

Abstract—In this paper, we proposed a reduced polynomial
neural swarm net (RPNSN) for the task of classification.
Classification task is one of the most studied tasks of data
mining. In solving classification task of data mining, the
classical algorithm such as Polynomial Neural Network (PNN)
takes large computation time because the network grows over
the training period (i.e. the partial descriptions (PDs) in each
layer grows in successive generations). Unlike PNN our
proposed network needs to generate the partial description for
a single layer. Particle swarm optimization (PSO) technique is
used to select a relevant set of PDs as well as features, which
are then fed to the output layer of our proposed net which
contain only one neuron. The selection mechanism used here is
a kind of wrapper approach. Performance of this model is
compared with the results obtained from PNN. Simulation
result shows that the performance of RPNSN is encouraging for
harnessing its power in data mining area and also better in
terms of processing time than the PNN model.

I. INTRODUCTION
ata classification [1,26,28] is a core issue in data
mining, pattern recognition, and forecasting. The goal
of classification is to assign a new object to a class

from a given set of predefined classes based on the attribute
values of this object. Furthermore, classification is based on
some discovered model, which forms an important piece of
knowledge about the application domain. There has been
wide range of machine learning and statistical methods for
classification task. One of the popular and widely used
techniques is feed-forward neural network (FNN) [2].
Although such FNNs can learn to classify wide range of
problem domain well, the classification model cannot be
comprehensible due to large number of synaptic
connections. To achieve high classification accuracy in FNN
framework, one has to provide a well defined structure of
FNNs, such as, the number of input nodes, hidden and
output neurons, and assume a proper set of relevant features.
Trial and error methodology is used to arrive at such kind of
structures, which is computationally expensive. Similarly
other methods like rule extraction and decision tree, which
provide comprehensible rule, are based on the trade-off
between the complexity and the classification accuracy of
the model.

B. B. Misra is with the College of Engineering Bhubaneswar, Orissa,
India, (phone: 0919437400307; fax: ;e-mail: misra_bijan@yahoo.co.in)

S. Dehuri is with Fakir Mohan University, Balasore, Orissa, India, (e-
mail: satchi.lapa@gmail.com)

G. Panda, is with the National Institute of Technology, Rourkela, Orissa,
India, (e-mail: ganapatipanda@gmail.com).

P. K. Dash, is with the College of Engineering Bhubaneswar, Orissa,
India, (e-mail: director@ceb.org).

To alleviate the shortcomings of FNNs, Polynomial
Neural Network (PNN) based on Group Method of Data
Handling (GMDH) approach suggested by Ivakhenko [3, 4,
and 27] can be used for classification purposes. The
approach is based on evolutionary strategy, where PNN
generates populations or layers of neurons/simulated
units/partial descriptions (PDs) and then trains and selects
those neurons, which provide the best classification. During
learning the PNN model grows the new population of
neurons and the number of layers & the complexity of the
network increases [24, 25] while a predefined criterion is
met. Such models can be comprehensively described by a set
of short-term polynomials thereby developing a PNN
classifier. Coefficients of PNN can be estimated by least
square fitting.

The network architecture grows depending on the number
of input features, PNN model selected, number of layer
required, and the number of PD’s preserved in each layer. In
turn the architecture becomes very complex, requires huge
memory and computation time. In our approach, we take
only one layer of PNN model. We select an optimal set from
the PD’s generated in the first layer along with the input
features using PSO technique. This optimal set of features is
fed to a single Perceptron like model of ANN. The weights
of the single perceptron like model are also optimized by
PSO.

The rest of the paper is organized as follows. Section II
describes the basics of PNN. In Section III, PSO is
discussed. The analysis and design of RPNSN architecture is
given in Section IV. In Section V, a simulation result of the
model is presented. Section VI summarizes this paper.

II. BASICS OF PNN

A. PNN Architecture
The GMDH belongs to the category of inductive self-

organization data driven approaches. It requires small data
samples and is able to optimize models’ structure
objectively. Relationship between input–output variables can
be approximated by Voters functional series, the discrete
form of which is Kolmogorov-Gabor Polynomial[4]

++++=
21 321

3213212121
1

110
kk kkk

kkkkkkkkkk
k

kk xxxCxxCxCCy

 (1)

where kC denotes the coefficients or weights of the

Kolmogorov-Gabor polynomial & x vector is the input
variables. This polynomial can approximate any stationary
random sequence of observations and it can be solved by
either adaptive methods or by Gaussian equations. This

Reduced Polynomial Neural Swarm Net for Classification Task in
Data Mining

B. B. Misra, S. Dehuri, P. K.Dash, and G. Panda

D

2298

978-1-4244-1823-7/08/$25.00 c©2008 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

polynomial is not computationally suitable if the number of
input variables increase and there are missing observations
in input dataset. Also it takes more computation time to
solve all necessary normal equations when the input
variables are large.

