exponential growth in the amplitude of the perturbed wave
which implies the existence of a nonvanishing imaginary part
in the complex eigenvalue k [3, 22]. The MI phenomenon is
measured by a gain given by G = |Im k| where Im k denotes
the imaginary part of k. The gain parameter G throws light
on the MI conditions for the three different scenarios of pulse
propagation mentioned in section 2. The results obtained for
the three different cases are discussed below.

3.1. The MI condition governing the generation of ultrashort
pulses of the order of 500 fs in the region of minimum group
velocity dispersion

This scenario has been experimentally studied by Cavalacanti
et al for the scalar nonlinear Schrödinger equation [35]. The
case when the linearly polarized pump is oriented at 45◦ with
respect to both the axes such that equal power is distributed
along each axis, i.e., P1 = P2 = P with the total input power
being 2P , is considered. From equation (33), the dispersion
relation between k and ω is obtained, which is of the form

k4 − 4S2ω
3k3 − 2ω2L1k2 + 4S2ω

5L2k + ω4L3 = 0, (34)

where

L1 = �2 + ω2(S2
1 − 3S2

2ω
2 + S2

3ω
4) − S1(2S3ω

4 − P),

L2 = �2 + ω2(S2
1 − S2

2ω
2 + S2

3ω
4 − S3 P)

− S1(2S3ω
4 − P)

and

L3 = �4 + ω4(−S2
2ω

2 + (S1 − S3ω
2)2)2

+ (1 − B2)(S1 − S3ω
2)2 P2

+ 2ω2(S1 − S3ω
2)
(−S2

2ω
2 + (S1 − S3ω

2)2
)

P

− 2�2
(
ω2(S2

1 + S2
2ω

2 + S2
3ω

4 − S3 P)

− S1(2S3ω
4 − P)

)
.

S1 = − 1
2 portrays the case of MI in the anomalous dispersion

regime which has been discussed in detail in [3, 29]. The
normal dispersion regime denoted by S1 = 1

2 is now analysed.
In this case, the complex eigenvalue k obtained from the
dispersion relation given by equation (34) has the form

k = S2ω
3 ± ω

√
L4 ± 2

√
L5, (35)

Figure 1. Surface plots of the gain spectrum G for case (i) when
|β2| = 0.000 05 ps2 K−1 m−1, |β3| = 0.54 × 10−3 ps3 K−1 m−1 and
|β4| = 7.0 × 10−4 ps4 K−1 m−1: (a) gain spectrum as a function of
frequency detuning ω and input power P for � = 3.925, S1 = 0.5,
S2 = 2.6087 × 10−6 and S3 = 1.690 82 × 10−6; (b) gain spectrum
as a function of frequency detuning ω and group velocity mismatch
� for P = 5.0 and having the same values for the rest of the
parameters as in (a).

where

L4 = �2 + (S1 − S3ω
2)(S1ω

2 − S3ω
4 + 2P),

L5 = (S1 − S3ω
2)
(
B2(S1 − S3ω

2)P2

+ �2(S1ω
2 − S3ω

4 + 2P)
)
.

Equation (35) is found to possess a non-zero imaginary part
only for the case given by

k = S2ω
3 ± ω

√
L4 − 2

√
L5. (36)

Hence, from the above equation, the condition for
instability to occur is determined, which is given by L2

4 < 4L5.
From equation (36) it is clear that the instability condition is
not affected irrespective of the presence or absence of S2, the
dimensionless third order dispersion coefficient. Figure 1(a)
shows the graphical relation between the frequency detuning
ω, input power P and gain G for B = 2

3 which depicts linear
birefringence, � = 5.416 67 × 106, S1 = 0.5, S2 = 3.6 and
S3 = 2.3333. This corresponds to the case when |β2| =
0.000 05 ps2 K−1 m−1, |β3| = 0.54 × 10−3 ps3 K−1 m−1 and
|β4| = 7.0 × 10−4 ps4 K−1 m−1. From figure 1(a), it is
evident that as |β2| is close to zero, we obtain the usual MI
gain spectrum as in the anomalous dispersion regime case.
In figure 1(b), which shows the graphical relation between
gain G , group velocity mismatch � and frequency detuning
ω for P = 5.0 and with the other parameters having the
same values as in figure 1(a), the instability occurs for all
values of group velocity mismatch. As is well known, the
XPM coupling factor B depends on the ellipticity angle θ , and
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Figure 2. Surface plots of the gain spectrum G for case (i): (a) gain
spectrum as a function of frequency detuning ω and ellipticity angle
θ for the same values as in figure 1; (b) gain spectrum as a function
of frequency detuning ω and polarization angle φ for the same
values as in figure 1.

can vary from 2
3 to 2 for values of θ in the range 0– π

2 [1–3].
θ = 0 corresponds to linear birefringence for which B = 2

3 ,
and θ = π

2 corresponds to circular birefringence for which
B = 2 [1–4]. For θ ≈ 35◦, B = 1.0, which corresponds to
the ideal birefringence case where the self-and cross-phase
coupling terms are identical [26]. Figure 2(a) shows the
variation of gain G with respect to the frequency detuning ω

and the ellipticity angle θ for P = 5.0. In this case, the peaks of
the gain curve have the same value for all values of θ . To study
the effect of variations in the pump polarization wherein the
pump power is not distributed equally along both the axes, the
pump powers in terms of the polarization angle φ can be written
in the form P1 = 2P cos2(φ) and P2 = 2P sin2(φ) such that
the total pump power is always equal to 2P . On substituting
these into the eigenvalue equation (33), the MI condition is
determined numerically. Figure 2(b) depicts the surface plot
of the gain spectrum as a function of the frequency detuning ω

and the polarization angle φ. Here the peaks of the sideband
lobes are found to increase with increase in polarization angle.

