
 

Abstract—In this paper, we proposed a reduced polynomial 
neural swarm net (RPNSN) for the task of classification.  
Classification task is one of the most studied tasks of data 
mining. In solving classification task of data mining, the 
classical algorithm such as Polynomial Neural Network (PNN) 
takes large computation time because the network grows over 
the training period (i.e. the partial descriptions (PDs) in each 
layer grows in successive generations). Unlike PNN our 
proposed network needs to generate the partial description for 
a single layer. Particle swarm optimization (PSO) technique is 
used to select a relevant set of PDs as well as features, which 
are then fed to the output layer of our proposed net which 
contain only one neuron. The selection mechanism used here is 
a kind of wrapper approach. Performance of this model is 
compared with the results obtained from PNN. Simulation 
result shows that the performance of RPNSN is encouraging for 
harnessing its power in data mining area and also better in 
terms of processing time than the PNN model.   

I. INTRODUCTION 
ata classification [1,26,28] is a core issue in data 
mining, pattern recognition, and forecasting. The goal 
of classification is to assign a new object to a class 

from a given set of predefined classes based on the attribute 
values of this object. Furthermore, classification is based on 
some discovered model, which forms an important piece of 
knowledge about the application domain. There has been 
wide range of machine learning and statistical methods for 
classification task. One of the popular and widely used 
techniques is feed-forward neural network (FNN) [2]. 
Although such FNNs can learn to classify wide range of 
problem domain well, the classification model cannot be 
comprehensible due to large number of synaptic 
connections. To achieve high classification accuracy in FNN 
framework, one has to provide a well defined structure of 
FNNs, such as, the number of input nodes, hidden and 
output neurons, and assume a proper set of relevant features. 
Trial and error methodology is used to arrive at such kind of 
structures, which is computationally expensive. Similarly 
other methods like rule extraction and decision tree, which 
provide comprehensible rule, are based on the trade-off 
between the complexity and the classification accuracy of 
the model.  
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To alleviate the shortcomings of FNNs, Polynomial 
Neural Network (PNN) based on Group Method of Data 
Handling (GMDH) approach suggested by Ivakhenko [3, 4, 
and 27] can be used for classification purposes. The 
approach is based on evolutionary strategy, where PNN 
generates populations or layers of neurons/simulated 
units/partial descriptions (PDs) and then trains and selects 
those neurons, which provide the best classification. During 
learning the PNN model grows the new population of 
neurons and the number of layers & the complexity of the 
network increases [24, 25] while a predefined criterion is 
met. Such models can be comprehensively described by a set 
of short-term polynomials thereby developing a PNN 
classifier. Coefficients of PNN can be estimated by least 
square fitting.  

The network architecture grows depending on the number 
of input features, PNN model selected, number of layer 
required, and the number of PD’s preserved in each layer. In 
turn the architecture becomes very complex, requires huge 
memory and computation time. In our approach, we take 
only one layer of PNN model. We select an optimal set from 
the PD’s generated in the first layer along with the input 
features using PSO technique. This optimal set of features is 
fed to a single Perceptron like model of ANN. The weights 
of the single perceptron like model are also optimized by 
PSO.   

The rest of the paper is organized as follows. Section II 
describes the basics of PNN. In Section III, PSO is 
discussed. The analysis and design of RPNSN architecture is 
given in Section IV. In Section V, a simulation result of the 
model is presented. Section VI summarizes this paper. 

II. BASICS OF PNN

A. PNN Architecture  
The GMDH belongs to the category of inductive self-

organization data driven approaches. It requires small data 
samples and is able to optimize models’ structure 
objectively. Relationship between input–output variables can 
be approximated by Voters functional series, the discrete 
form of which is Kolmogorov-Gabor Polynomial[4] 
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where kC  denotes the coefficients or weights of the 

Kolmogorov-Gabor polynomial & x vector is the input 
variables. This polynomial can approximate any stationary 
random sequence of observations and it can be solved by 
either adaptive methods or by Gaussian equations. This 
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polynomial is not computationally suitable if the number of 
input variables increase and there are missing observations 
in input dataset. Also it takes more computation time to 
solve all necessary normal equations when the input 
variables are large.  

