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Abstract - In the present work, an attempt has been made to 
form disjoint machine cells using modified ART1 (Adaptive 
Resonance Theory) to handle the real valued workload matrix. 
The methodology first allocates the machines to various 
machine cells and then parts are assigned to those cells with the 
aid of degree of belongingness through a membership index. 
The proposed algorithm uses a supplementary procedure to 
effectively take care of the problem of generating cells with 
single machine that may be encountered at times. A modified 
grouping efficiency (MGE) is proposed to measure the 
performance of the clustering algorithm. The results of 
modified ART1 algorithm are compared with the results 
obtained from K-means clustering and genetic algorithm. The 
modified ART1 results are also compared with the literature 
results in terms of number of exceptional elements. The 
performance of the proposed algorithm is tested with genetic 
algorithm and K-means clustering algorithm. The results 
distinctly indicate that the proposed algorithm is quite flexible, 
fast and efficient in computation for cell formation problems 
and can be applied in industries with convenience.  
 
Keywords: Cell formation; Adaptive Resonance Theory 
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I. INTRODUCTION 

 
ellular Manufacturing aims at formation of machine 
cells for achieving the benefits of mass production to 
batch production with higher values of variety, product-

mix and total quantity. A cell is a group of closely located 
workstations where multiple and sequential operations are 
performed on one or more part families. The basic idea in 
cellular manufacturing is to group the machines into 
machine cells and the parts into part families with an aim to 
achieve reduced material handling, reduced manufacturing 
lead time, reduced work-in-process, reduced setup time, 
increased flexibility and maximum utilization of resources. 
Major approaches in cell formation problems can be 
categorized as visual inspection, parts classification and 
coding and production flow analysis.   

However, the production flow analysis is quite popular 
method in industries as the existing production data can be 
utilized to form machine cells. The past research work 
reveals that the cell formation problems are addressed with 
zero-one incidence matrices in most cases. 
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These approaches can hardly incorporate the real life 
production factors. 

The production data such as lot size of the products, 
machine capacity, operational time and operation sequence 
need to be considered in order to generalize cell formation 
problem. In the present work, an attempt is made to address 
the generalized cell formation problem with operational time 
of the parts. 

 
II. LITERATURE REVIEW 

 
Burbidge [1] viewed group technology GT as a change 

from an organization of people mainly on process, to an 
organization based on completed products, components and 
major completed tasks. From 1960 onwards there are many 
approaches presented in the literature. The most significant 
contributions by the researchers are towards similarity 
coefficient methods, graph theory, mathematical 
programming, meta-heuristics, fuzzy set theory and neural 
networks which are used to solve cell formation problems. 
Initially the methods like similarity coefficient methods 
(SCM) [2], rank order clustering (ROC) [3] and graph theory 
[4] methods were developed only to group the similar 
machines into machine cells and the grouping of parts into 
part families was done only in the supplementary step of the 
procedure. Later clustering methods such as the MODROC 
[5], ZODIAC[6], MACE [7] and GRAFICS [8] are reported 
for solving the cell formation problems. Subsequently many 
algorithms which are based on metaheuristics like simulated 
annealing (SA) algorithm, genetic algorithm (GA), tabu 
search (TS) were also developed to solve the cell formation 
problems. The popular algorithms of this category include 
SA based algorithm proposed by Boctor [9], GA based 
algorithm proposed by Venugopal and Narendran [10], 
Jayakrishnan Nair and Narendran [11] proposed an algorithm 
called CASE which considers sequence of operations that a 
part undergoes through a number of machines. Fernando [12], 
TS based algorithm proposed by Wu et al. [13]. Meanwhile 
many researchers have proposed artificial neural network 
(ANN) based methodologies for solving the cell formation 
problems. There are many popular ANN models found in the 
literature [14-16] which are efficient in producing 
satisfactory solutions to this NP-hard problems.  
          Kao et al. [14] introduced back propagation neural 
network model for GT whereas Kaparthi and Suresh [16] 
made an attempt to introduce adaptive resonance theory 
(ART1). There are certain disadvantages of ART1 network – 
(i) it will recognize only the binary input data and (ii) the 
resulting solution is highly influenced by the order of 
presentation of input vectors. Chen and Cheng [17] have 
successfully overcome the second disadvantage using some 
supplementary procedures.  
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II THE MODIFIED ART1 ALGORITHM TO CELL FORMATION 
CONSIDERING PRODUCTION DATA 