A new algorithm called GMDH is developed by
Ivakhnenko [4, 6] which is a form of Kolmogorov-Gabor
polynomial. He proved that a second order polynomial i.e

2
j5

2
i4ji3j2i10 xaxaxxaxaxaay +++++= , (2)

which takes only two input variables at a time and can
reconstruct the complete Kolmogorov-Gabor polynomial
through an iterative procedure. The GMDH method belongs
to the category of heuristic self-organization methods, where
the approaches like black-box concepts, connectionism and
induction concepts can be applied [5]. The black-box
method is a principal approach to analyze systems on the
basis of input-output samples. And the method of connection
and induction can be thought of as representation of complex
functions through network of elementary functions. Thus the
GMDH algorithm has the ability to trace all input-output
relationship through an entire system that is too complex.
The GMDH-type Polynomial Neural Networks are
multilayered model consisting of the neurons/active units
/Partial Descriptions(PDs) whose transfer function is a short-
term polynomial described in equation (2). At the first layer
L=1, an algorithm, using all possible combinations by two
from m inputs variables, generates the first population of
PDs. Total number of PDs in first layer is n = m(m-1)/2. The
outputs of each PDs in layer L=1 is computed by applying
the equation (2). Let the outputs of first layer are denoted as

11
2

1
1 ,......,, nyyy .The vector of coefficients of the PDs are

determined by least square estimation approach.
The architecture of a PNN with four input features is

shown in Fig. 1

The details of PNN model development and least square
estimation technique is explained below.

Let the input and output data for training is represented in
the following manner

�
�
�
�

�

�

�
�
�
�

�

�

nnmnn

m

m

yxxx

yxxx

yxxx

...

.....

...

...

21

222221

111211

In general, it is expressed as
),,...,,(),(21 imiiiii yxxxyX = , where i =1, 2, 3, … ,n.

The input and output relationship of the above data by
PNN algorithm can be described in the following manner:

),...,,,(321 mxxxxfy = ,

where m is the number of features in the dataset.

Number of PDs, K in each layer depends on the number
of input features M as below

2/)1(
2

−== MMK C
M

The input index of features (p, q) to each PD, may be
generated using the following algorithm

1. Let layers is l.
2. Let k=1,
3. FOR i =1 to m-1
4. FOR j = i+1 to m
5. Then 1

kPD will receive input from the

 features
6. p=i; & q=j;
7. k=k+1;
8. END FOR
9 END FOR

Let consider the equations for the first PD of layer1,
which receives input from feature 1 and 2.

2
216

2
115211421311211

2
2216

2
2115222114221321121122

2
1216

2
1115121114121311121111

(

..

(

(

nnnnnnnn xcxcxxcxcxccyd

xcxcxxcxcxccyd

xcxcxxcxcxccyd

+++++−=

+++++−=

+++++−=

This equation in general may be written as
2

6
2

54321(iqjipjiqipjiqjipjjii xcxcxxcxcxccyd +++++−=
 where (i) i=1, 2, ..., n.

 (ii) j=1, 2, ..., k
 (iii) k=m(m-1)/2

The equations for the least square are

2

1
)2

6
2

54321(

1

2

2...2
2

2
1

�
= ��

�
��
� +++++−=

�
=

=

+++=∏

n

i
iqxjcipxjciqxipxjciqxjcipxjcjciy

n

i
id

nddd

To minimize the error, we get the first derivatives of ∏
in terms of all the unknown variables (i.e. the coefficients).

���� 1: Basic PNN model

PD

PD

PD

PD

PD

PD

x4

x3

x2

x1

PD

PD

PD

PD

PD

PD

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2299

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

[]
[]
[]