3.2. The MI condition governing the generation of ultrashort
pulses in the femtosecond region below 500 fs

It is not possible to neglect the influence of SRS and self-
steepening on the MI in this regime as it is typically larger
than other perturbations and, unlike dispersion, the Raman
effect is nonconservative and can thus cause a permanent
redistribution of the pulses’ internal energy [33]. For the
same values of the dispersion parameters as considered in
figure 1(a) and with � = 1.963, S1 = 0.5, S2 = 0, S3 = 0,
ε1 = ε2 = 4.0 × 10−6, ε3 = 0.03, ε4 = ε5 = 0.01,
the XMI condition is determined by numerically evaluating

Figure 3. Surface plots of the gain spectrum G for case (ii) with
|β2| = 69.0 ps2 K−1 m−1, S1 = 0.5, ε1 = ε2 = 4.0 × 10−6,
ε3 = 0.03, ε4 = ε5 = 0.01: (a) gain spectrum as a function of
frequency detuning ω and input power P for � = 1.963; (b) gain
spectrum as a function of frequency detuning ω and group velocity
mismatch � for P = 0.1.

Figure 4. Surface plots of the gain spectrum G for case (ii) with
� = 1.963 and P = 0.1. The rest of the parameters have the same
values as in figure 3: (a) gain spectrum as a function of frequency
detuning ω and ellipticity angle θ ; (b) gain spectrum as a function of
frequency detuning ω and polarization angle φ.

the eigenvalue equation (33) when the linearly polarized
pump is polarized equally with respect to either axis. The
corresponding gain spectrum as a function of frequency
detuning ω and input power P is portrayed in figure 3(a). From
figure 3(a), it is evident that for comparatively low values of
ω, the gain spectrum is dominated more by XPM and GVD
effects, with the result that in that specific region, as the pump
power is increased, the peaks of the gain curve move closer to
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the zero detuning frequency with the peak position changing
relatively slowly when compared to the increase in the gain
band width.

By suitably adjusting the various parameters, it can be
inferred from figures 3 and 4 that while self-steepening reduces
the maximum value of the gain spectrum, SRS enhances the
region of MI. One effect dominates over the other depending on
the values of the various parameters considered in this paper. In
most cases the SRS dominates over the self-steepening effect.
As a result, for comparatively higher values of ω and with
increasing power, the SRS effect becomes predominant, with
the result that the gain spectrum increases linearly with ω. In
a nutshell, the effect of SRS widens the region of MI whereas
the effect of self-steepening tries to reduce the maximum
gain, which is evident from figure 3(a). A marked difference
between the findings obtained in case (ii) and that obtained
in [29] is due to the influence of the SRS term in the former,
where the gain spectrum increases linearly with ω, which is
completely absent in the latter. Figures 3(b), 4(a) and (b),
which portray the frequency dependent gain as functions of
�, θ and φ respectively for an input power P = 0.1, bring
forth similar effects of SRS on MI as portrayed in figure 3(a),
with the result that the gain parameter has non-zero values
everywhere except for the zero detuning frequency where the
gain parameter vanishes.

4. The MI phenomenon in terms of Stokes and
anti-Stokes side band amplitudes

The regions of instability may also be understood as arising
from a process in which the group velocity dispersion of
the down-shifted sideband polarized on the slow axis and
the up-shifted sideband on the fast axis is balanced by the
group velocity mismatch. This can be verified by assuming
for perturbation a modulation ansatz with wavenumber k and
frequency ω of the form

u(ς, τ) = us(ς) exp(iωτ) + ua(ς) exp(−iωτ),

v(ς, τ) = vs(ς) exp(iωτ) + va(ς) exp(−iωτ),
(37)

where us and ua can be regarded, respectively, as the measures
of the amplitudes of the Stokes and anti-Stokes sidebands for
the slow axis, whereas vs and va represent those for the fast
axis. On substituting the above expressions into equation (18)
and on linearizing with respect to us, u∗

a , vs and v∗
a , a set of

coupled linear ordinary differential equations in terms of the
perturbing fields us, u∗

a, vs and v∗
a is obtained which can be

written in the form of a matrix equation given by

− i
dX(ς)

dς
= LX(ς), (38)

where the column matrix X(ς) =
(

us
u∗

a
vs
v∗

a

)
and

L =


L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

 , (39)

where the elements of L take the form

L11 = P1 − �ω + S1ω
2 − S3ω

4 − S2ω
3

− ω(2ε1 P1 + ε2 P2) − iω(ε3 P1 + ε5 P2);
L12 = P1(1 − ε1ω − iε3ω);
L13 = √

P1 P2(B − ε2ω − iε4ω);
L14 = √

P1 P2(B − ε2ω − iε4ω − iε5ω);
L21 = P1(−1 − ε1ω + iε3ω);
L22 = −P1 − �ω − S1ω

2 + S3ω
4 − S2ω

3

− ω(2ε1 P1 + ε2 P2) + iω(2ε3 P1 + ε5 P2);
L23 = √

P1 P2(−B − ε2ω + iε4ω + iε5ω);
L24 = √

P1 P2(−B − ε2ω + iε4ω);
L31 = √

P1 P2(B − ε2ω);
L32 = √

P1 P2(B − iε4ω − iε5ω);
L33 = P2 + �ω + S1ω

2 − S3ω
4 − S2ω

3

− ω(2ε1 P2 + ε2 P1) − iω(ε3 P2 + ε5 P1);
L34 = P2(1 − ε1ω − iε3ω);
L41 = √

P1 P2(−B − ε2ω + iε4ω + iε5ω);
L42 = √

P1 P2(−B − ε2ω);
L43 = P2(−1 − ε1ω + iε3ω);
L44 = −P2 + �ω − S1ω

2 + S3ω
4 − S2ω

3

− ω(2ε1 P2 + ε2 P1) + iω(ε3 P2 + ε5 P1);
where P1 = 2P cos2(φ) and P2 = 2P sin2(φ), φ being the po-
larization angle. Now for achieving the MI condition required
for the generation of ultrashort pulses of the order of 500 fs
in the region of minimum group velocity dispersion, a similar
procedure is followed as in case (i) of section 3 to arrive at the
dispersion relation from equation (33) which is of the form

k = −S2ω
3 ± ω

√
L4 − 2

√
L5, (40)

where L4 and L5 have the same form as obtained in section 3.
Here, too, the condition for instability to occur is L2