 
The proposed algorithm is a modified version of ART1, 

adapted from the method proposed by Yoh-Han Pao [18] 
that accommodates analogue patterns (real step valued 
matrix) instead of binary form of input vectors. Let M be the 
total number of machines and N be the total number of parts. 
Then workload matrix size becomes M x N. The elements of 
the matrix represent operation time Tij which indicates that 
part j takes Tij units of time to complete its operation in 
machine i.  
 
NOTATIONS USED: 
M    number of machines.  
N   number of parts. 
C   total number of cells. 
i    machine index 
j    part index. 
k   cell index. 
ρ   vigilance threshold. 
wtji  top-down weights.  
ei     Euclidean distance. 
Xq input vector (rows) represented as (xq1 xq2 xq3……..xqN) 

for row q. 
n      number of machines in active node k.  
m     n+1. 
Pkj    membership value of part j belonging to cell k. 
Pm    maximum of Pkj. 
 fkj   number of machines in cell k required by part j. 
fk      total number of machines in cell k. 
fj         total number of machines required by part j. 
Tkj   processing time of part j in cell k. 
Tj     total processing time required by part j. 
wv weighting factor to the voids. 
Tpti total processing time inside the cells. 
Tpto total processing time outside the cells. 
Tptk total processing time of cell k. 
Nvk number of voids in cell k. 
Nek total number of elements in cell k. 

 
The Procedure 
Step 1: Initialize: Set nodes in the input layer equal to N 
(number of parts) and nodes in  output layer equal to M 
(number of machines). Set vigilance threshold (ρ). 
Step 2: Initialize top-down connection weights.  Top-down 
weights wtji (0) = 0 for i = 1, 2,... M. and j = 1,2,... N. 
Step 3: Let q =1. The first input vector X1 (first row of the 
workload matrix) is presented to input layer and assigned to 
the first cluster. Then, first node in the output layer is 
activated. 
Step 4: The top-down connection weights for the present 
active node are set equal to the  input vector. 
Step 5: Let q = q+1. Apply new input vector Xq. (input 
vectors are the rows of the workload matrix).  
Step  6: Compute Euclidean distance between Xq and the 
exemplar stored in the top-down weights (wtji) for all active 
nodes i as given in the Eq. (1). This distance function is used 
to calculate similarity between the stored pattern and the 

present input pattern. If the similarity value is less than or 
equal to ρ (vigilance threshold), the present input is 
categorized under the same cluster as that of stored pattern. 

 ∑
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Step 7: Perform vigilance test: Find out minimum Euclidean 
distance.   
Step 8: If min ei < ρ (threshold value), select output node for 
which Euclidean distance is minimum. If tie occurs, select 
the output node with lowest index number. Suppose output 
node k is selected. Then allocate the vector Xq to the node k 
(cell) and activate node k. Make increment to the number of 
machines in the active node k by one. If ei’s for all active 
nodes are greater than ρ, then go to step 9. 
Step 9: Start a new cell by activating a new output node. 
Step 10: Update top-down weights of active node k using 
Eq. (2).    
When a vector is selected (to be allocated to an output node), 
its top-down weights are updated using more information of 
the previously stored exemplar and a relatively less 
information of the input vector (pattern).    
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 Step 11:  Go to step 5 and repeat till all the rows are 
assigned in the output nodes (cells). 
Step 13: Assign parts to cells using the  membership 
index given in Eq. (3).  
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The membership index Pkj represents the belongingness of 
the part j to the cell k. There are three components in the 
membership index as shown in Eq. (3). First component 
(fkj/fk) denotes the proportion of machines of cell k required 
by part j. The second component (fkj/fj) is a ratio between the 
number of machines in cell k required by part j and the total 
number of machines required by part j. The third component 
(Tkj/Tj) is the proportion of processing time of part type j 
that can be accommodated in cell k. The belongingness of 
the part j, Pkj, is calculated for all the cells k = 1,2,3…C. Part 
j is assigned to a cell based on its maximum belongingness 
to the cells. The maximum belongingness can be calculated 
using Eq. (4). The value of Pm lies between 0 and 1 where Pm 
= 1 indicates that part j is perfectly eligible to belong the cell 
k.  