[]
[]
[] �

�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

=+++++−=
∂

∏∂

=+++++−=
∂

∏∂
=+++++−=

∂
∏∂

=+++++−=
∂
∏∂

=+++++−=
∂

∏∂
=+++++−=

∂
∏∂

�

�

�

�

�

�

=

=

=

=

=

=

0(2

0(2

0(2

0(2

0(2

0(2

1

2
6

2
54321

2

6

1

2
6

2
54321

2

5

1

2
6

2
54321

4

1

2
6

2
54321

3

1

2
6

2
54321

2

1

2
6

2
54321

1

n

i
iqjipjiqipjiqjipjjiiq

j

n

i
iqjipjiqipjiqjipjjiip

j

n

i
iqjipjiqipjiqjipjjiiqip

j

n

i
iqjipjiqipjiqjipjjiiq

j

n

i
iqjipjiqipjiqjipjjiip

j

n

i
iqjipjiqipjiqjipjji

j

xcxcxxcxcxccyx
c

xcxcxxcxcxccyx
c

xcxcxxcxcxccyxx
c

xcxcxxcxcxccyx
c

xcxcxxcxcxccyx
c

xcxcxxcxcxccy
c

On expanding the above equations, we get

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

+++++=

+++++=

+++++=

+++++=

+++++=

+++++=

�������

�������

�������

�������

�������

�������

=======

=======

=======

=======

=======

=======

n

i
iqj

n

i
iqipj

n

i
iqipj

n

i
iqj

n

i
iqipj

n

i
iqj

n

i
iiq

n

i
iqipj

n

i
ipj

n

i
iqipj

n

i
iqipj

n

i
ipj

n

i
ipj

n

i
iip

n

i
iqipj

n

i
iqipj

n

i
iqipj

n

i
iqipj

n

i
iqipj

n

i
iqipj

n

i
iiqip

n

i
iqj

n

i
iqipj

n

i
iqipj

n

i
iqj

n

i
iqipj

n

i
iqj

n

i
iiq

n

i
iqipj

n

i
ipj

n

i
iqipj

n

i
iqipj

n

i
ipj

n

i
ipj

n

i
iip

n

i
iqj

n

i
ipj

n

i
iqipj

n

i
iqj

n

i
ipj

n

i
j

n

i
i

xcxxcxxcxcxxcxcyx

xxcxcxxcxxcxcxcyx

xxcxxcxxcxxcxxcxxcyxx

xcxxcxxcxcxxcxcyx

xxcxcxxcxxcxcxcyx

xcxcxxcxcxccy

1

4
6

1

22
5

1

3
4

1

3
3

1

2
2

1

2
1

1

2

1

22
6

1

4
5

1

3
4

1

2
3

1

3
2

1

2
1

1

2

1

3
6

1

3
5

1

22
4

1

2
3

1

2
2

1
1

1

1

3
6

1

2
5

1

2
4

1

2
3

1
2

1
1

1

1

2
6

1

3
5

1

2
4

1
3

1

2
2

1
1

1

1

2
6

1

2
5

1
4

1
3

1
2

1
1

1
11

We know that,

() YXXXA
YXXAX

YXA

TT

TT
1−=

=
=

Here,

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

=

������

������

������

������

������

�����

======

======

======

======

======

=====

n

i
iq

n

i
iqip

n

i
iqip

n

i
iq

n

i
iqip

n

i
iq

iq

n

i
ip

n

i
ip

n

i
iqipiq

n

i
ip

n

i
ip

n

i
ip

n

i
iq

ip
n

i
iqip

n

i
iqip

n

i
iqip

n

i
iqip

n

i
iqip

n

i
iq

n

i
iqip

n

i
iqip

n

i
iq

n

i
iqip

n

i
iq

n

i
iqip

n

i
ip

n

i
iqip

n

i
iqip

n

i
ip

n

i
ip

n

i
iq

n

i
ip

n

i
iqip

n

i
iq

n

i
ip

xxxxxxxxx

xxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxx

xxxxxxxxx

xxxxxxn

X

1

4

1

22

1

3

1

3

1

2

1

2

2

1

2

1

4

1

3

1

2

1

3

1

2

1

3

1

3

1

22

1

2

1

2

1

1

3

1

2

1

2

1

2

11

1

2

1

3

1

2

11

2

1

1

2

1

2

111

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

�

�

=

6
5
4
3
2
1

jc
jc
jc
jc
jc
jc

A , and

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�
=

�
=

�
=

�
=

�
=

�
=

=

n

i
iyiqx

n

i
iyipx

n

i
iyiqxipx

n

i
iyiqx

n

i
iyipx

n

i
iy

Y

1

2
1

2
1

1

1

1
1

After obtaining the values of the coefficients with the
testing dataset, we estimate the target

)(2
6

2
54321

^

iqjipjiqipjiqjipjji xcxcxxcxcxccy +++++=

If the error level is not up to our desired value, we
construct next layer of PNN by taking the output of the
previous layer

)(6
2

54321 xcxcxxcxcxccz jipjiqipjiqjipjjj +++++=
and apply the same procedure.

2
6

2
54321(iqjipjiqipjiqjipjjii zczczzczczccyd +++++−=

This process is repeated till error decreases. Overall
framework of the design procedure of the GMDH-type PNN
comes as a sequence of the following steps.

Step 1: Determine system’s input variables
Step 2: Form training and testing data
Step 3: Choose a structure of the PNN
Step 4: Determine the number of input variables and the
order of the polynomial forming a partial description
(PD) of data.
Step 5: Estimate the coefficients of the PD
Step 6: Select PDs with the best classification accuracy
Step 7: Check the stopping criterion
Step 8: Determine new input variables for the next layer
The layers of PNN models are grown as per the algorithm

described above. The residual error between the estimated
output and the actual output is calculated at each layer. If the
error level is within the tolerable limit then the growth of the
model is stopped and the final model is derived taking into
account only those PDs that contribute to obtain the best
result. Otherwise the next layer is grown. It is observed that
the error level decreases rapidly at the first layers of PNN
network and relatively slower near to optimal number of
layers, and further increasing the number of layers causes
increasing the value of error level because of over-fitting
[8,9,10]. Thus in our simulation the number of layers in the
model increases one-by-one until the stopping rule i.e. the
tolerable error level is met at the layer r. Subsequently we
take a desired PNN model of nearly optimal complexity
from (r-1)th layer. Hence we preserve only those PDs that
contribute to the better result. From the simulation it is seen
that the output of best two PDs of previous layer not
necessarily yields the best result in the next layer. Hence,
PDs that give better result in a layer are preserved for
building the next layer.