A new algorithm called GMDH is developed by 
Ivakhnenko [4, 6] which is a form of Kolmogorov-Gabor 
polynomial. He proved that a second order polynomial i.e  
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which takes only two input variables at a time and can 
reconstruct the complete Kolmogorov-Gabor polynomial 
through an iterative procedure. The GMDH method belongs 
to the category of heuristic self-organization methods, where 
the approaches like black-box concepts, connectionism and 
induction concepts can be applied [5]. The black-box 
method is a principal approach to analyze systems on the 
basis of input-output samples. And the method of connection 
and induction can be thought of as representation of complex 
functions through network of elementary functions. Thus the 
GMDH algorithm has the ability to trace all input-output 
relationship through an entire system that is too complex. 
The GMDH-type Polynomial Neural Networks are 
multilayered model consisting of the neurons/active units 
/Partial Descriptions(PDs) whose transfer function is a short- 
term polynomial described in equation (2).   At the first layer 
L=1, an algorithm, using all possible combinations by two 
from m inputs variables, generates the first population of 
PDs. Total number of PDs in first layer is n = m(m-1)/2. The 
outputs of each PDs in layer L=1 is computed by applying 
the equation (2). Let the outputs of first layer are denoted as 

11
2

1
1 ,......,, nyyy .The vector of coefficients of the PDs are 

determined by least square estimation approach.  
The architecture of a PNN with four input features is 

shown in Fig. 1 

The details of PNN model development and least square 
estimation technique is explained below. 

Let the input and output data for training is represented in 
the following manner 
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In general, it is expressed as 
),,...,,(),( 21 imiiiii yxxxyX = , where i =1, 2, 3, … ,n.

The input and output relationship of the above data by 
PNN algorithm can be described in the following manner: 

),...,,,( 321 mxxxxfy = ,

where m is the number of features in the dataset. 

Number of PDs, K in each layer depends on the number 
of input features M as below 
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The input index of features (p, q) to each PD, may be 
generated using the following algorithm 

1. Let layers is l. 
2. Let k=1, 
3. FOR i =1 to m-1 
4.    FOR  j = i+1 to m 
5.   Then 1

kPD  will receive input from the   

 features 
6.     p=i; &  q=j; 
7.    k=k+1; 
8.  END FOR 
9  END FOR 

Let consider the equations for the first PD of layer1, 
which receives input from feature 1 and 2. 
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This equation in general may be written as 
2
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 where (i)  i=1, 2, ..., n. 

    (ii)  j=1, 2, ..., k 
    (iii) k=m(m-1)/2   

The equations for the least square are 
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To minimize the error, we get the first derivatives of ∏
in terms of all the unknown variables (i.e. the coefficients). 

���� 1: Basic PNN model
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After obtaining the values of the coefficients with the 
testing dataset, we estimate the target 
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If the error level is not up to our desired value, we 
construct next layer of PNN by taking the output of the 
previous layer 
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and apply the same procedure.  
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This process is repeated till error decreases. Overall 
framework of the design procedure of the GMDH-type PNN 
comes as a sequence of the following steps. 

Step 1: Determine system’s input variables 
Step 2: Form training and testing data 
Step 3: Choose a structure of the PNN 
Step 4: Determine the number of input variables and the 
order of the polynomial forming a partial description 
(PD) of data. 
Step 5: Estimate the coefficients of the PD 
Step 6: Select PDs with the best classification accuracy  
Step 7: Check the stopping criterion 
Step 8: Determine new input variables for the next layer 
The layers of PNN models are grown as per the algorithm

described above. The residual error between the estimated
output and the actual output is calculated at each layer. If the
error level is within the tolerable limit then the growth of the
model is stopped and the final model is derived taking into
account only those PDs that contribute to obtain the best
result. Otherwise the next layer is grown. It is observed that
the error level decreases rapidly at the first layers of PNN
network and relatively slower near to optimal number of
layers, and further increasing the number of layers causes
increasing the value of error level because of over-fitting
[8,9,10]. Thus in our simulation the number of layers in the
model increases one-by-one until the stopping rule i.e. the
tolerable error level is met at the layer r. Subsequently we
take a desired PNN model of nearly optimal complexity
from (r-1)th layer. Hence we preserve only those PDs that
contribute to the better result. From the simulation it is seen
that the output of best two PDs of previous layer not
necessarily yields the best result in the next layer. Hence,
PDs that give better result in a layer are preserved for
building the next layer.
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The PNN model is tested with the test data set. We have
adopted the 2-fold cross-validation strategy to test. Each set
of the datasets is used for training and testing. Two third of a
set is taken for training a model and one third is used for
validation of the model. Then both the train and the test data
sets are exposed to the model for classification. The average
of the percentage of correct classification for test data set
using PNN model are considered for comparison.