4 < 4L5, as
is clear from equation (40), and hence we obtain the same gain
parameter as in case (i) of section 3 even though the eigenval-
ues are different in both cases. Hence all the results considered
in case (i) of section 3 can be arrived at. Likewise, case (ii) pre-
sented in section 3 is analysed and we arrive numerically at the
same results as obtained in section 3. Thus the modulational
ansatz given by equation (37) can also effectively portray the
MI phenomenon in the single-frequency propagation regime.
Equation (38), being a linear homogenous ordinary differential
equation, has a solution of the form

X(ς) = exp(iLς)C, (41)

where the constant column matrix C depends on the initial con-
ditions of the four linearized side band amplitudes. Figure 5
shows the spectrum for the side band amplitudes for various
values of ς corresponding to the case (ii) in section 3 when
equal power is distributed along both the axes (when the po-
larization angle φ = 45◦). From the plots, we can infer three
main results. The first is that MI can generate only one type
of sideband on each fibre axis: an anti-Stokes sideband ua (the
solid curve in figure 5) on the fast axis and a Stokes sideband
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Figure 5. The intensities of the Stokes sideband amplitude represented by |vs(ω)|2 (dashed curve) on the slow axis and the anti-Stokes side
band amplitude represented by |ua(ω)|2 (solid curve) on the fast axis for various values of ς corresponding to case (ii) in section 3:
(a) ς = 0.6; (b) ς = 0.8; (c) ς = 2.0; (d) ς = 8.0. Also I = |vs|2, |ua|2.
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Figure 6. The intensities of the Stokes sideband amplitude represented by |vs(ω)|2 (dashed curve) on the slow axis and the anti-Stokes side
band amplitude represented by |ua(ω)|2 (solid curve) on the fast axis for various values of unequal power distribution along both the axes
corresponding to case (ii) in section 3: (a) P1 = 0.992; P2 = 0.007; (b) P1 = 0.75; P2 = 0.25; (c) P1 = 0.25; P2 = 0.75;
(d) P1 = 0.03; P2 = 0.97. Also I = |vs|2, |ua|2.

vs (the dashed curve in figure 5) on the slow axis. This has
been experimentally observed by Millot et al [22]. ua and vs

are called ‘phase-matched waves’ whereas us and va are called
‘non phase-matched waves’. Also the intensity of the side-
bands starts increasing as ς increases, and after some value of
ς it becomes greater than the intensity of the mainband. This
points to the fact that exchange of energy takes place between
the spectral bands along the length of the fibre, which is our
second result. From figure 5 we can decipher that for com-
paratively large values of ω, the spectrum increases linearly,
which is due to the influence of SRS on the sideband spectrum.

Until now we have considered equal power distribution along
both the axes. Figure 6 depicts the spectrum for the sidebands
for unequal power distribution along either axis corresponding
to the case (ii) in section 3. From the plots it is clear that as P1

decreases, with the total power P = P1 + P2 remaining a con-
stant, the maximum value of the sideband amplitude decreases,
which is our third result.

5. MI in a fibre Bragg grating

As has been discussed in the introduction, in this second part,
we investigate MI in an FBG. We study the occurrence of MI
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at the two edges (top and bottom) of the photonic bandgap
(PBG) where the forward and backward propagating waves
are strongly coupled because of the presence of the grating
structure. We also study the MI when the continuous wave
(cw) is detuned from the edges of the PBG into the anomalous
and normal dispersion regimes.

MI in an FBG has been studied at two (low and high)
power levels in an FBG for both anomalous- and normal-
group velocity dispersion (GVD) regions, corresponding to
upper and lower branches of the dispersion curves [39]. In
the anomalous GVD case (upper branch), at relatively low
powers (α < κ), the gain spectrum is found to be similar
to the case of a uniform index fibre. MI also occurs even in
the normal GVD case (on the lower branch) where MI has
a threshold condition. Thus, MI (in an FBG) on the lower
branch is qualitatively different from the upper branch of the
dispersion curves. In the former case, the instability has a finite
threshold, meaning that the cws are stable. In other words, the
cw fields are unstable only when the power of the cw fields
exceeds the threshold condition [39]. In the latter case, the
instability is thresholdless. Recently, MI has been observed
experimentally in an apodized grating structure wherein which
a single pulse has been converted into a train of ultrashort
pulses [40, 41]. In addition to temporal instabilities, spatial
temporal instabilities have also been studied in a nonlinear
bulk medium with Bragg gratings in the presence of a Kerr-type
nonlinearity [42]. More recently, there is a strong experimental
evidence for the occurrence of MI in a FBG [43, 44].