2300 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

The PNN model is tested with the test data set. We have
adopted the 2-fold cross-validation strategy to test. Each set
of the datasets is used for training and testing. Two third of a
set is taken for training a model and one third is used for
validation of the model. Then both the train and the test data
sets are exposed to the model for classification. The average
of the percentage of correct classification for test data set
using PNN model are considered for comparison.

III. PARTICLE SWARM OPTIMIZATION

A. PSO basics

The implicit rules adhered to by the members of bird
flocks and fish schools, that enable them to move
synchronized, without colliding, resulting in an amazing
choreography, was studied and simulated by several
scientists [11,12]. In simulations, the movement of the flock
was an outcome of the individuals’ (birds, fishes etc.) efforts
to maintain an optimum distance from their neighboring
individuals [13].

The social behavior of animals, and in some cases of
humans, is governed by similar rules [14]. However, human
social behavior is more complex than a flock’s movement.
Besides physical motion, humans adjust their beliefs,
moving, thus, in a belief space. Although two persons cannot
occupy the same space of their physical environment, they
can have the same beliefs, occupying the same position in
the belief space, without collision. This abstractness in
human social behavior is intriguing and has constituted the
motivation for developing simulations of it. There is a
general belief, and numerous examples coming from nature
enforce the view, that social sharing of information among
the individuals of a population may provide an evolutionary
advantage. This was the core idea behind the development of
PSO [13].

B. PSO Algorithm

PSO’s precursor was a simulator of social behavior that
was used to visualize the movement of a birds’ flock.
Several versions of the simulation model were developed,
incorporating concepts such as nearest-neighbor velocity
matching and acceleration by distance [13,15]. When it was
realized that the simulation could be used as an optimizer,
several parameters were omitted, through a trial and error
process, resulting in the first simple version of PSO [13].

PSO is similar to EC techniques in that, a population of
potential solutions to the problem under consideration is
used to probe the search space. However, in PSO, each
individual of the population has an adaptable velocity
(position change), according to which it moves in the search
space. Moreover, each individual has a memory,
remembering the best position of the search space it has ever
visited [13]. Thus, its movement is an aggregated
acceleration towards its best previously visited position and
towards the best individual of a topological neighborhood.
Since the ‘‘acceleration’’ term was mainly used for particle
systems in Particle Physics [16], the pioneers of this
technique decided to use the term particle for each
individual, and the name swarm for the population, thus,

coming up with the name Particle Swarm for their algorithm
[15].

Two variants of the PSO algorithm were developed, one
with a global neighborhood, and the other with a local
neighborhood. According to the global variant, each particle
moves towards its best previous position and towards the
best particle in the whole swarm. On the other hand,
according to the local variant, each particle moves towards
its best previous position and towards the best particle in its
restricted neighborhood [13]. In the following paragraphs,
the global variant is exposed.

Suppose that the search space is D-dimensional, then the ith

particle of the swarm can be represented by a D-dimensional

vector, ()iDiii xxxx ,...,, 21= . The velocity (position

change) of this particle, can be represented by another D-

dimensional vector ()iDiii vvvv ,...,, 21= . The best

previously visited position of the ith
 particle is denoted as

()iDiii pppp ,...,, 21= . Defining g as the index of the best

particle in the swarm (i.e., the gth
 particle is the best), and let

the superscripts denote the iteration number, then the swarm
is manipulated according to the following two equations:

() ()n
id

n
gd

nn
id

n
id

nn
id

n
id xpcrxpcrvv −+−+=+

21
1

 (3)

11 ++ += n
id

n
id

n
id vxx (4)

where d = 1, 2, . . .,D; i = 1, 2, . . . , N, and N is the size of

the swarm; c is a positive constant, called acceleration

constant; r1, r2 are random numbers, uniformly distributed

in [0, 1]; and n = 1, 2, . . ., determines the iteration number.

Equations (3) and (4) define the initial version of the PSO
algorithm. Since there was no actual mechanism for
controlling the velocity of a particle, it was necessary to
impose a maximum value Vmax on it. If the velocity

exceeded this threshold, it was set equal to Vmax. This

parameter proved to be crucial, because large values could
result in particles moving past good solutions, while small
values could result in insufficient exploration of the search
space. This lack of a control mechanism for the velocity
resulted in low efficiency for PSO, compared to EC
techniques [17]. Specifically, PSO located the area of the
optimum faster than EC techniques, but once in the region of
the optimum, it could not adjust its velocity step size to
continue the search at a finer grain.

