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Summary 
The paper presents a new approach to the 

estimation of voltage and current phasors of a faulted 
power system by using an adaptive neural network 
represented by adalines. The neural estimator uses a 
nonlinear weight adjustment algorithm for the effective 
rejection of dc offset and noise. The fault apparent 
resistance, reactance and fault location .of a typical 
transmission line are calculated using the estimated 
phasors. The results are quite comparable to the Kalman 
filter approach which requires more computation than 
the present approach. 

Keywords : Neural estimation, adaptive neuron fault 
impedance calculation, fault location. 

1. Introduction 
In the last decade, the development of new 

digital protection concepts of power systems was very 
intensive. The development of new generation of 
numerical protection devices was mostly encouraged by 
the demand for greater adaptability, uniformity of 
hardware, integrations of functions and improved 
flexibility. In addition, digital protection systems allow 
communication with station monitoring and control 
systems. 

Recently several papers have applied various 
techniques for the estimation of the Fourier coefficients 
of voltage and current for digital impedance 
protection[ 11. Thorp and Phadke presented a symmetrical 
component distance relay based on phasor measurements 
by using discrete Fourier transforms @FT)[2]. The 
computational cost of this DFT based algorithm is very 
low[3], but its performance can be adversely affected by 
decaying DC components or low SNR. Sachdev and 
Baribeau used batch-processing least square estimates of 
the Fourier coefficients[4]. Grigis applied Kalman 
filtering to the same[5] problem assuming a stochastic 
model for the post-fault parameter changes. This 
algorithm has a long transient response time and high 
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computational requirement. Recently Kamwa and Grodin 
presented two recursive algorithms (the RLS and LMS) 
for tracking voltage phasors in transmission and 
distribution systems. These two algorithms produce fast 
tracking of voltage and current phasors but are subject to 
high computational requirements and filtering of signals 
corrupted with noise prior to computing. 

This paper presents a new approach to the 
estimation of voltage and current signals in a power 
system for both impedance and differential protection 
using a Fourier linear combiner. The linear combiner is 
realised using a 2-layer neural network. The input layer 
consists of 2n+2 elements, where n is the number of 
harmonics to be modeled. The network learns the signal 
components using the Widrow-Hoff delta rule[6]. The 
output layer has one element, whose output is the signal 
sample. This neural model estimates the Fourier 
coefficients of the signal, in contrast with the other 
neural estimation schemes presented in the literature in 
which indirect learning approach is addressed. 

2. Basic Model and Neural Estimation 
For a basic signal model, we assume the 

measured signals (voltages and currents) can be 
described by its harmonic components and exponentially 
decaying transient. If we denote the signal y ( t )  we 
have, with n harmonic components 

y ( f ) = d , e - ~ + ~ C k S i n ( w , ~ j  + & ) + V ( t )  (1) 
k=l 

where v ( f )  is the measurement noise. Using, for 
example, upto 3rd harmonics and two terms of the Taylor 
series expansion of e%, the signal y ( t )  becomes 

3 

k=l 
y ( f )  = do + d1t + c ( a k  S h  @,kt + bk COS W o k )  + V ( T )  (2) 

Where, 

C, = +b: (3) 

Now if the fundamental frequency wo and the 
measurement time r, are known then equation (3) is 
linear in the unknown parameters, ak, bk and dk. 
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Equation (3) is rewritten as a regression in the following 
way 

Where the regression vector 
y ( t )  = 4%)6+v(t) (4) 

J ( t ) - [ 1  f ~ i n ~ ~ t  ~ s c u o f  s inZ~,+  C O S ~ W ~ ~  ~ i n 3 ~ ~ f  C O S ~ W , + ]  

(5) 

(6) 
and the unknown parameters collected in the vector 8 

= [do dl a1 4 a2 b, a3 b31 
One of the most widely used adaptive algorithms 

for the signal estimation is least mean square algorithm 
(LMS) developed by Widro and Hoff. The algorithm is 
simple and computationally efficient and is used to 
generate the estimates of the constant or time varying 
parameters of the signal described by equations (1) and 
(3). This algorithm, however is slow in convergence and 
does not yield and accurate estimate under noisy 
observations. 

The parameters of the signal model given by 
equation (6) are identified by using an adaptive neural 
network consisting of linear adaptive neurons called 
adaline. The regression input vector for this network 
shown in Fig. 1 is given by 

Y W1 
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x 2  
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x" 

Figure 1: Block Diagram of an Adaline 

xT(k)=[kAt s ~ I I @ A ~  c a ~ ~ & A t  ..... sin3@At ~3OdcLy](7) 
27r where, At = sampling time = - 

N, = sample rate 
The Widro-Hoff adaptation algorithm is used to 

adapt the adaline's weight vector. The delta rule which 
minimizes the mean square error between the signal 
sample y ( k )  and the and output of the net i(k) over all 
k, can be Written as 

@ON, 

"w W ( k  + 1) = W ( k )  + 
A + xT(k)x(k)  

where k = time index or simple number, 
W ( k )  =[%(k) F q k )  ...... W"kf 
is the weight vector at time k, 

e(k)  = j ( k )  - y ( k )  is the error at time k, 
a = learning parameter 
and h is a constant chosen to make 
A + x T ( k ) x ( k )  f 0. (9) 

The error dynamics for the adaline for the 
weights are adjusted by the delta rule can be obtained as 
follows : 

The neural estimator (equations 7-9) satisfies 
the following properties : 

k > l  (10) 
0) pw) - (pw - 1) - w,lls (pv) - w,ll, 

= O  e2 (k) (ii) lim 
k+- A + x T ( k ) x ( k )  

where WO is the weight vector that corresponds to perfect 
learning of the signal parameters and 
y(k) = XT(k).% (12) 