}{PmaxP kjm =  k=1, 2, 3…C.           (4) 

  
III. MEASURE OF PERFORMANCE 

 
 Grouping efficiency proposed by Chandrasekharan 

and Rajagopalan [6] and grouping efficacy was proposed by 
Kumar and Chandrasekaran [19]. These measures are 
suitable only for the zero-one incidence matrix. These 
measures cannot be adopted for generalized cell formation 
problem where information regarding operational times is of 
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importance. In this work, a new measure for grouping 
efficiency termed as modified grouping efficiency (MGE) 
has been proposed to find out the performance of real valued 
cell formation problem with due emphasis on number of 
voids. 
 
Modified Grouping Efficiency: 
Weighting factor to the voids and modified grouping 
efficiency (MGE) are calculated using the following 
equations 5 and 6. 

 

ekvkv N / N  w =                          (5)  
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Unlike grouping efficiency, modified grouping efficiency 
does not treat all the operations equally. Moreover a 
weighting factor for voids is considered to reflect the 
packing density of the cells. Modified grouping efficiency 
produces 100% efficiency when the cells are perfectly 
packed without any voids and exceptional elements.  
 

IV. ILLUSTRATION OF THE PROPOSED ALGORITHM 
 

The binary matrix is converted into real valued 
workload matrix by replacing the ones using uniform 
random numbers in the range of 0.5 to 1 and zeros remain 
unchanged in the same position. The resultant matrix is 
presented as input to the proposed algorithm. Initially the 
algorithm assigns the machines (rows) to the cells. After 
rows are sorted out, parts (columns) are assigned to the cells 
using the membership index given in the Eq. (3) and Eq. (4) 
to form the part families. For problem number 4 from Tables 
1a and 1b, the first cell does not have any voids and hence 
weighting factor to the voids (wv) is zero. The number of 
voids in second cell (Nvk) is four and the total number of 
elements (Nek) is eighteen. Therefore, weighting factor for 
voids (wv) for the second cell equals to 0.2222. The total 
processing time in second cell (Tptk) is 11.234 and it is 
multiplied by its weighting factor for voids to produce Tptk x 
wv equal to 2.496. The total processing time inside both the 
cells (Tpti) is 15.379. As total number of exceptional 
elements is two, sum of their value (Tpto) is 1.385. The 
summation of (Tpto), (Tpti) and (Tptk x wv) is calculated as 
19.2604. Now, the value of MGE is calculated by the ratio 
of 15.379 to 19.2604 and it is obtained using the proposed 
algorithm as 79.85%. 

 
 

V. ELIMINATING CELLS WITH SINGLE MACHINE 
 

A cell with a single machine is not desirable in cellular 
manufacturing because its expected advantages, in particular 
flexibility, will be lost. Therefore the following procedure 
can be adopted to deal with if single machine cells are found 
in the output. 
• Calculate the average workload of each part in the cell.  

• Calculate the Euclidean distance between the cells. 
• Find out the minimum distance between cells. 
Merge the cell (assigned with single machine) with the cell 

that has minimum Euclidean distance. 
 