The aforementioned problem was addressed by
incorporating a weight parameter for the previous velocity of
the particle. Thus, in the latest versions of the PSO,
Equations (3) and (4) are changed to the following ones
[18,19,20]:

() ()()n
id

n
gd

nn
id

n
id

nn
id

n
id xprcxprcwvv −+−+=+

2211
1 χ (5)

11 ++ += n
id

n
id

n
id vxx (6)

where w is called inertia weight; c1, c2 are two positive

constants, called cognitive and social parameter respectively;
and � is a constriction factor, which is used, alternatively to

w to limit velocity.
In the local variant of PSO, each particle moves towards

the best particle of its neighborhood. For example, if the size
of the neighborhood is 2, then the ith

 particle moves towards

the best particle among the (i --- 1)
th
, the (i +1)

th
 and itself.

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2301

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

The PSO method appears to adhere to the five basic
principles of swarm intelligence, as defined by [13]:
(a) Proximity, i.e., the swarm must be able to perform simple
space and time computations;
(b) Quality, i.e., the swarm should be able to respond to
quality factors in the environment;
(c) Diverse response, i.e., the swarm should not commit its
activities along excessively narrow channels;
(d) Stability, i.e., the swarm should not change its behavior
every time the environment alters; and finally
(e) Adaptability, i.e., the swarm must be able to change its
behavior, when the computational cost is not prohibitive.

Indeed, the swarm in PSO performs space calculations for

several time steps. It responds to the quality factors implied

by each particle’s best position and the best particle in the

swarm, allocating the responses in a way that ensures

diversity. Moreover, the swarm alters its behavior (state)

only when the best particle in the swarm (or in the

neighborhood, in the local variant of PSO) changes, thus, it

is both adaptive and stable [13].

C. The parameters of PSO

The role of the inertia weight w, in Equation (5), is

considered critical for the PSO’s convergence behavior. The
inertia weight is employed to control the impact of the
previous history of velocities on the current one.
Accordingly, the parameter w regulates the trade-off

between the global (wide-ranging) and local (nearby)
exploration abilities of the swarm. A large inertia weight
facilitates global exploration (searching new areas), while a
small one tends to facilitate local exploration, i.e., fine-
tuning the current search area. A suitable value for the
inertia weight w usually provides balance between global

and local exploration abilities and consequently results in a
reduction of the number of iterations required to locate the
optimum solution. Initially, the inertia weight was constant.
However, experimental results indicated that it is better to
initially set the inertia to a large value, in order to promote
global exploration of the search space, and gradually
decrease it to get more refined solutions [19, 20]. Thus, an
initial value around 1.2 and a gradual decline towards 0 can
be considered as a good choice for w.

The parameters c1 and c2, in Equation (5), are not critical

for PSO’s convergence. However, proper fine-tuning may
result in faster convergence and alleviation of local minima.
An extended study of the acceleration parameter in the first
version of PSO, is given in [22]. As default values, c1 = c2 =

2 were proposed, but experimental results indicate that c1

=c2 = 0.5 might provide even better results. Recent work

reports that it might be even better to choose a larger
cognitive parameter, c1, than a social parameter, c2, but with

c1 + c2 <=�4 [23].

The parameters r1 and r2 are used to maintain the diversity

of the population, and they are uniformly distributed in the
range [0, 1]. The constriction factor � controls on the

magnitude of the velocities, in a way similar to the Vmax
parameter, resulting in a variant of PSO, different from the
one with the inertia weight.

IV. RPNSN ARCHITECTURE

While simulating the PNN model it is observed that the
number of partial descriptions generated in each layer grows
very fast. As a result lot of time is consumed in generating
the PDs. In general the PDs giving poor performance are
rejected. But still then a substantial number of PDs needs to
be preserved to get better result in subsequent layers. It is
observed that always PDs giving best result do not combine
to yield improvised result. Very often one PD giving better
result combined with other PD giving inferior result to
improvise its performance in subsequent layer. Therefore it
is always essential to preserve substantial number of PDs in
a hope of getting better result in subsequent layers. In turn
huge amount of memory and running time is needed for the
process of generation of a model for a dataset [21].

Each PD tries to approximate the input output relation of
the dataset. In the suggested model, we have developed PDs
for one layer. Along with the output of the first layer, we
have considered the original features of the dataset. The PSO
technique is used to select the optimal number of input to the
output layer.

In the model, m represents the number of features in the
dataset and k represents number of PDs generated out of m
features. One bias is included to the net at this level. There
are m+k+1 number of weights to be optimized. PSO
technique is again used to train these weights.