F?(k) = W ( k )  - w, 
The error signal for the adaline whose weights 

are adjusted by the delta rule can be obtained as follows: 

and 
e(k) = y(k)  - T(k)  = xT (k) W, - x' ( k )  W(k)  = xT (k)@( k) (13) 
Subtracting WO from both sides equation (8) we get 

where. 

e2 

If a lies between 0 and 2, and D O  and is a 
small quantity it can be verifred that 
for 

11F?(kf is a bounded non increasing function and 

P(k) w i ~  reduce to a mull vector after a few iterations. 
The error signal e( k + 1) at (k + 1) the iteration is given 
bY 
e(k + 1) = - x T ( x  + I)@(k + 1) = -xT(k  +1)(I - a)$(k)(l8) 
On comparison of equations (1 3) and (18) are finds that 

for O<a<2 
Usually With a value of a=0.8 or 1.3, 

and the inequality in (19) is satisfied. 

le@ + 111 < le(k)] (19) 

(1- a ) x ( k + l ) < x ( k )  (20) 
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Thus the tracking error signal will 
asymptotically reduce to zero after a few iterations. After 
the weight error vector reduces to zero asymptotically 
after a few iterations. The final weight vector WO will 
yield the parameters regressor vector of the faulted 
current or voltage signal 
$=w, (21) 

To provide faster convergence and noise 
suppression, nonlinearity is introduced to the learning 
rule in the following manner : 

where X ( k )  is a nonlinear function and the simplest one 
is chosen as 
X ( k )  = SGN{x(k))  
where, 

+1 if xi (k) > 0 

0 ifx,(k) = 0 
The learning rate is made adaptive for fast 

convergence and noise rejection by choosing 

where a. = initial learning rate 
p = decaying rate constant 
The choice of a. and p depends on the signal to 

noise ratio and the nature of the signal whose parameters 
are to be estimated. For noisy signal a value of a, > 1 
and 20 <p<lOO will be adequate. For time varying 
signals, the value p is 2 100. 

3. Fault Location and Impedance Estimation 
When data is available at one location, the 

apparent impedance is defined as the ratio of a selected 
voltage to a selected current based on the fault type and 
the faulted phases. Upon the detection of disturbance, the 
phasor quantities of the voltages and currents are 
obtained using the neural estimator described in the 
earlier section. The change in the magnitude of the 
current phasors is used to classify the fault type and 
faulted phases. Upon the classification of the fault type, a 
voltage pair is selected to compute apparent impedance. 
Using the fault boundary conditions and the sequence 
network parameters, the following equation holds good 
for a single-line-to-ground' fault on a 3-phase power 
system at a distance D(in km) fiom the sending end 
source (Fig.2). 

(26) 
where 
Vu = <Ia + kIo)Zl + 310Rf 

Thus the apparent impedance is defined as 

Zapp = <elect J Iselect = Rapp + iXapp (28) 
where Rapp = apparent resistance at the relaying point 
Xapp = apparent reactance at the relaying point. 

Here Vselect = V,  
and Iselect = I ,  +MO = Id + jIq (29) 
Thus 

To compensate for the unknown fault resistance, 
the current fed into the fault must be considered. For a 
single-line-to ground fault, the compensating current is 
proportional to the change in the zero sequence current 
in the faulted line section. Thus the equation for the 
apparent impedance is 

A little manipulation will yield 
(32) 

where 
q , x, are the per unit resistance and reactance of the line 

D = ( Rapp. A - B.  Xapp) I ( rl. A - xl. B )  

(34) 

In a similar way for a line-to-line fault 
?elect = 'a - vb ,'select = 'a - Ib 
and Icomp = Ma - AIb (35) 
where A represents the change. 

4 Numerical Experimentation 
For digital protection, the fault current and 

voltage data are obtained from the power system shown 
in Fig. 1 using EMTDC. 
Owrating Parameters : 
Base voltage = 2 10 kV 
Base current = 2300 Amp. 
Z, = 0.5655 +j.9270 R/km 
2, = 0.1202 +j.0840 R/km 
2, = 0.11 19 +$OS04 Rflun 
Source impedance Zs = 1.3 67 +j 8.5 8 R 
Load impedance = 50+j 15.7 R 
Fault resistance Rr= 1.0 R 
Fig.2 shows the voltage, current, peak voltage and 
current, Rapp, Xapp, and the distance D obtained at the 
relaying using the adaline for a single-line to ground 
fault at a distance of 30 km form the relaying point. From 
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Figure 2: Calculation of resistance,reactance & distance of Single-line to 
Ground fault, using Adalines. 
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Figure 3: Calculation of resistance, reactance & distance of L-L fault using Adaline. 
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the figure it is observed that the adaptive neural estimator 
tracks the voltage, current, apparent resistance, 
reactance, and the distance accurately. The error of 
nearly 5% is due to the computation of unknown fault 
resistance accurately. 

Fig.3 depicts the above mentioned quantities of 
the power system for a line-to-line fault at 30 km from 
the relaying point. The tracked parameters are found to 
be accurate and are comparable to the values generated 
using a Kalman filtering. 

5. Conclusions : 
The paper presents a neural estimator approach 

for digital protective relaying of power transmission 
lines. The neural estimator uses an adaline and nonlinear 
weight adjustment algorithm using SGN function. A fault 
distance calculation routine is used to estimate the 
distance of the fault from the relaying point using the 
estimated phasor quantities. The adaline provides an 
accurate and robust technique for fault distance 
calculation. 
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