
Dynamic load distribution algorithm
performance in heterogeneous

distributed system for I/O- intensive task

Chandra, Pushpendra Kumar;
Sahoo, Bibhudatta;

TENCON 2008 - 2008, TENCON 2008.

IEEE Region 10 Conference
19-21 Nov. 2008 Page(s):1 - 5

http://dx.doi.org/10.1109/TENCON.2008.4766739

http://dx.doi.org/10.1109/TENCON.2008.4766739

Dynamic Load Distribution Algorithm
Performance in Heterogeneous Distributed

System for I/O- intensive Task

Pushpendra Kumar Chandra
Department of CSE

National Institute of Technology Rourkela
pushpendrachandra@gmail.com

Bibhudatta Sahoo

Department of CSE
National Institute of Technology Rourkela

bdsahu@nitrkl.ac.in

Abstract. The goal of load balancing is to assign to each node a
number of tasks proportional to its performance. Many load
balancers have been proposed that deal with applications with
homogeneous tasks; but, applications with heterogeneous tasks
have proven to be far more complex to handle. Load balancing
techniques play a very important role in developing high-
performance cluster computing platforms. Many load balancing
polices achieve high system performance by increasing the
utilization of CPU, memory, or a combination of CPU and memory.
However, these load-balancing policies are less effective when the
workload comprises of a large number of I/O-intensive tasks and
I/O resources exhibit imbalanced load. The I/O intensive tasks
running on a heterogeneous cluster needs effective usage of global
I/O resources. We have proposed a load-balancing scheme based
upon system heterogeneity and migrate I/O-intensive tasks to the
fastest processor. The proposed load balancing scheme can
minimizes the average slow down of all parallel jobs running on a
cluster and reduces the average response time of the jobs.

 Index Terms: Heterogeneous cluster, I/O-intensive task, Load
balancing

I. INTRODUCTION
Distributed heterogeneous computing is being widely applied
to a variety of large size computational problems. These
computational environments are consists of multiple
heterogeneous computing modules, these modules interact
with each other to solve the problem. In a Heterogeneous
distributed computing system (HDCS), processing loads arrive
from many users at random time instants. A proper scheduling
policy attempts to assign these loads to available computing
nodes so as to complete the processing of all loads in the
shortest possible time.
The resource manager schedules the processes in a distributed
system to make use of the system resources in such a manner
that resource usage, response time, network congestion, and
scheduling overhead are optimized. There are number of
techniques and methodologies for scheduling processes of a

distributed system. These are task assignment, load-balancing,
load-sharing approaches. Due to heterogeneity of computing
nodes, jobs encounter different execution times on different
processors. Therefore, research should address scheduling in
heterogeneous environment.
In task assignment approach, each process submitted by a user
for processing is viewed as a collection of related tasks and
these tasks are scheduled to suitable nodes so as to improve
performance. In load sharing approach simply attempts to
conserve the ability of the system to perform work by assuring
that no node is idle while processes wait for being processed.
In load balancing approach, processes submitted by the users
are distributed among the nodes of the system so as to equalize
the workload among the nodes at any point of time. Processes
might have to be migrated from one machine to another even
in the middle of execution to ensure equal workload. Load
balancing strategies may be static or dynamic.
In static scheduling, the assignment of the tasks to the nodes is
done before the execution of the program. Information
regarding task execution time and processing resources is
assumed to be known at compile time. A task is always
executed on the node to which it is assigned. Dynamic
scheduling is based on the re-distribution of processes among
the processors during execution time. This redistribution is
performed by transferring tasks from heavily-loaded
processors to lightly-loaded processors with an aim to
minimize the processing time of the application. The
advantage of dynamic load balancing over static scheduling is
that the system need not be aware of run-time behavior of the
application before execution. The flexibility inherent in
dynamic load balancing allows for adaptation to unforeseen
application requirements at run-time.
In general, load-balancing algorithms can be broadly
categorized as centralized or decentralized, dynamic or static,
periodic or non-periodic, and those with thresholds or without
thresholds. We have used a centralized load-balancing
algorithm framework as it imposes fewer overheads on the
system than the decentralized algorithm The load-balancing
problem, aim to compute the assignment with smallest