Recently, fibre optic technology has advanced to the stage
where it has become one of the most attractive solutions for
reliable high speed and high capacity communication [1–3].
In particular, the regeneration and routing of information
bearing optical signals in all-optical processing networks yield
dramatic savings in power and cost [45]. Utilizing the speed
and parallelism inherent to optics to the full extent, all optical
signal processing elements (OPSE) have paved the way for
overall bandwidth growth [46]. A main drawback for the
OPSE is that they require devices that are uniformly stable
for all incident intensities [47]. This requirement is met by
passive optical limiters [48] which provide a uniformly stable
operating regime, termed as true all-optical limiting, to a fairly
good extent.

In a recent work, Pelinovsky et al have introduced the
concept of nonlinearity management [49] of refractive optical
gratings by suitably compensating Kerr nonlinearities leading
to the disappearance of multistability resulting in hysteresis-
free operation, and they have modelled a complete analytical
theory [50] of true all-optical limiting in nonlinear optical
gratings. Our present work concerns the study of the nonlinear
continuous wave solution and its destabilization of the above-
mentioned model by utilizing the concept of modulational
instability. The MI phenomenon is accompanied by sideband
evolution at a frequency separation from the carrier which
is proportional to the optical pump power [51]. As regards
applications, MI provides a natural means of generating
ultrashort pulses at ultrahigh repetition rates, and it is thus
potentially useful for the development of high speed optical
communication systems in the future and hence has been
exploited a great deal in many theoretical and experimental
studies for the realization of laser sources adapted to ultrahigh

bit-rate optical transmissions [52]. In our work, we concentrate
on the MI conditions required for the generation of ultrashort
pulses for the nonlinearity management system for both the
anomalous and normal dispersion regimes.

6. Theoretical model

Pelinovsky et al have considered the coupled mode
theory [49, 50] describing forward and backward propagating
pulses for the nonlinearity management system pertaining to
a Bragg grating. They have arrived at the nonlinear coupled
mode (NLCM) equations [49, 50] that govern the nonlinear
pulse propagation in a periodic nonlinear structure consisting
of N alternating layers with different linear refractive indices
and different Kerr nonlinearities having the form

i

(
∂ Af

∂ Z
+

1

vg

∂ Af

∂τ

)
+ δAf + κ Ab + α

(|Af|2 + 2|Ab|2
)

Af

+ β[(2|Af |2 + |Ab|2)Ab + A2
f A∗

b] = 0, (42a)

−i
(

∂ Ab

∂ Z
− 1

vg

∂ Ab

∂τ

)
+ δAb + κ Af + α

(|Ab|2 + 2|Af |2
)
Ab

+ β[(2|Ab|2 + |Af |2)Af + A2
b A∗

f ] = 0, (42b)

where Z and τ are the normalized spatial coordinate and time,
respectively, and vg is the group velocity far from the stop band
associated with the grating. The parameters δ and κ are the
detuning and linear coupling coefficients, respectively. The
nonlinear terms in the time-domain coupled-mode equations
contain contributions from both the self-phase modulation
(SPM) and cross-phase modulation (XPM) effects. α and
β are nonlinearity coefficients, β being the coefficient of
nonlinearity management. The origin of the factor of 2 in the
XPM coefficient has been discussed in detail in [1–3]. When
β = 0, equations (42) reduce to the well known coupled-
mode equations for the conventional FBG having positive
Kerr coefficients along the propagation direction which has
been studied extensively in the literature [53]. Equations (42)
exhibit many interesting nonlinear effects. A modulational
instability phenomenon throwing light on the possibility of the
break-up of continuous or quasi-continuous waves into a train
of ultrashort pulses is one such important nonlinear effect.

It has been well established that a knowledge of the
nonlinear dispersion curves obtained from the continuous
wave solutions of the coupled-mode equations can be used
to understand the impact of nonlinearity on the photonic
bandgap [3, 39]. Hence we assume continuous wave solutions
for the basic equation, having the form [39]

Af = uf exp(iq Z), Ab = ub exp(iq Z), (43)

where uf and ub being the constants along the grating length
are generally expressed in terms of a parameter f = uf

ub
, which

represents the ratio of forward- and backward-propagating
waves. In other words, we can also say that the parameter f
describes how the total power P0 = u2

f + u2
b is divided between

the forward- and backward-propagating waves and hence can
be written as

uf =
√

P0

1 + f 2
, ub =

√
P0

1 + f 2
f. (44)
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Figure 7. The dispersion curves traced by q and δ as f changes for
various values of P0 and β. On the upper branch of the figure,
f < 0, whereas on the lower branch, f > 0. The solid curves
(κ = 0.1, P0 = 2.0, α = 0.5 and β = 0.001) represent the
dispersion curves for comparatively small values of the nonlinearity
management coefficient β, and the dashed curves represent the same
for large values of β (κ = 0.1, P0 = 2.0, α = 0.5 and β = 0.5). The
dotted curve represents the linear case for which α = β = 0.0.

f can be positive or negative. For values of | f | < 1.0, the
backward wave dominates. On substituting equations (43)
and (44) in the basic equation, the following dispersion
relations are obtained:

q = −κ
1 − f 2

2 f
− αP0

2

1 − f 2

1 + f 2
− β P0

2

1 − f 4

1 + f 2
, (45a)

δ = −κ
1 + f 2

2 f
− 3αP0

2
− β P0

2 f

f 4 + 6 f 2 + 1

1 + f 2
. (45b)

When β = 0 in equation (45), the dispersion relations for the
FBG case having the same positive Kerr coefficients [39] can
be retrieved.