VI. RESULTS AND DISCUSSIONS 
 

In this study, an efficient algorithm is proposed based 
on ART1 for generalized cell formation problem. The 
algorithm is coded in C++ and run on an IBM Pentium IV PC 
with 2.4 GHz Processor. Number of problems with varied 
sizes from open literature [12] are considered for testing the 
proposed algorithm. The workload (input) matrices are 
generated by replacing the ones in the incidence matrix with 
uniformly distributed random numbers in the range of 0.5 to 
1 and zeros to remain in same positions. The problem sizes 
considered in this work ranges from 5 x 7 to 30 x 50. It is 
assumed that the lot size for all the products equal to one to 
characterize the behaviour of the sample problems 
considered in this study although it is not restrictive to one. 
In order to evaluate the performance of the proposed 
algorithm, the sample problems are tested with two more 
algorithms such as genetic algorithm (GA) and K-means 
clustering algorithm and the results are reported in Table 3 

In this paper, the fitness function chosen is 
maximization of MGE. The population size is varied from 
one problem to another depending on size of the problem 
(population size ranges from 10 to 40). For small sized 
problem like 5 x 7, the population size is set at 10 whereas it 
is 40 for the problem size of 30 x 50. The chromosomes are 
selected using a well-known roulette wheel selection 
operator. The number of iterations (generations) is varied 
depending on size of the problem till solution converges. For 
problem size of 5 x 7, the number of generations is 100 and 
it is as high as 1100 generations for the problem size of 30 x 
50. Position based crossover and mutation are adopted from 
Syswerda [21]. The probability of crossover and mutation is 
fixed to be 0.5 and 0.05 respectively for all the problems.  

In K-means algorithm, the number of desired clusters is 
chosen first. The algorithm assigns machines to different 
clusters using Euclidean distance. The number of iterations 
is varied until no further improvement is possible in the 
solution. The number of clusters and number of iterations 
are varied depending on the size of the problem. It is 
observed that the number of iterations lies in the ranges of 
20-35 for the sample problems considered in this work. The 
standard software SYSTAT is used to form clusters using K-
means algorithm.  

The computational time for few sample problems 
between modified ART1, GA and K-means algorithm are 
reported in Table 4. It certainly proves that the proposed 
ART1 is computationally faster than GA. The results 
obtained using ART1 are compared with the results 
produced by K-means clustering algorithm and GA and 
listed in Table 3. The modified ART1 results are also 
compared with the literature results in terms of number of 
exceptional elements reported by Goncalves and Resende 
[12] and by Venkumar and Haq [22]. It has been observed 
that number of exceptional elements reduces with proposed 
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algorithm for most of the sample problems in comparison to 
solutions obtained by other methods. As far as MGE is 
concerned, solutions obtained by the proposed algorithm 
mostly outperforms other two methods in most of the tested 
problems. K-mean clustering seems to be inefficient in 
respect to performance measures like MGE and number of 
exceptional elements. However, all the methods are equally 
good when the problem size is small. Though GA is found to 
produce better results over the ART 1 for only medium size 
problems, the ART1 exhibits its superiority over GA and K-
means for the required computational effort in terms of CPU 
time  or number of iterations as depicted in Table 4 Modified 
ART 1 requires one iteration only whereas genetic algorithm 
and K-means clustering need more than one iterations for 
any size of the problem to obtain desired solution. Modified 
ART 1 is advantageous when the size of the problem 
increases.  

In modified ART1, the threshold value greatly 
influences the number of cells obtained. The threshold value 
for each problem is varied from 1.5 to 2.5. It is observed that 
the number of cells equals to the total number of machines if 
the threshold value is set to zero. As the threshold value 
increases, the number of cells can be reduced as shown in 
Table 2. The threshold value for the problem 4 of size 6x8 is 
2.00 and the modified grouping efficiency (MGE) obtained 
by the proposed algorithm is 79.85%. K-means algorithm 
and Genetic algorithm also produce same value of MGE for 
the problem number 4.  