possible makespan (i.e. the completion time at the maximum
loaded computing node) The load distribution problem is
known to be NP-hard in most cases and therefore intractable
with number of tasks and/or the computing node exceeds few
units. Here, the load balancing is a job scheduling policy
which takes a job as a whole and assign it to a computing
node. This paper considers the problem of finding an optimal
solution for load balancing in heterogeneous distributed
system. The rest of the paper is organized as follows. The next
section discusses Heterogeneous distributed computing system
(HDCS) structure and the load-balancing problem. Section 3
describes the different dynamic load distribution algorithms.
We have simulated the behavior of different load balancing
algorithm with our simulator developed using Matlab, where
each task ti is with the expected execution time eij and
expected completion time Cij, on machine Mj. The results of
the simulation with scalability of computing nodes and tasks
are presented in Section 4. Finally, conclusions and directions
for future research are discussed in Section 7.

II. HETEROGENEOUS DISTRIBUTED COMPUTING SYSTEM
Heterogeneous distributed computing system (HDCS) utilizes
a distributed suite of different high-performance machines,
interconnected with high-speed links, to perform different
computationally intensive applications that have diverse
computational requirements. Distributed computing provides
the capability for the utilization of remote computing
resources and allows for increased levels of flexibility,
reliability, and modularity. In heterogeneous distributed
computing system the computational power of the computing
entities are possibly different for each processor. A large
heterogeneous distributed computing system (HDCS) consists
of potentially millions of heterogeneous computing nodes
connected by the global Internet. The applicability and
strength of HDCS are derived from their ability to meet
computing needs to appropriate resources.
Resource management sub systems of the HDCS are
designated to schedule the execution of the tasks that arrive
for the service. HDCS environments are well suited to meet
the computational demands of large, diverse groups of tasks.
The problem of optimally mapping also defined as matching
and scheduling.

Figure: 1 Distributed Computing System

We consider a heterogeneous distributed computing system
(HDCS) consists of a set of n { N1, N2, … Nn} independent
heterogeneous, uniquely addressable computing entity
(computing nodes). In figure 1 processor are represented as
{P1,P2,P3…..Pn} and memory {M1,M2,M3…..Mn} and disk
{D1,D2,D3…..Dn} for each nodes. Each node having the
different processing capability. Let there are m number of jobs
with each job j has a processing time tj are to be processed in
the HDCS with m nodes. Hence the generalized load-
balancing problem is to assign each job to one of the node Ni
so that the loads placed on all machine are as “balanced” as
possible [5].

III. BACKGROUND
In the past decade, load balancing techniques in the context of
CPU and memory resources has been extensively studied in
recent year. There are many approaches to balancing load in
disk I/O resource can be found in literature [1][2][3][4][6][10].
Xiao Qin[1] proposed a algorithm IOLB and compare this
algorithm with conventional CPU- and memory-aware load
balancing schemes and shows that the IOLB algorithm
significantly improves the resource utilization of a cluster
under I/O-intensive workload.

Mais Nijim Tao Xie, 2005 developed a performance model for
self-manage computer systems under dynamic workload
condition, where both CPU- and I/O-intensive applications are
running in computer systems. They show that the controller is
capable of achieving high performance for computer systems
under workloads exhibiting high variabilities.

Xiao Qin et al.[4] proposed a feedback control mechanism to
improve the performance of a cluster by adaptively
manipulating the I/O buffer sizes. The primary objective of
this mechanism is to minimize the number of page faults for
memory-intensive jobs while improving the buffer utilization
of I/O-intensive jobs. The feedback controller judiciously
configures the weights to achieve an optimal performance.
Meanwhile under a workload where the memory demand is
high, the buffer sizes are decreased to allocate more memory
for memory-intensive jobs, thereby leading to a low page-fault
rate. Increasing attention has been drawn toward I/O-intensive
application.

Kandaswamy et al. [10] examined optimization techniques
and architecture scalability. They evaluated the effect of the
techniques using five I/O-intensive applications from both
small and large applications domain. Xiao Qin et al.[6]
developed two effective I/O-aware load-balancing schemes,
which make it possible to balance I/O load by assigning I/O-
intensive sequential and parallel jobs to nodes with light I/O
loads. However, the above techniques are insufficient for
automatic computing platforms due to the lack of adaptability.
We proposed an algorithm that take all the parallel task and it
balance the I/O-intensive load with effective manner.