V. SIMULATIONS AND RESULTS

The performance of different models is evaluated using
the benchmark classification databases. Out of these, the
most frequently used in the area of neural networks and of
neuro-fuzzy systems are IRIS, WINE, PIMA, BUPA Liver
Disorders. All these databases are taken from the UCI
machine repository [7]. Table I presents the summary of the
main features of the datasets used for our experimental
studies.

w2

wk

wk+1

wk+2

wk+m

w1

Selection
and training

����.2: RPNSN model

1

xm

x2

x1

xm

x2

x1

PD1

PD2

PDk

�

wk+m+1

2302 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

TABLE I
DESCRIPTION OF DATASESETS USED

Dataset Patterns Attributes Classes Patterns in
Class1

Patterns in
Class2

Patterns in
Class3

IRIS 150 4 3 50 50 50
WINE 178 13 3 59 71 48
PIMA 768 8 2 268 500
BUPA 345 6 2 145 200

-
-

The dataset is divided into two parts. The division of
datasets and its class distribution is shown in Table II.

TABLE II
DIVISION OF DATASET AND ITS PATTERN DISTRIBUTION

Patterns Patterns
in

Class1

Patterns
in

Class2

Patterns
in

Class3

IRIS Set1
Set2

75
75

25
25

25
25

25
25

WINE Set1
Set2

89
89

29
30

36
35

24
24

PIMA Set1
Set2

384
384

134
134

250
250

-
-

BUPA Set1
Set2

172
173

72
73

100
100

-
-

One part is used for building the model and other part is
used for testing the model. The protocol for parameters used
for our simulation studies is given in Table III.

TABLE III
PARAMETERS CONSIDERED FOR SIMULATION OF RPNSN MODEL USING PSO

Parameters Values
Population Size 20

Maximum Iterations 100
Inertia Weight 0.729844

Cognitive Parameter 1.49445
Social Parameter 1.49445

Constriction Factor 1.0

The average percentage of correct classification obtained
for the test sets are provided in Table IV for the purpose of
comparison.

TABLE IV
COMPARISON OF AVERAGE PERCENTAGE OF CORRECT

CLASSIFICATION OF TEST SETS WITH PNN AND RPNSN

Data set PNN RPNSN

IRIS 98.68 99.3333

WINE 94.872 99.4382

PIMA 65.1042 76.823

BUPA 70.196 73.9061

In Table V the percentage of PDs used in our model is
given, which is also very crucial aspect to obtain an
optimum model.

TABLE V
PERCENTAGE OF PDS USED BY THE RPNSN TO OBTAIN THE OPTIMUM

MODEL

% of PDs used in optimized
modelData set

Total number of
possible PDs.

Set1 Set2

IRIS 6 33.33 50.00

WINE 78 32.05 19.23

PIMA 28 21.43 32.14

BUPA 15 33.33 26.67

Table VI shows the processing time of both PNN and
RPNSN. From the Table it shows that the time required for
our proposed model is comparatively very less than PNN.

TABLE VI
COMPARISON OF PROCESSING TIME PERFORMANCE OF PNN WITH RPNSN

(IN SECONDS)
Datasets PNN RPNSN

Set1 129 0.6563IRIS
Set2 125 0.6719
Set1 225 4.5625WINE
Set2 224 4.7031
Set1 783 8.1406PIMA
Set2 793 8.4531
Set1 352 2.2969BUPA
Set2 353 2.4219

The mathematical model obtained by our PNN Model for
Iris dataset is presented for an example purpose.

,)x,poly(x*0.10067]0.044319,

13994,.65004,-0.-0.25663,0,96751.0[

31

1
2 −=PD

);x,poly(x*.067678]0.09108,-0

3,5,-0.051330407,1.482[1.633,-1.PD

41

1
3 =

);x,poly(x*0.018686]-

,-0.15092,317,0.3308.4898,-2.4[-1.7572,1PD

21

1
1 =

);x,poly(PD*079276]0.57289,0.-

01,284,0.04624134,-0.84[2.0965,1.PD

3
1
2

2
16 =

);x,poly(PD*15237]0.15639,0.

1,97,-0.22657305,-1.24[2.2683,1.PD

2
1
3

2
28 =

);x,poly(PD*015491]0.25631,0.-

1458,42213,0.080.58075,0.[-1.8284,-PD

3
1
1

2
38 =

);PD,poly(PD*0812]0.6309,0.6

1876,.45923,-1.,0.54087,0[-0.054529PD
2
28

2
16

3
496 =

);PD,poly(PD*3952]0.39684,0.

75286,.41454,-0.,0.59432,0[-0.043133PD
2
38

2
28

3
557 =

);PD,poly(PD*56]2.208,-3.1-

42,15925,5.36,1.158,-0.[0.0057053y
3
557

3
496

=

where
1. Function ploy (a1, a2)

{
return [1,a1,a2,a1*a2,a1.^2,a2.^2]T;

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2303

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

}

2. PDi
j is the output of layer i and jth partial description.

3. y is the output of the PNN model and x is the input
features.