The supplementary procedure described in section 5 
can be used to avoid cells with single machine that is 
encountered at times. The algorithm is flexible in the sense 
that maximum number of machines to be accommodated in a 
cell can be limited. 
The modified grouping efficiency proposed in this study is 
evidently suitable to measure the performance of cell 
formation algorithm taking into account workloads on 
machines, weighting factor for voids, and exceptional 
elements.  

VII. CONCLUSION 
 The proposed algorithm is tested with varied size 
problems from open literature and the solutions are 
compared with the solutions obtained from K-means 
clustering and GA. For smaller size problem solution i.e the 
number of exceptional elements obtained by ART 1 is 
matching with that of produced by other best algorithms 
found in the literature and for larger size problems the 
proposed ART1 outperforms other algorithms. Though GA 
is found to produce better results over the ART 1 for only 
medium size problems, the ART1 exhibits its superiority 
over GA and K-means for the required computational effort 
in terms of CPU time  or number of iterations. 

Since the algorithm uses simple network architecture 
the results are obtained in a single iteration whereas more 
number of iterations is required both in GA and K-means 
clustering depending on the size of the problem. Therefore, 
the modified ART1 is found to be computationally efficient 
for generating quick solutions for industrial applications. 
However, it has been observed that the proposed algorithm 
is sensitive to the order of presentation of the input vectors 

due to decaying of the stored template leading to 
unsystematic weight updating. Therefore, it may produce 
different solution if the order of presentation of the input 
vectors is changed. When workload matrix is used as input, 
no effective method exists to address this limitation. The 
work can be further extended in future incorporating 
production data like machine capacity, production volume 
and product sequence with varied product type, layout 
considerations and material handling systems enhancing it to 
more generalized manufacturing environment. The software 
used for the proposed algorithm can be obtained from the 
authors on request. 
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Table 1a. Input Matrix 
 

 
Table 1b. Output Matrix 
 

 
 
 
 

                                                                                      Table 4. CPU Time for test problems 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Table 2. Effect of Threshold value on number of cells for the problem size 16 x 30. 
 
 
 
 
 

i / j  P1 P2 P3 P4 P5 P6 P7 P8 
M1 0 0.53 0 0.99 0 0 0.83 0 
M2 0.91 0.82 0.83 0 0.91 0.92 0.86 0.97 
M3 0 0 0.79 0 0 0.56 0 0.88 
M4 0 0 0 0.53 0 0 0.51 0 
M5 0.98 0 0.83 0 0.71 0.58 0 0.54 
M6 0 0 0 0.54 0 0 0.74 0 

S.N Problem 
Size 

CPU Time (Sec) 
K-means GA Modified 

ART1
1 5 x 7 0.0913 0.1098 0.0602 
2 5 x 7 0.0913 0.1098 0.0601 
3 5 x 18 0.1013 0.1533 0.0693 
4 6 x 8 0.1009 0.1302 0.0635 
5 7 x 11 0.1421 0.2310 0.0698 
6 7 x 11 0.1421 0.2315 0.0691 
7 8 x 12 0.1652 0.2632 0.0723 
8 8 x 20 0.2033 0.3213 0.0726 
9 8 x 20 0.2365 0.3320 0.0732 
10 10 x 10 0.2965 0.4891 0.0921 
11 10 x 15 0.3354 0.5561 0.1032 
12 14 x 24 0.4462 0.7884 0.2118 
13 14 x 24 0.4501 0.7890 0.2118 
14 24 x 16 0.6691 0.9320 0.2360 
15 16 x 30 0.5264 1.0439 0.3963 
16 20 x 20 0.6852 1.8925 0.4522 
17 20 x 35 0.8653 2.0182 0.5023 
18 20 x 35 0.8660 2.0231 0.5023 
19 24 x 40 1.3566 3.9616 0.7286 
20 24 x 40 1.3593 3.9835 0.7293 
21 30 x 41 2.6850 5.3222 0.9120 
22 30 x 50 3.9910 6.0354 1.8105 
23 30 x 50 4.6330 6.0439 1.8549 

i / j P4 P7 P1 P2 P3 P5 P6 P8 
M1 0.99 0.83       
M4 0.53 0.51       
M5 0.54 0.74       
M2   0.91 0.82 0.83 0.91 0.92 0.97 
M3   0 0 0.79 0 0.56 0.88 
M5   0.98 0.00 0.83 0.71 0.58 0.54 