Interconnection Network

P1

M1

D1

P2

M2

D2

Pn

Mn

Dn

Node -1 Node -2 Node -n

IV. SYSTEM MODEL AND METHODOLOGY
In our study we have considered a cluster computing platform
of heterogeneous system in which set of N= {N1 ,N2 , N3
…..Nn} n nodes are connected via a high speed network.
Each node in this model composed of a combination of
various resources including processor, memory, disk ,network
connectivity and every node is differ with their processor,
memory and disk. A load manger or master node is
responsible for load balancing and monitoring available
resources of the node. Figure 1 shows the queuing model for
load manager.

 Figure 1: M/M/n heterogeneous system

Here we are considering a variant M/M/n queue where the
service rates of the two processors are not identical this is the
case of heterogeneous multiprocessor system. The queuing
structure is shown in below figure. Assume without loss of
generality that µ1> µ2 > µ3> µ4………..> µn.
The state of the system is defined to be the tuple
(k1,k2,k3……kn) where n1≥0 denotes the number of jobs in the
queue including any at the faster processor and n2 denotes the
number of jobs at slower processor. Jobs wait in line in the
order of their arrival. When processors is ideal, the faster
processor is scheduled for service before the slower processor.
The traffic intensity for this system is

∑
=

= n

i
i

1

μ

λρ (1)

The average number of jobs in the system may now computed
by observing that the number of jobs in the system.Therefore
the average number of jobs is given by:

2)1(
1][
ρ−

=
A

NE (2)

Where

ρμλλ

μρ

−
+

+

+
=

∑

∏

=

=

1
1

)(

)21(

1

1
n

i
i

n

i
i

A (3)

The prediction scheme consists of two parts. In the first part,
which is an off-line procedure, resource usage states are
determined for program executions of a given UNIX system.
Resource usage data is collected for all processes that ran on
the system for a few days, this data is analyzed as follows:
Each process is represented by a point in a three-dimensional
space, where each dimension corresponds to the resources of
the system, i.e., the CPU, the memory, and the file I/O. A
statistical clustering algorithm is then used to identify the high
density regions of this three-dimensional space (i.e., determine
the number of such regions and the means of their centroids).
By definition, most program executions occur in or near these
regions, and therefore they are referred to as the resource
usage states.
In the second part, which is an on-line procedure, actual
prediction is made. The prediction scheme builds and
maintains a state-transition model for each program on an on-
going basis. The states of the model are the resource usage
states defined above. Suppose a program has been executed
several times, providing a sequence of execution instances.
First, the sequence of execution instances is converted into a
sequence of resource usage states by assigning the nearest
resource usage state to each execution instance. The state
transition probabilities are then calculated from this new
sequence to build a state-transition model for the program.
The prediction is a weighted mean calculation of resource
requirements using the program’s current state-transition
model and the actual resource usage in its most recent
execution. See [7] for further details. Then predicted value is
fed to the selector that is used to select the best node among all
nodes where the task will execute. That node is under-loaded
and gives response effectively. Scheduler is responsible to
dispatch the task to the node selected by the selector. Then
task will send to that node and task will execute there. Load
manager update the load status table.

V. DYNAMIC LOAD DISTRIBUTION ALGORITHM
We proposed a algorithm for a wide variety of workload
conditions including I/O-intensive, CPU-intensive and
memory-intensive load. The objective of the proposed
algorithm is to balance the load of three types of resources
across all nodes in a cluster. In this study analytically evaluate
the performance of algorithm; we are focused on a remote
execution mechanism in which task can be running on a
remote node where it started execution. Thus preemptive
migrations of tasks are not supported in our algorithm.
To describe this algorithm first we introduce the following
three load indices with respect to I/O, CPU, memory
resources. (1) CPU load of a node is characterized by the
length of CPU waiting queue, denoted as LCPU(i). to identify
whether node i’s CPU is overloaded. (2) Memory load of a
node is the sum of the memory space allocated to all the tasks
running on that node. The memory load of node i is denoted as
LMEM(i) (3)I/O load measures two types of I/O accesses, i.e.
(a) implicit I/O request includes by page fault; (b) explicit I/O

Job arrivals

Master
Node

μ1

μ2

μn

λ

request issued from tasks. IO load index of node i is denoted
as LIO(i). Table 1 shows the definition of notation we used in
this paper.