The architecture of the PNN model generated is given at
Fig.3.

The mathematical model obtained by our RPNSN Model
for Iris dataset presented below.

,)x,poly(x*2.6568]16.636,

5.0129,-2.7124,,-27.379,12.265[

21

1
1 =PD

,)x,poly(x*0.37042]-0.32404,

3.5712,4.7075,-0.61437,-3.4633,[

42

1
5 =PD

0.10778];0.33345PD0.62292PD[0.02099xy 1
5

1
14 +++=

The architecture of the RPNSN model generated is given
at Fig.4

After generating the RPNSN model, the confusion matrix
is obtained for the entire dataset. The confusion matrices for
the class 2 datasets are shown in Table VII and the confusion
matrix for the class 3 datasets are shown in Table VIII.

TABLE VII
CONFUSION MATRIX FOR TWO CLASS DATASETS

Predicted

c1 c2
BUPA c1 85 60

c2 30 170
PIMA c1 134 134

A
c
t
u
a
l c2 44 456

TABLE VIII
CONFUSION MATRIX FOR THREE CLASS DATASETS

Predicted

c1 c2 c3
IRIS c1 50 0 0

c2 1 49 0
c3 0 0 50

WINE c1 59 0 0
c2 0 70 1

A
c
t
u
a
l c3 0 0 48

During training of the RPNSN model, different error
curves are obtained for different simulations. Fig. 5, 6, 7 and
8 shows the error curves obtained from our model for Iris,
Wine, Bupa, Pima datasets respectively. Similarly Fig. 9, 10,
11, and 12 shows the error curves obtained from PNN for
Iris, Bupa, Pima and Wine and datasets respectively.

x1

x2

1
1PD

x2

x4

1
5PD

x2

1

�

Fig. 4 RPNSN model for iris data set

x1

x3

x1

x4

x1

x4

x1

x2

1
2PD

1
3PD

1
1PD

1
3PD

2
28PD

2
28PD

2
38PD

4
332PD

2
16PD

3
496PD

3
357PD

x3

x2

x3

x2

Fig. 3 PNN model for Iris dataset

0 5 10 15 20 25 30 35 40 45 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Iterations

1
/(

1
+

m
s
e
)

Iris dataset

Figure 5 Error curve for Iris dataset

2304 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.046

0.048

0.05

0.052

0.054

0.056

0.058

Layers

1
/(

1
+

m
s
e
)

Error curves for bupa dataset in PNN Model

Fig. 11. Error curve for Pima data

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

Layers

1
/(

1
+
m

s
e
)

Error curves for bupa dataset in PNN Model

Fig. 10. Error curve for Bupa data

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Layers

1
/(

1
+

m
s
e
)

Error curves for iris dataset in PNN Model

Fig. 9. Error curve for IRIS data

0 100 200 300 400 500 600
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Iterations

1
/(

1
+

m
s
e
)

Pima dataset

Figure 8 Error curve for pima dataset

Figure 6 Error curve for wine dataset

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

Iterations

1/
(1

+
m

se
)

Wine dataset

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

Iterations

1
/(

1
+

m
s
e
)

Bupa dataset

Figure 7 Error curve for bupa dataset

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2305

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

VI. CONCLUSION

In this paper, we have proposed RPNSN for the
classification task of data mining. The RPNSN model
generates PDs for one layer of the basic PNN model. PSO
selects the optimal set of PDs and input features, which are
fed to the single layer feed forward artificial neural network.
The network is also trained using PSO technique. The
experimental studies demonstrated that the RPNSN model
performs the pattern classification task quite well. In all the
cases, the results obtained with the RPNSN model proved to
be better than the PNN results. The performance of the
RPNSN models is better in terms of processing time, which
is also treated as one of the crucial aspect in data mining
community.

REFERENCES

[1] T. M. Mitchel, “Machine learning,” McGraw Hill, 1997.
[2] Y. H. Pao, “Adaptive pattern recognition neural networks,” Addison

Wesley, MA, 1989.
[3] A.G. Ivakhnenko, "Polynomial theory of complex systems," IEEE

Trans. Syst., Man Cybern-I, pp. 364–378, 1971.
[4] A. G. Ivakhnenko, and H. R. Madala, "Inductive learning algorithm

for complex systems modelling," Boca raton:CRC Inc,1994.
[5] S. J. Farlow, "The GMDH algorithm," In:Farlow S.J (eds.). Self-

organizating methods in modelling:GMDH type algorithm. New
York:Marcel Dekker, pp.1-24, 1984.

[6] A. J. Muller, F. Lemke, and A. G. Ivakhnenko, "GMDH algorithms
for complex systems modeling," Math and Computer Modeling of
Dynamical Systems , vol. 4, pp.275-315, 1998.