III. PARTICLE SWARM OPTIMIZATION

A. PSO basics

The implicit rules adhered to by the members of bird 
flocks and fish schools, that enable them to move 
synchronized, without colliding, resulting in an amazing 
choreography, was studied and simulated by several 
scientists [11,12]. In simulations, the movement of the flock 
was an outcome of the individuals’ (birds, fishes etc.) efforts 
to maintain an optimum distance from their neighboring 
individuals [13]. 

The social behavior of animals, and in some cases of 
humans, is governed by similar rules [14]. However, human 
social behavior is more complex than a flock’s movement. 
Besides physical motion, humans adjust their beliefs, 
moving, thus, in a belief space. Although two persons cannot 
occupy the same space of their physical environment, they 
can have the same beliefs, occupying the same position in 
the belief space, without collision. This abstractness in 
human social behavior is intriguing and has constituted the 
motivation for developing simulations of it. There is a 
general belief, and numerous examples coming from nature 
enforce the view, that social sharing of information among 
the individuals of a population may provide an evolutionary 
advantage. This was the core idea behind the development of 
PSO [13]. 

B. PSO Algorithm

PSO’s precursor was a simulator of social behavior that 
was used to visualize the movement of a birds’ flock. 
Several versions of the simulation model were developed, 
incorporating concepts such as nearest-neighbor velocity 
matching and acceleration by distance [13,15]. When it was 
realized that the simulation could be used as an optimizer, 
several parameters were omitted, through a trial and error 
process, resulting in the first simple version of PSO [13]. 

PSO is similar to EC techniques in that, a population of 
potential solutions to the problem under consideration is 
used to probe the search space. However, in PSO, each 
individual of the population has an adaptable velocity 
(position change), according to which it moves in the search 
space. Moreover, each individual has a memory,
remembering the best position of the search space it has ever 
visited [13]. Thus, its movement is an aggregated 
acceleration towards its best previously visited position and 
towards the best individual of a topological neighborhood. 
Since the ‘‘acceleration’’ term was mainly used for particle 
systems in Particle Physics [16], the pioneers of this 
technique decided to use the term particle for each 
individual, and the name swarm for the population, thus, 

coming up with the name Particle Swarm for their algorithm 
[15]. 

Two variants of the PSO algorithm were developed, one 
with a global neighborhood, and the other with a local 
neighborhood. According to the global variant, each particle 
moves towards its best previous position and towards the 
best particle in the whole swarm. On the other hand, 
according to the local variant, each particle moves towards 
its best previous position and towards the best particle in its 
restricted neighborhood [13]. In the following paragraphs, 
the global variant is exposed. 

Suppose that the search space is D-dimensional, then the ith

particle of the swarm can be represented by a D-dimensional 

vector, ( )iDiii xxxx ,...,, 21= . The velocity (position 

change) of this particle, can be represented by another D-

dimensional vector ( )iDiii vvvv ,...,, 21= . The best 

previously visited position of the ith
 particle is denoted as 

( )iDiii pppp ,...,, 21= . Defining g as the index of the best 

particle in the swarm (i.e., the gth
 particle is the best), and let 

the superscripts denote the iteration number, then the swarm 
is manipulated according to the following two equations: 
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where d = 1, 2, . . .,D; i = 1, 2, . . . , N, and N is the size of 

the swarm; c is a positive constant, called acceleration 

constant; r1, r2 are random numbers, uniformly distributed 

in [0, 1]; and n = 1, 2, . . ., determines the iteration number. 