Table 1: Definition of Notation

Notation Definition

N Number of node in
heterogeneous system

j Task submitted to the
system

λ Arrival rate of task

μn Service rate of
heterogeneous system

IOREQ j
I/O requirement of task
j

CPUREQ j
CPU requirement of
task j

MEMREQ j
MEMORY
requirement of task j

IO
aL

I/O load on
node(1≤a≤n)

CPU
aL

CPU load on
node(1≤a≤n)

MEM
aL

MEMORY load on
node(1≤a≤n)

k
IOL

I/O load index on set of
k node that satisfy all
requirements

k
CPUL

CPU load index on set
of k node

k
MEML

MEMORY load index
on set of k node

k
jR

Response time of task
on set of k nodes

Now we describe the load balancing algorithm of which the
pseudo code is given above. Given a set of independent tasks
submitted to the load manager. Our algorithm make an effort
to balance the load of the cluster resource’s by allocating each
task to a node such that the expected response time is
minimized. For each task j, our algorithm repeatedly performs
steps 2-19 described follows:

First it will predict all three IOREQj, CPUREQj, MEMREQj
requirements of task j from set of task by step 2. This three
predicted value are important because according to this value
task execute with best suited node. Step 3 is used to find the
highest requirements of task and it is responsible for initiating
the process of balancing I/O resources. Steps 4-7 are used to
balance the I/O load. In step 4, if the I/O requirements of task j
are high then it will find the set of nodes where I/O load is
minimum and satisfies all the three requirements of the task.
Step 5 calculates the response time of task with all selected
nodes. In Step 6, if the response time is minimum with
particular node then task will be sent to that specific node.

Algorithm: IOCM Load balancing
Input: a job with task j submitted to master node
1. for each task do
2. Predict the value of IO,CPU and memory requirements
3. if),,max(MEMREQ jCPUREQ jIOREQ jIOREQ j=

4. choose set of k node such that node)(min
1

IO
a

n

a

k
IO LL

=
=

satisfy the all three requirements
5. calculate response time k

jR of task j in set of k node

6. if)(min
1

b
j

k

b

i
j RR

=
= then

7. dispatch the task to node Ni and execute there
8. else if),,max(MEMREQ jCPUREQ jIOREQ jMEMREQ j =

9. choose set of k node such that

node)(min
1

MEM
a

n

a

k
MEM LL

=
= satisfy the requirements

10. calculate response time k
jR of task j in set of k node

11. if)(min
1

b
j

k

b

i
j RR

=
= then

12. dispatch the task to node Ni and execute there
13. else if),,max(MEMREQ jCPUREQ jIOREQ jCPUREQ j =

14. choose set of k node such that

node)(min
1

CPU
a

n

a

k
CPU LL

=
= satisfy the requirements

15. calculate response time k
jR of task j in set of k node

16. if)(min
1

b
j

k

b

i
j RR

=
= then

17. dispatch the task to node Ni and execute there
18. update the load status;
19. end for;

Second, in step 8, if the memory requirements of task are high
then it will perform steps 9-12 to balance memory load among
all the nodes. Page fault behaviors occur when the memory
space allocated by running tasks exceeds the amount of
available memory. That’s why, it is necessary to balance
memory to minimize the page fault. Step 9 searches the set of
nodes with minimum memory load and satisfies all the three
resource requirements of the task. Step 10 calculates the
response time of the task with all selected node. Step 11 finds
the minimum response time of the task from selected node.
Step 12 dispatches the task to selected node.

Third, step 13 is responsible if the CPU requirement of the
task is high and step 14 searches the set of nodes with
minimum CPU load among all the nodes that satisfy all
requirements of the task. And then calculate the response time
of the task in each selected node. Step16 finds node that gives
minimum response time to execute the task. Step 17
dispatches the task to the selected node. Lastly, step 21
maintains updated load information that is send to the load
manger.

VI. SIMULATION RESULT
The following results summarize the overall model
performance. Here we are simulating the model by using the
metric like throughput, number of tasks waiting in the queue
with in interval. All jobs are dynamically created and allotted
to the processor and processor is selected according to the
conditioned as specified in our algorithm. For each processor
from 2 to 50 we have taken 100 instances where job are
created dynamically and allotted to the processor and then we
have plotted a graph of number of processor and number of
job completed. And we have seen that throughput increase if
the task is I/O intensive related task.