6.1. The role of nonlinearity on the PBG

In order to understand the role of nonlinearity on the PBG,
we start our discussion from the low intensity (power) limit
by setting α and β equal to zero. The dotted curve in figure 7
represents the dispersion curve for the linear case, in the low
intensity limit, for both a uniform medium, represented as
dashed lines, and a periodic medium, represented as solid
curves. Note that the parameter q becomes purely imaginary
when the frequency detuning δ of the incident light signal
falls in the range −κ < δ < κ . That is, the range δ � κ

is referred to as the photonic bandgap (in analogy with the
electronic energy bands occurring in crystals). For frequencies
within the PBG, the grating reflectivity is high and the field
envelopes are evanescent. However, for frequencies outside
the PBG the grating reflectivity is lower (smaller). In other
words, outside this PBG region, light can propagate inside
the periodic structure. Therefore, for frequencies within the
PBG, the grating does not allow running wave solutions, but
for frequencies outside the PBG, travelling wave solutions are
possible.

The parameter f < 0 represents (forward propagation)
the upper branch of the dispersion curve where the grating-
induced dispersion is negative (anomalous GVD). Similarly,
the parameter f > 0 corresponds to (backward propagation)
the lower branch of the dispersion curve where the grating-
induced dispersion is positive (normal GVD). It is interesting

to note that the parameter f = ±1 corresponds to the two edges
of the photonic bandgap where the grating exhibits significant
higher order dispersion [40]. The parameter f = −1
corresponds to tuning the cw beam to the top of the bandgap,
and f = 1 corresponds to tuning the cw beam to the bottom of
the bandgap. In this paper, we are interested in investigating
the occurrence of MI at the edges of the PBG ( f = ±1) as well
as on the upper ( f < 0) and lower ( f > 0) branches of the
dispersion curve. So far, we have discussed the concept of the
photonic bandgap using the linear dispersion relation. In the
forthcoming paragraph, we qualitatively discuss the impact of
nonlinearity on the PBG.

The nonlinear dispersion relation can be used to describe
the role of nonlinearity on the PBG structure. When we
introduce positive (negative) nonlinearity into the system,
it increases (decreases) the average refractive index of the
medium, which in turn shifts the PBG such that the centre
frequency does not fall within the frequency bandgap but
corresponds to the allowed band. It also means that the high
intensity electric field shifts the PBG (i.e., central frequency)
to either of the upper or lower branches of the dispersion
curves depending on the sign of nonlinearity. Thus positive
nonlinearity shifts the PBG down in energy, and as a result
the centre frequency now locally tunes out of the gap, i.e.,
to the upper edge of the PBG, whereas negative nonlinearity
shifts the PBG up in energy, meaning that the central frequency
is now shifted towards the higher frequency side (to the lower
edge of the PBG). When the power of this applied electric field
exceeds a certain, say, threshold power, i.e., critical power, the
applied field drastically affects the PBG. Before embarking
into further discussion, we first calculate the critical power.
This critical value of P0 can be calculated by looking for the
value of f at which q becomes zero while f �= 1 from the
nonlinear dispersion relation, and it is found to be

f ≡ fc = − αP0

2(κ + β P0)
±
√(

αP0

2(κ + β P0)

)2

− 1. (46)

It is worth noting that when the nonlinear (negative) Kerr
coefficient is zero, the above result leads to the already
predicted result for the standard NLCM equations.

Figure 7 portrays the dispersion curves traced by q and δ as
f changes for various values of P0 and β . On the upper branch
of figure 7, f < 0, whereas on the lower branch, f > 0. The
two edges of the stop band occur at f = ±1.0. Equation (45)
throws light on the effect of fibre nonlinearity on the dispersion
curves. For example, for comparatively small values of the
nonlinearity management coefficient β , on changing the values
of the input power P0 beyond a critical value, the upper branch
of the dispersion curve changes qualitatively, leading to the
formation of a loop (the solid curves in figure 7). But for
comparatively large values of β , the lower branch of the
dispersion curve forms a loop while the upper branch develops
a double well parabolic form (the dashed curves in figure 7).
This behaviour shows that both the branches of the dispersion
curves are placed at two different power levels.

6.2. Linear stability analysis

Extensive research has been carried out in studying the MI
phenomenon [3, 39–43] by which the steady-state solution
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is destabilized, producing periodic output even when a
continuous wave is incident on one end of the fibre grating. The
pulse trains so generated via MI have the added advantage of
being tuned over a large range because of large group velocity
dispersion changes occurring with the detuning δ [40]. Hence,
in this work, we perturb the steady-state solutions, given by
equation (43), slightly without imposing boundary conditions
at the grating ends, as

A j = (u j + a j ) exp(iq Z), ( j = f, b), (47)

in order to study the effect of nonlinearity management on MI.
The fundamental idea of linear stability analysis (LSA) is to
perturb the (system under consideration) continuous wave (cw)
solution slightly and then study whether this small perturbation
grows or decays with propagation. It should be emphasized
that LSA is valid as long as the perturbation amplitude remains
small compared with the cw beam amplitude. In the case
when the perturbation amplitude grows enough, and if it is
comparable to that of the incident cw beam, then numerical
analysis must be adopted. In this paper, we restrict ourselves to
the former case. Assuming that the perturbation a j is small, we
substitute equation (47) into the basic equations and linearize
in a j to obtain

i
(

∂af

∂ Z
+

1

vg

∂af

∂τ

)
− κ f af + κab +

αP0

1 + f 2

[
af + a∗

f

+ 2 f
(
ab + a∗

b

)]
+

β P0

1 + f 2

[
2ab + a∗

b + f
(
af + 2a∗

f

)
+ f 2

(
2ab + a∗

b

)− f 3ab
] = 0, (48a)

−i
(

∂ab

∂ Z
− 1

vg

∂ab

∂τ

)
− κ

f
ab + κaf +

αP0

1 + f 2

[
2 f
(
af + a∗

f

)
+ f 2

(
ab + a∗

b

)]
+

β P0

1 + f 2

[
2af + a∗

f + f
(
ab + 2a∗

b

)
+ f 2

(
2af + a∗

f

)− ab

f

]
= 0. (48b)