Equations (3) and (4) define the initial version of the PSO 
algorithm. Since there was no actual mechanism for 
controlling the velocity of a particle, it was necessary to 
impose a maximum value Vmax on it. If the velocity 

exceeded this threshold, it was set equal to Vmax. This 

parameter proved to be crucial, because large values could 
result in particles moving past good solutions, while small 
values could result in insufficient exploration of the search 
space. This lack of a control mechanism for the velocity 
resulted in low efficiency for PSO, compared to EC 
techniques [17]. Specifically, PSO located the area of the 
optimum faster than EC techniques, but once in the region of 
the optimum, it could not adjust its velocity step size to 
continue the search at a finer grain. 

The aforementioned problem was addressed by 
incorporating a weight parameter for the previous velocity of 
the particle. Thus, in the latest versions of the PSO, 
Equations (3) and (4) are changed to the following ones 
[18,19,20]: 

( ) ( )( )n
id

n
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id

n
id
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id

n
id xprcxprcwvv −+−+=+
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1 χ   (5) 

11 ++ += n
id

n
id

n
id vxx                 (6) 

where w is called inertia weight; c1, c2 are two positive 

constants, called cognitive and social parameter respectively; 
and � is a constriction factor, which is used, alternatively to 

w to limit velocity. 
In the local variant of PSO, each particle moves towards 

the best particle of its neighborhood. For example, if the size 
of the neighborhood is 2, then the ith

 particle moves towards 

the best particle among the (i --- 1)
th
, the (i +1)

th
 and itself. 
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The PSO method appears to adhere to the five basic 
principles of swarm intelligence, as defined by [13]: 
(a) Proximity, i.e., the swarm must be able to perform simple 
space and time computations; 
(b) Quality, i.e., the swarm should be able to respond to 
quality factors in the environment; 
(c) Diverse response, i.e., the swarm should not commit its 
activities along excessively narrow channels; 
(d) Stability, i.e., the swarm should not change its behavior 
every time the environment alters; and finally 
(e) Adaptability, i.e., the swarm must be able to change its 
behavior, when the computational cost is not prohibitive. 

Indeed, the swarm in PSO performs space calculations for 

several time steps. It responds to the quality factors implied 

by each particle’s best position and the best particle in the 

swarm, allocating the responses in a way that ensures 

diversity. Moreover, the swarm alters its behavior (state) 

only when the best particle in the swarm (or in the 

neighborhood, in the local variant of PSO) changes, thus, it 

is both adaptive and stable [13].

C. The parameters of PSO

The role of the inertia weight w, in Equation (5), is 

considered critical for the PSO’s convergence behavior. The 
inertia weight is employed to control the impact of the 
previous history of velocities on the current one. 
Accordingly, the parameter w regulates the trade-off 

between the global (wide-ranging) and local (nearby) 
exploration abilities of the swarm. A large inertia weight 
facilitates global exploration (searching new areas), while a 
small one tends to facilitate local exploration, i.e., fine-
tuning the current search area. A suitable value for the 
inertia weight w usually provides balance between global 

and local exploration abilities and consequently results in a 
reduction of the number of iterations required to locate the 
optimum solution. Initially, the inertia weight was constant. 
However, experimental results indicated that it is better to 
initially set the inertia to a large value, in order to promote 
global exploration of the search space, and gradually 
decrease it to get more refined solutions [19, 20]. Thus, an 
initial value around 1.2 and a gradual decline towards 0 can 
be considered as a good choice for w.

The parameters c1 and c2, in Equation (5), are not critical 

for PSO’s convergence. However, proper fine-tuning may 
result in faster convergence and alleviation of local minima. 
An extended study of the acceleration parameter in the first 
version of PSO, is given in [22]. As default values, c1 = c2 = 

2 were proposed, but experimental results indicate that c1

=c2 = 0.5 might provide even better results. Recent work 

reports that it might be even better to choose a larger 
cognitive parameter, c1, than a social parameter, c2, but with 

c1 + c2 <=�4 [23]. 

The parameters r1 and r2 are used to maintain the diversity 

of the population, and they are uniformly distributed in the 
range [0, 1]. The constriction factor � controls on the 

magnitude of the velocities, in a way similar to the Vmax
parameter, resulting in a variant of PSO, different from the 
one with the inertia weight. 