Figure 2: Throughput graph number of processor vs. time

We analyze the system performance and scalability of
computing nodes with load balancing. As distributed systems
continue to grow in scale, in heterogeneity, and in diverse
networking technology, they are presenting challenges that
need to be addressed to meet the increasing demands of better
performance and services for various distributed application.

VII. CONCLUSION
This paper studies the performance of system under different
type of load like I/O as well as CPU, MEMORY based on
IOCM dynamic load balancing algorithm in heterogeneous
computing system. There are number of different dynamic
load balancing techniques for cluster systems; their efficiency
depends on topology of the communication networks that
connects nodes. This research has developed an efficient load
balancing for I/O-, CPU- and MEMORY-intensive tasks. For
this we developed a new way to predict and calculate the load
of cluster nodes. The proposed load balancing scheme aim to
achieve the effective usage of global disk resources in cluster.
This can minimizes the average slow down of all parallel jobs

running on a cluster and reduce the average response time of
the jobs.
Future studies can be performed in following direction. First,
we will evaluate the performance of scheme on a large scale of
cluster. Second, we have assumed the task is independent, so
we will also simulate this scheme for inter-dependent task.
Third, in this study we have assumed network communication
cost is negligible; therefore we will extend this to balance the
load in network resource.

Acknowledgments. This research was supported by R&D
project grant 2005-2008 of MHRD Government of India with
the title as “Fault Tolerant Real Time Dynamic Scheduling
Algorithm For Heterogeneous Distributed System” and being
carried out at department of Computer Science and
Engineering, NIT Rourkela.

REFERENCES
1. Xiao Qin, Performance comparisons of load balancing algorithms for IO-

intensive workloads on clusters, Journal of Network and computer
applications(2006), doi:10.1016/j.jnca.2006.07.001.

2. Xiao Qin ,Dynamic Load Balancing for IO-Intensive Tasks on
Heterogeneous Clusters, Proceeding of the 2003 International Conference
on High Performance Computing(HiPCO3).

3. Xiao Qin ,Hong Jiang ,Yifeng Zhu ,David R. Swanson ,A Dynamic Load
Balancing Scheme for IO-Intensive Applications in Distributed Systems,
Proceeding of 2003 international conference on Parallel processing
Workshop(ICPP 2003 Workshop).

4. Xiao Qin, A feedback control mechanism for balancing I/O-intensive and
memory-intensive applications on cluster, parallel and distributed
computing practices journal.

5. Paul Werstein ,Hailing Situ and Zhiyi Huang , Load balancing in cluster
computer, Proceeding of the seventh international conference on Parallel
and Distributed Computing, Applications and Technology (PDCAT’06.

6. Xiao Qin, H.Jiang, Y.Zhu and D.swanson, Toward load balancing support
for I/O intensive parallel jobs in a cluster of workstation, Poc. Of the 5th
IEEE international conference cluster computing(cluster 2003) ,Hong
Kong, Dec. 1-4-2003

7. Kumar K. Goswami, Murthy Devarakonda and Ravishankar K. Iyer,
Prediction–baesd dynamic load-sharing heuristics, IEEE transaction on
parallel and distributed systems, VOL.4, No.6, june 1993.

8. Xiao Qin, An availability-aware task scheduling strategy for
heterogeneous systems, IEEE transaction on computers.

9. Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy, A Review of
Customized Dynamic Load Balancing for a Network of Workstations.

10. M. Kandaswamy, M.Kandemir, A.Choudhary, D.Benholdt, Performance
implication of architectural and software techniques on I/O intensive
application, Proc International conference parallel processing 1998

11. Neeraj Nehra, R.B.Patel, V.K. Bhat ,A Framework for Distributed
Dynamic Load Balancing in Heterogeneous Cluster,Journal of computer
science 3(1):14-24-2007.

12. Marc H. Willebeek-LeMair , Strategies for Dynamic Load Balancing on
highly parallel computer IEEE Transactions on parallel and distributed
systems Vol. 4,No. 9, September 1993.

13. Bibhudatta Sahoo, S. Soma Sekhar, and Sanjay Kumar Jena, "Dynamic
Load Balancing In Heterogeneous Distributed Systems Using Genetic
Algorithm", Advances in Information and Communication Technology,
Macmillan India Ltd., 2007, pp. 223-230.

14. K.Trivedi, Probability abd Statistics with Reliability,Queuing and
Computer Science Applications.

	dynamicload.pdf
	Tencon2008bds.pdf