In order to solve the set of two linearized equations
given by equation (48), we assume a plane wave ansatz,
constituted of both forward and backward propagation, having
the form [3, 39]

a j = c j exp(i(K Z − �τ)) + d j exp(−i(K Z − �τ)),

( j = f, b), (49)

where c j and d j are real constants, K the propagation constant
and � the perturbation frequency. Following the method
discussed in [39], on substituting equation (49) into (48), we
obtain a set of four homogeneous equations satisfied by c j

and d j . This set has a nontrivial solution only when the
4 × 4 determinant formed by the coefficients matrix vanishes
as given below:∣∣∣∣∣∣∣

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

∣∣∣∣∣∣∣ = 0, (50)

where

m11 = −K + s − κ f + �1 + �2 f (1 − f 2),

m12 = κ + 2�1 f + 2�2(1 + f 2),

m13 = �1 + 2�2 f,

m14 = 2�1 f + �2(2 + f 2),

m21 = m12,

m22 = K + s − κ

f
+ �1 f 2 − �2

f
+ �2 f,

m23 = 2�1 f + �2(1 + f 2),

m24 = �1 f 2 + 2�2 f,

m31 = m13,

m32 = m23,

m33 = K − s − κ f + �1 + �2 f (1 − f 2),

m34 = m12,

m41 = m23,

m42 = m24,

m43 = m12,

m44 = −K − s − κ

f
+ �1 f 2 − �2

f
+ �2 f.

This condition leads to a fourth order polynomial in s ≡ �
vg

whose roots depend on K , κ and P0. The four roots of the
polynomial in s so obtained determine the stability of the
continuous wave solution.

As is well known, for the case of a FBG, MI occurs when
there is an exponential growth in the amplitude of the perturbed
wave, which implies the existence of a nonvanishing imaginary
part in the complex parameter s [3, 39]. The MI phenomenon
is measured by a gain given by G ≡ |Im sm |, where Im sm

denotes the imaginary part of sm , where sm is the root with the
largest imaginary part.

In this second part of the paper, our aim is to investigate
the occurrence of temporal (longitudinal) instabilities of two
counterpropagating waves in an FBG structure at the edges of
the bandgap as well as on the upper and lower branches of the
dispersion curve. The results of this paper are presented in the
following subsections. First we study the MI for the general
case (where f < 0 and f > 0) and then consider the two more
special cases where f = ±1.

6.3. The anomalous dispersion regime ( f < 0)

First we consider the general case where the parameter f < 0
describes the detuning of the cw from the edge of the PBG
into the anomalous dispersion regime (upper branch of the
dispersion curve). We obtain the gain spectra of MI for both
the anomalous and normal dispersion regimes for two cases
(a) gain, G(K , κ) ≡ |Im sm(K , κ)| for a particular value
of the input power P0, and (b) G(K , P0) ≡ |Im sm(K , P0)|
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Figure 8. Gain spectrum in the anomalous dispersion regime, for
the following physical parameters: P0 = 0.1, β = 0.001,α = 0.5
and f = −0.5.

Figure 9. Gain spectrum in the anomalous dispersion regime, for
the following physical parameters: P0 = 0.1, β = 0.5, α = 0.5 and
f = −0.5.

for a particular value of the linear coupling constant κ . We
summarize the results obtained below. For the first case, in the
anomalous dispersion regime, for comparatively small values
of the input power P0 = 0.1 and nonlinearity management
coefficient β = 0.001, we obtain the gain spectrum having
two distinct sidelobes on either side of zero propagation
constant region and with nil value along the line where the
propagation constant vanishes. Also, the sidelobes broaden
with increasing height as the value of the linear coupling
coefficient κ increases. This is depicted in figure 8. For
the same situation, but having comparatively large value of
the nonlinearity management coefficient, say β = 0.5, the
sidelobes vanish and, instead, we obtain a gain spectrum
centred around the zero propagation constant region and
having a maximum value along the line where the propagation
constant vanishes. Also, the centred lobe broadens with
increasing κ , as is portrayed in the surface plot given by
figure 9. This is one of our main results.

6.4. The top of the photonic bandgap ( f = −1)

So far, we have considered the case for which f = −0.5.
It is well known that the parameter f = −1 represents the
tuning of the cw into the top of the photonic bandgap. Now
on repeating the same procedure for f = −1.0, in addition to
having a centred lobe, we observe two distinct curves whose
heights reduce and soon become zero with increasing κ , on
either side of the zero propagation constant.

6.5. The normal dispersion regime ( f > 0)

Again we consider the other general case for which the
parameter f > 0, which represents the detuning of the

Figure 10. Gain spectrum in the anomalous dispersion regime, for
the following physical parameters: P0 = 0.5, β = 0.9, α = 0.5 and
f = −1.0.

−
−

Figure 11. Gain spectrum in the normal dispersion regime, for the
following physical parameters: P0 = 0.5, β = 0.001,α = 0.5 and
f = 0.5.

cw into the lower branch of the dispersion curve where the
grating-induced dispersion is normal (positive). For the normal
dispersion regime, for P0 = f = 0.5 and for comparatively
small values of the nonlinearity management coefficient, say
β = 0.001, the gain spectrum has values expected along
the line where the propagation constant vanishes for which
it has nil value. Figure 10 portrays the corresponding surface
plot. Now, for comparatively large values of the nonlinearity
management coefficient, say β = 0.5, the gain spectrum
has a ‘w’ shaped form centred around the zero propagation
constant region and with the edges being flattened, as depicted
in figure 11.