IV. RPNSN ARCHITECTURE

While simulating the PNN model it is observed that the
number of partial descriptions generated in each layer grows
very fast. As a result lot of time is consumed in generating
the PDs. In general the PDs giving poor performance are
rejected. But still then a substantial number of PDs needs to
be preserved to get better result in subsequent layers. It is
observed that always PDs giving best result do not combine
to yield improvised result. Very often one PD giving better
result combined with other PD giving inferior result to
improvise its performance in subsequent layer. Therefore it
is always essential to preserve substantial number of PDs in
a hope of getting better result in subsequent layers. In turn
huge amount of memory and running time is needed for the
process of generation of a model for a dataset [21].

Each PD tries to approximate the input output relation of
the dataset. In the suggested model, we have developed PDs
for one layer. Along with the output of the first layer, we
have considered the original features of the dataset. The PSO
technique is used to select the optimal number of input to the
output layer.

In the model, m represents the number of features in the
dataset and k represents number of PDs generated out of m
features. One bias is included to the net at this level. There
are m+k+1 number of weights to be optimized. PSO
technique is again used to train these weights.

V. SIMULATIONS AND RESULTS

The performance of different models is evaluated using
the benchmark classification databases. Out of these, the
most frequently used in the area of neural networks and of
neuro-fuzzy systems are IRIS, WINE, PIMA, BUPA Liver
Disorders. All these databases are taken from the UCI
machine repository [7]. Table I presents the summary of the
main features of the datasets used for our experimental
studies.
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w1
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TABLE I
DESCRIPTION OF DATASESETS USED

Dataset Patterns Attributes Classes Patterns in
Class1

Patterns in
Class2

Patterns in
Class3

IRIS 150 4 3 50 50 50
WINE 178 13 3 59 71 48
PIMA 768 8 2 268 500
BUPA 345 6 2 145 200

-
-

The dataset is divided into two parts. The division of
datasets and its class distribution is shown in Table II.

TABLE II
DIVISION OF DATASET AND ITS PATTERN DISTRIBUTION

Patterns Patterns
in

Class1

Patterns
in

Class2

Patterns
in

Class3

IRIS Set1
Set2

75
75

25
25

25
25

25
25

WINE Set1
Set2

89
89

29
30

36
35

24
24

PIMA Set1
Set2

384
384

134
134

250
250

-
-

BUPA Set1
Set2

172
173

72
73

100
100

-
-

One part is used for building the model and other part is
used for testing the model. The protocol for parameters used
for our simulation studies is given in Table III.

TABLE III
PARAMETERS CONSIDERED FOR SIMULATION OF RPNSN MODEL USING PSO

Parameters Values
Population Size 20

Maximum Iterations 100
Inertia Weight 0.729844

Cognitive Parameter 1.49445
Social Parameter 1.49445

Constriction Factor 1.0

The average percentage of correct classification obtained 
for the test sets are provided in Table IV for the purpose of 
comparison.   

TABLE IV
COMPARISON OF AVERAGE PERCENTAGE OF CORRECT

CLASSIFICATION OF TEST SETS WITH PNN AND RPNSN

Data set PNN RPNSN

IRIS 98.68 99.3333

WINE 94.872 99.4382

PIMA 65.1042 76.823

BUPA 70.196 73.9061

In Table V the percentage of PDs used in our model is
given, which is also very crucial aspect to obtain an
optimum model.

TABLE V
PERCENTAGE OF PDS USED BY THE RPNSN TO OBTAIN THE OPTIMUM

MODEL

% of PDs used in optimized
modelData set

Total number of
possible PDs.

Set1 Set2

IRIS 6 33.33 50.00

WINE 78 32.05 19.23

PIMA 28 21.43 32.14

BUPA 15 33.33 26.67

Table VI shows the processing time of both PNN and
RPNSN. From the Table it shows that the time required for
our proposed model is comparatively very less than PNN.

TABLE VI
COMPARISON OF PROCESSING TIME PERFORMANCE OF PNN WITH RPNSN

(IN SECONDS)
Datasets PNN RPNSN

Set1 129 0.6563IRIS
Set2 125 0.6719
Set1 225 4.5625WINE
Set2 224 4.7031
Set1 783 8.1406PIMA
Set2 793 8.4531
Set1 352 2.2969BUPA
Set2 353 2.4219

The mathematical model obtained by our PNN Model for
Iris dataset is presented for an example purpose.