[7] C. L. Blake and C.J. Merz, “UCI Repository of machine learning
databases,” http://www.ics.uci.edu/ ~mlearn/MLRepository.

[8] J. A. Muller, and F. Lemke, "Self-organizing data mining extracting
knowledge from data," Trafford Publishing, Canada British Columbia,
2003.

[9] V. Schetinin, and J. Schult, "The combined technique for detection of
artifacts in clinical electroencephalograms of sleeping newborn,"
IEEE Trans. on Information Technologies in Biomedicine, vol. 8,
no.1, pp. 28-35, 2004.

[10] N. L. Nikolaev, and H. Iba, "Automated discovery of polynomials by
inductive genetic programming," In: Zutkow J, Ranch J (eds.)
Principles of Data Mining and Knowledge Discovery (PKDD’99).
Springer, Berlin, pp.456-462, 1999.

[11] F. Heppner and U. Grenander, "A stochastic nonlinear model for
coordinate bird flocks," In: Krasner S (eds.) The Ubiquity of Chaos.
AAAS Publications, Washington, DC, 1990.

[12] C. W. Reynolds, "Flocks, herds, and schools: A distributed behavioral
model,” Computer Graphics, vol. 21, no. 4, pp.25–34, 1987.

[13] R. C. Eberhart, P. Simpson and R. Dobbins, "Computational
intelligence PC tools," Academic Press, 1996.

[14] E. O. Wilson, "Sociobiology: the new synthesis," Belknap Press,
Cambridge, MA, 1975.

[15] J. Kennedy, and R. C. Eberhart, "Particle swarm optimization,"
Proceedings IEEE International Conference on Neural Networks IV,
Piscataway, NJ, pp. 1942–1948, 1995.

[16] W. T. Reeves, "Particle systems – a technique for modeling a class of
fuzzy objects," ACM Transactions on Graphics vol.2, no.2, pp.91–
108, 1983.

[17] P. J. Angeline, "Evolutionary optimization versus particle swarm
optimization: philosophy and performance differences," In: Porto VW,
Saravanan N,Waagen D and Eiben AE (eds.). Evolutionary
Programming VII, pp. 601–610, 1998.

[18] R. C. Eberhart, and Y. Shi, "Comparison between genetic algorithms
and particle swarm optimization," In: Porto VW, Saravanan N,
Waagen D and Eiben AE (eds.). Evolutionary Programming VII, pp.
611–616. Springer, 1998

[19] Y. Shi, and R. C. Eberhart, "Parameter selection in particle swarm
optimization," In: Porto VW, Saravanan N, Waagen D and Eiben AE
(eds) Evolutionary Programming VII, pp. 611–616. Springer, 1998

[20] Y. Shi, and R.C. Eberhart, "A modified particle swarm optimizer,"
Proceedings of the IEEE Conference on Evolutionary Computation.
AK, Anchorage, 1998

[21] B. B. Misra, B. N. Biswal, P. K. Dash, and G. Panda, "Simplified
polynomial neural network for classification task in data mining,"
Proc. of the IEEE Congress on Evolutionary Computation (CEC), pp.
721–728, 2007.

[22] J. Kennedy, "The behavior of particles," In: Porto VW, Saravanan N,
Waagen D and Eiben AE (eds.). Evolutionary Programming VII, pp.
581–590. Springer, 1998.

[23] A. Carlisle, and G. Dozier, "An off-the-shelf PSO," Proceedings of the
Particle Swarm Optimization Workshop, pp. 1–6, 2001.

[24] B. B. Misra, S. C. Satapathy, B. N. Biswal, P. K. Dash, and G. Panda,
"Pattern classification using polynomial neural networks," IEEE Int.
Conf. on Cybernetics & Intelligent Systems (CIS), 2006.

[25] B. B. Misra, S. C. Satapathy, N. Hanoon, and P. K. Dash, "Particle
swarm optimized polynomials for data classification," Proc. of the
IEEE Int. Conf. on Intelligent Systems Design and Application, 2006.

[26] R. O. Duda, P. E. Hart and D. G. Stork, “Pattern classification,” John
Wiley and Sons (Asia) Pte. Ltd., 2001.

[27] S.-K. Oh, W. Pedrycz, and B.-J. Park, “Polynomial neural networks
architecture: analysis and design,” Computers and Electrical
Engineering, vol. 29, pp. 703-725, 2003.

[28] T.-S. Lim, W.-Y. Loh and Y. S. Shih, “A comparison of prediction
accuracy, complexity, and training time of thirty-three old and new
classification algorithms,” Machine Learning, vol. 40, pp. 203-228,
2000.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

0.4

0.5

0.6

0.7

0.8

0.9

1

Layers

1
/(

1
+

m
s
e
)

Error curves for wine dataset in PNN Model

Fig. 12. Error curve for Wine data

2306 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