6.6. The bottom of the photonic bandgap ( f = 1)

As discussed earlier, f = 1 corresponds to tuning the cw
beam to the bottom of the photonic bandgap. On repeating
the same procedure for f = 1.0, which depicts tuning at the
bottom of PBG, for comparatively small values of the NMC,
say β = 0.001, the gain spectrum has nil value along the zero
propagation constant region but has maximum values along the
line where the propagation constant vanishes for comparatively
large values of the NMC, say β = 0.5, as is portrayed in
figure 12. So far, we have plotted the gain spectrum by varying
the linear coupling constant κ and keeping the input power P0

fixed. Now on keeping the linear coupling constant κ fixed
and on varying the input power P0, we observe that the MI
condition is achieved for comparatively small values of P0 for
both the anomalous and normal dispersion regimes, which is
our main result, contrary to that of the birefringent fibre case
where large values of the input power are required [30]. This is
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Figure 12. Gain spectrum in the normal dispersion regime for the
following physical parameters: P0 = 0.5, β = 0.5, α = 0.5 and
f = 0.5.

Figure 13. Gain spectrum in the anomalous dispersion regime for
various values of the input power P0 and for the following physical
parameters: β = 0.1, α = 1.4, κ = 0.2, and f = −0.5.

depicted in the surface plots given by figures 13 and 14. From
the figures, we observe that MI condition is achieved only for
finite values of the input power.

Having discussed the MI gain spectra for both anomalous
and normal dispersion regimes in the upper and lower branches
of the dispersion curve for the nonlinearity management
system, in the following section we argue the existence of the
soliton in the upper and lower branches of the dispersion curve
through the same physical parameter values for which the MI
gain spectra have already been obtained.

7. Discussion on the existence of the gap soliton

As discussed above, here, our prime aim is to discuss the
generation of solitons for the nonlinearity management system
in the upper and lower branches of the dispersion curve through
the MI gain spectra.

Like a conventional soliton in a uniform fibre, the soliton
in a FBG is formed through a delicate balance between the
Kerr nonlinearity and the strong GVD exhibited by the PBG
structure. The resulting solitons are often referred to as
Bragg grating solitons on account of the fact that they are
formed within the FBG. When the entire spectral components
of the input pulse lie within the PBG structure, the pulse
gets completely reflected as solitons which result from the
counterbalancing effects of self-and cross-phase modulations
with the grating-induced dispersion. The resulting solitons are
referred to as gap solitons, since their spectral components are
within the PBG structure. However, it can be noticed that, in
literatures, nowadays the distinction between gap solitons and

Figure 14. Gain spectrum in the normal dispersion regime for
various values of the input power P0 and for the following physical
parameters: β = 0.1, α = 1.4, κ = 0.2, and f = 0.5.

Bragg grating solitons is hardly maintained and, in general,
they are simply called grating solitons. These solitons have
been extensively investigated by many research groups [53–
60] in the FBG, and still the investigations on these exciting
entities are alive. For instance, Chen and Mills [54] were the
first to predict the existence of self-localization of a light wave
within the PBG of a nonlinear grating and they coined the name
gap soliton.

To investigate these solitons in the FBG, so far, two
theoretical approaches have been developed. The first one is
the coupled mode theory, which describes a coupling between
forward and backward travelling modes where the nonlinear
pulse propagation is described by the NLCM equations. In
general, the NLCM equations are nonintegrable and are
applicable anywhere in the PBG structure. However, in a few
cases, NLCM equations have analytical solutions representing
the solitary wave solutions. The most general form of
the solitary wave solutions to the NLCM equations with β

being zero were derived, for the first time, by Aceves and
Wabnitz [57]. They are given by

A± = µ Ã± exp[iη(θ)]

Ã+ = ∓
√±κ

2

1

�
sin δ̃ exp(±iσ) sech

(
θ ± iδ̃

2

)

Ã− = −
√±κ

2
� sin δ̃ exp(±iσ) sech

(
θ ± iδ̃

2

) (51)

with

θ = κγ (sin δ̃)(z − vt), σ = κγ (cos δ̃)(vz − t),

v = 1 − �4

1 + �4
γ = 1√

1 − v2
.

In equation (51), γ is the Lorentz factor. Since the
expressions for µ and η are well known, we do not present
them here. The soliton-like solutions for the NLCM equations
are considered to be a generalization of the massive thirring
model (MTM). As a special case, when δ̃ = π/2, the most
general solutions of Aceves and Wabnitz lead to the slow Bragg
solitons, already predicted by Christodoulides and Joseph [56].

The second one is the Bloch wave analysis, which is
used to describe the nonlinear pulse propagation near the PBG
structure. To achieve the same, usually a technique known as
multiple scale analysis is adopted. Recently, using the multiple
analysis, Aceves [58] investigated the gap soliton bullets in
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(a)

(b) (c)

Figure 15. Bright soliton solution in the upper branch of the dispersion curve given by equation (52): (a) surface plot for the intensity of the
bright soliton having the following values for the physical parameters: P0 = 0.5, α = 1.4, β = 0.1, β1 = 0.5 and κ = 0.2; (b) intensity plot
for various values of input power: P0 = 0.25 (dotted curve), P0 = 0.5 (dashed curve) and P0 = 0.75 (solid curve); (c) variation of pulse

width T0 with respect to the input power P0 given by the expression T0 =
√

2
d P0

, which is obtained from equation (53).

the Kerr-type planar waveguides. Very recently, following the
same multiple scale analysis, we have investigated bright and
dark solitons in the FBG [60].

At this juncture, we would like to show the generation
of bright and dark solitons in the upper and lower branches
of the dispersion curve through the MI gain spectra scheme.
Note that the formation of these solitons depends on the critical
power of the MI gain spectra. From the MI gain spectrum of
figure 13, we find that the critical power (Pc) is less than 0.2.
Therefore, the bright soliton is formed in the upper branch (AD
regime) for the input power P0 > 0.2.