,)x,poly(x*0.10067]0.044319,

13994,.65004,-0.-0.25663,0,96751.0[

31

1
2 −=PD

);x,poly(x*.067678]0.09108,-0

3,5,-0.051330407,1.482[1.633,-1.PD

41

1
3 =

);x,poly(x*0.018686]-

,-0.15092,317,0.3308.4898,-2.4[-1.7572,1PD

21

1
1 =

);x,poly(PD*079276]0.57289,0.-

01,284,0.04624134,-0.84[2.0965,1.PD

3
1
2

2
16 =

);x,poly(PD*15237]0.15639,0.

1,97,-0.22657305,-1.24[2.2683,1.PD

2
1
3

2
28 =

);x,poly(PD*015491]0.25631,0.-

1458,42213,0.080.58075,0.[-1.8284,-PD

3
1
1

2
38 =

);PD,poly(PD*0812]0.6309,0.6

1876,.45923,-1.,0.54087,0[-0.054529PD
2
28

2
16

3
496 =

);PD,poly(PD*3952]0.39684,0.

75286,.41454,-0.,0.59432,0[-0.043133PD
2
38

2
28

3
557 =

);PD,poly(PD*56]2.208,-3.1-

42,15925,5.36,1.158,-0.[0.0057053y
3
557

3
496

=

where
1. Function ploy (a1, a2)

{
return [1,a1,a2,a1*a2,a1.^2,a2.^2]T;

2008 IEEE Congress on Evolutionary Computation (CEC 2008) 2303

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore.  Restrictions apply.



}

2. PDi
j is the output of layer i and jth partial description.

3. y is the output of the PNN model and x is the input
features.

The architecture of the PNN model generated is given at
Fig.3.

The mathematical model obtained by our RPNSN Model
for Iris dataset presented below.

,)x,poly(x*2.6568]16.636,

5.0129,-2.7124,,-27.379,12.265[

21

1
1 =PD

,)x,poly(x*0.37042]-0.32404,

3.5712,4.7075,-0.61437,-3.4633,[

42

1
5 =PD

0.10778];0.33345PD0.62292PD[0.02099xy 1
5

1
14 +++=

The architecture of the RPNSN model generated is given
at Fig.4

After generating the RPNSN model, the confusion matrix
is obtained for the entire dataset. The confusion matrices for
the class 2 datasets are shown in Table VII and the confusion
matrix for the class 3 datasets are shown in Table VIII.

TABLE VII
CONFUSION MATRIX FOR TWO CLASS DATASETS

Predicted

c1 c2
BUPA c1 85 60

c2 30 170
PIMA c1 134 134

A
c
t
u
a
l c2 44 456

TABLE VIII
CONFUSION MATRIX FOR THREE CLASS DATASETS

Predicted

c1 c2 c3
IRIS c1 50 0 0

c2 1 49 0
c3 0 0 50

WINE c1 59 0 0
c2 0 70 1

A
c
t
u
a
l c3 0 0 48

During training of the RPNSN model, different error
curves are obtained for different simulations. Fig. 5, 6, 7 and
8 shows the error curves obtained from our model for Iris,
Wine, Bupa, Pima datasets respectively. Similarly Fig. 9, 10,
11, and 12 shows the error curves obtained from PNN for
Iris, Bupa, Pima and Wine and datasets respectively.
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Fig. 11. Error curve for Pima data
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Fig. 10. Error curve for Bupa data
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Fig. 9. Error curve for IRIS data
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Figure 6 Error curve for wine dataset
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VI. CONCLUSION

In this paper, we have proposed RPNSN for the
classification task of data mining. The RPNSN model
generates PDs for one layer of the basic PNN model. PSO
selects the optimal set of PDs and input features, which are
fed to the single layer feed forward artificial neural network.
The network is also trained using PSO technique. The
experimental studies demonstrated that the RPNSN model
performs the pattern classification task quite well. In all the
cases, the results obtained with the RPNSN model proved to
be better than the PNN results. The performance of the
RPNSN models is better in terms of processing time, which
is also treated as one of the crucial aspect in data mining
community.
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Fig. 12. Error curve for Wine data

2306 2008 IEEE Congress on Evolutionary Computation (CEC 2008)

Authorized licensed use limited to: IEEE Xplore. Downloaded on November 20, 2008 at 23:30 from IEEE Xplore.  Restrictions apply.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