S.N Threshold Value (ρ) Number of cells Machines allocated Parts allocated 
1 2 Cell –1 0  3  6  7 10 11 1  3  6  8 11 17 21 29 

Cell –2 1 0  9 15 

Cell –3 2  5  8 14 4 18 22 24 26 27 28 

Cell –4 4  9 13 15 5  7 10 13 14 16 20 23 25 
Cell –5 12 2 12 19 

2 2.3 Cell –1 0  3  6  7 10 11 1  3  6  8 11 17 21 29 

Cell –2 1 0  9 15 19 

Cell –3 2  5  8 12 14 2  4 12 18 22 24 26 27 28 

Cell –4 4  9 13 15 5  7 10 13 14 16 20 23 25 
3 2.5 Cell –1 0  3  6  7 10 11 1  3  6  8 11 17 21 29 

Cell –2 1  2  5  8 12 14 0  4  9 12 15 18 19 22 24 26 27 28 

Cell –3 4  9 13 15 2  5  7 10 13 14 16 20 23 25 

607

Authorized licensed use limited to: NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA. Downloaded on November 15, 2008 at 01:50 from IEEE Xplore.  Restrictions apply.



 

 
Table 3. Performance of the proposed modified ART1 algorithm with K-means and GA. 

 
 

 

S. 
No 

Problem No as referred by 
Gancalves and Resende 
(2002) 

Problem 
Size 

Number 
of cells 

Number of Exceptional 
Elements 

Modified Grouping Efficiency 

K-means GA ART 1 K-means GA ART 1 
1 Problem 1 5 x 7 2 2 2 2 77.25 77.25 77.25 
2 Problem 2 5 x 7 2 2 2 2 78.34 78.34 78.34 
3 Problem 3 5 x 18 2 7 7 7 81.87 81.87 81.87 
4 Problem 4 6 x 8 2 2 2 2 79.85 79.85 79.85 
5 Problem 5 7 x 11 2 3 3 3 61.77 61.77 61.77 
6 Problem 6 7 x 11 2 1 1 1 65.48 65.48 65.48 
7 Problem 7 8 x 12 3 9 9 9 83.40 83.40 83.40 
8 Problem 8 8 x 20 3 0 0 0 77.14 77.14 77.14 
9 Problem 9 8 x 20 3 0 0 0 93.28 93.28 93.28 
10 Problem 10 10 x 10 4 7 3 7 68.13 73.19 68.13 
11 Problem 11 10 x 15 3 1 1 1 71.00 71.15 71.15 
12 Problem 12 14 x 24 4 31 32 28 61.50 61.65 61.71 
13 Problem 13 14 x 24 6 0 0 0 90.28 84.58 90.28 
14 Problem 14 24 x 16 4 34 29 30 46.70 52.02 51.39 
15 Problem 15 16 x 30 5 7 9 9 71.60 73.89 73.89 
16 Problem 18 20 x 20 3 12 15 17 56.65 56.14 53.98 
17 Problem 20 20 x 35 6 20 22 26 61.84 60.23 55.51 
18 Problem 21 20 x 35 3 33 25 17 50.51 52.35 53.19 
19 Problem 22 24 x 40 2 2 0 2 59.43 62.42 60.59 
20 Problem 23 24 x 40 2 6 6 4 57.00 62.11 69.70 
21 Problem 30 30 x 41 2 28 28 25 60.00 59.74 61.30 
22 Problem 31 30 x 50 3 15 20 15 64.81 64.64 64.81 
23 Problem 32 30 x 50 2 42 29 22 49.13 50.72 51.10 
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