A(z, τ) = √
P0 sech

[
1

T0
√

b
(τ +β1z)

]
exp[i(kz−ωτ)], (52)

where

P0 = 2

(
2aω + 3bω2 − β1

d

)
,

T0 =
√

1

2aω + 3bω2 − β1
.

(53)

It should be noted that the coefficients a = 1
2κ

, b = 1
8κ3 and

d = 3α−4β

4κ2 are the physical parameters of the above NLCM
equations. The parameter ω is the frequency and β1 is the
group velocity. In equation (52), the variable ‘A’ represents
the amplitude of the envelope associated with the Bloch wave
formed by a superposition of forward Af and backward Ab

propagating waves [1, 4]. The bright soliton is depicted in
figure 15(a). Further, to have an idea about the variation of
pulse width and amplitude with respect to input power P0, we
have also provided the 2D plots for various values of the input
power P0. From the plot, it is clear that the pulse width reduces
and hence the amplitude increases as the value of the input
power P0 increases. This is clearly depicted in figure 15(b).
In addition, we have found the relation connection between

input power P0 and pulse width T0 which is clearly shown in
figure 15(c).

Similarly, there is another interesting class of soliton,
called a dark soliton, in the lower branch; now we discuss the
generation of the same. To do so, we observe the critical power
from the MI gain spectrum of the normal dispersion regime,
and it is found to be of the order of 0.25 from figure 14. Hence
the dark soliton is formed in the lower branch for P0 > 0.25.
The dark soliton solution is

A(z, τ) = √
P0 tanh

[
1

T0

√
b
(τ +β1z)

]
exp[i(kz−ωτ)], (54)

where

P0 = 2aω + 3bω2 − β1

d
,

T0 =
√

2

2aω + 3bω2 − β1
.

(55)

The dark soliton in the lower branch is depicted in figure 16(a).
In addition, we have also provided the 2D plots for various
values of the critical power. From the plot, it is clear that the
pulse width reduces and hence the amplitude increases as the
value of input power P0 increases, as in the case of the bright
soliton. This is clearly depicted in figure 16(b).

8. Conclusion

The conditions for the occurrence of cross-phase MI in the
normal dispersion regime which occurs as a result of a group
velocity mismatch between the linearly polarized eigenstates
when the linearly polarized pump is oriented at 45◦ with
respect to the slow or fast axis are obtained. The instability
conditions that govern the generation of ultrashort pulses
for the two cases mentioned in section 3 are not affected
irrespective of the presence or absence of S2 , the dimensionless
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(a)

(b)

Figure 16. Dark soliton solution in the lower branch of the
dispersion curve given by equation (54): (a) surface plot for the
intensity of the dark soliton having the same physical parameter
values as in the bright soliton case; (b) intensity plot for various
values of input power: P0 = 0.5 (dotted curve), P0 = 0.75 (dashed
curve) and P0 = 1.0 (solid curve).

third order dispersion coefficient. For variations in the pump
polarization, maximum gain occurs for 45◦ polarization for
all the cases considered in this paper. The effect of SRS
on MI is such that for comparatively small values of the
perturbation frequency, group velocity dispersion and cross-
phase modulation terms dominate, whereas for comparatively
large values of the perturbation frequency the gain spectrum
increases linearly, with the result that the region of MI is
widened due to SRS. Moreover, the self-steepening effect
reduces the maximum gain and bandwidth. At the zero group
velocity dispersion regime, one obtains only the original MI.
Furthermore, a modulational ansatz given by equation (37) for
the perturbation amplitudes is considered, and we observe that

(i) MI can generate only one type of sideband on each fibre
axis: an anti-Stokes sideband ua on the fast axis and a
Stokes sideband vs on the slow axis;

(ii) the intensity of the sidebands starts increasing as ς

increases and after some value of ς becomes greater than
the intensity of the mainband, which points to the fact that
exchange of energy takes place between the spectral bands
along the length of the fibre;

(iii) for unequal power distribution along either axis, the
maximum value of the sideband decreases as P1 decreases
with the total power P = P1 + P2 remaining a constant.

In addition to the investigation of MI in fibres, we
have also investigated the modulational instability conditions
required for the generation of ultrashort pulses in FBG for
the nonlinearity management system for both the anomalous
and normal dispersion regimes as well as at the edges of the
photonic bandgap, and have arrived at two main results. One is
that modulational instability occurs only for finite values of the
total input power for both the anomalous and normal dispersion
regimes. The other is that the gain spectrum changes profusely
for comparatively smaller and comparatively larger values of
the nonlinearity dispersion management coefficient. Through
the nonlinear dispersion curves, we have qualitatively studied

the impact of nonlinearity on the photonic bandgap. From
the results, it is clear that the top of the photonic bandgap is
drastically affected by the positive nonlinearity whenever the
power of the applied field exceeded the critical power. We
have also discussed the generation of bright and dark solitons
in an FBG derived from the various MI gain spectra scheme
discussed in section 6. We have found that there exists a
relation between the total input power and the soliton pulse
width, and observed that on increasing the total input power, the
soliton pulse amplitude increases for both the anomalous and
normal dispersion regimes and also gets compressed. Here,
our studies have been restricted to only temporal instabilities
of two counterpropagating waves. Therefore, it would be of
great interest to extend the above analysis to both longitudinal
and transverse instabilities (called spatiotemporal instability)
in a bulk medium having the grating structure. Another
important study is the impact of dissipation on the modulational
instability gain spectrum, which should ultimately result in a
decrease of the gain along the length of the fibre Bragg grating,
which is under study.
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