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Abstract- Independent Component Analysis, a 

computationally efficient statistical signal processing technique, 
has been an area of interest for researchers for many practical 
applications in various fields of science and engineering. The 
present paper proposes a constrained genetic algorithm 
optimization based independent component analysis assuming a 
noise free Independent Component Analysis (ICA) model. It 
investigates on the application and performance of the popular 
evolutionary computation technique GA in independent 
component analysis problem. It is observed that the proposed 
constrained genetic algorithm optimization based ICA overcomes 
the long standing permutation ambiguity and recovers the 
independent components in a fixed order which is dependent on 
the statistical characteristics of the signals to be estimated. The 
constrained GA based ICA has also been compared with the most 
popular fast ICA algorithm.  

 

I. INTRODUCTION 

Independent Component Analysis (ICA) is a statistical 
signal processing technique in which the goal is to find a linear 
representation of nongaussian data so that the components are 
statistically independent or as independent as possible [1]. 
Such a representation seems to capture the essential structure 
of data in many emerging new practical application areas, such 
as blind separation of mixed voices or images, analysis of 
several types of data, feature extraction, speech recognition, 
data communication, sensor signal processing and biomedical 
signal processing [2, 3, 4]. In the classical application of ICA 
model in blind source separation (BSS) the independent 
components are called as source signals.  

There has been several algorithms for ICA in literature since 
its inception by Comon [1]. One of the promising work by 
Jutten [5] is inspired by neural networks which is based on 
canceling the non linear cross correlations. However the 
algorithm converges only under severe restrictions [6]. A class 
of algorithms consists of those based on maximization of 
network entropy (infomax). These are based on stochastic 
gradient ascent of some functions and are equivalent to 
maximum likelihood approach [7, 8]. Here Newton method is 
used to maximize the likelihood. Though the method gives 
faster convergence but involves a matrix inversion in each 
iteration. In [9] non linear extensions of the neural Principle 
Component Analysis (PCA) based algorithms have been 
proposed. Above algorithms based on a stochastic gradient 
descent are adaptive in nature which creates problem in many 

practical applications where there is no necessity of adaptation. 
Apart from this they depend on choice of some learning rate 
parameter and has sometimes slow convergence. So batch 
fixed-point iteration algorithm popularly known as fastICA is 
introduced in [10]. This algorithm either estimates all the 
independent components (ICs) one-by-one using deflation 
decorrelation approach or estimates all ICs parallely using 
symmetric decorrelation. FastICA algorithm has become most 
popular due to its fastness and robustness. Tensor based 
algorithms use fourth order cumulant tensor for ICA estimation 
[11]. These non adaptive batch algorithms use tensorial 
techniques as eigenmatrix decomposition. However such 
algorithms are difficult to program for their sophisticated 
matrix manipulations and hence are practically complex. 

Unfortunately all the existing methods discussed above do 
not find a global optimum once the algorithm reaches a local 
optimum. It gets stuck in the valley and is unable to jump the 
surrounding hills. The non linear objective functions for ICA 
being multimodal, this problem becomes more prominent. 
Therefore, good initial values are important in initializing these 
algorithms. In addition to the problem of getting trapped in a 
local optimum, these algorithms have the ambiguities like 
scaling and permutation. This means that the independent 
components (ICs) are estimated only up to a multiplicative 
scalar constant and the order in which the ICs are estimated are 
not known. In [12] attempts have been made to overcome the 
permutation ambiguity in the frequency domain only but the 
ambiguity remains still unresolved in the time domain.  

The evolutionary computation based optimization 
techniques like Genetic Algorithms (GA) have an inherent 
characteristic to converge to the global optimum. In a 
preliminary study done by Yoshioka et al. [13] GA is applied 
to separate original images from noise corrupted images by 
directly minimizing Kullback Leibler (KL) divergence. 
However prior probability estimation of the sources is 
prerequisite of the method. Tan and Wang in [14] used GA to 
solve the nonlinear BSS problem using higher order statistics 
where the sources have been estimated regardless of the 
indeterminacies of permutation and scaling. Rajas et al. in [15] 
applied the GA based method for signal separation from their 
post nonlinear mixtures. GA has been directly applied to ICA 
problem for first time in [16] for denoising the 
electrocardiogram (ECG) signals where the method estimates 
only one independent component i.e. the ECG signal. However 
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all the applications of GA to BSS problem still have the 
permutation indeterminacy. In practical applications where we 
need all the signals or independent components to be recovered 
simple application of GA seems to be inadequate.  

In the present paper we propose a novel Independent 
Component Analysis algorithm using optimization based on 
the constrained GA (CGAICA) which recovers all the ICs 
using the popular deflation approach. Our method overcomes 
the long standing permutation ambiguity and recovers the ICs 
in a fixed order which is dependent on the statistical 
characteristics of the signals to be estimated. It offers almost 
comparable performance to the most popular fast ICA 
algorithm.  

 
This paper is organized as follows. In section II, we present 

the Independent Component Analysis problem. Section III 
discusses different contrast functions of ICA for optimization. 
In section IV, we propose the constrained GA based ICA 
algorithm. In section V, the simulation experiments carried out 
to show the effectiveness of this algorithm has been described. 
Section VI the results has been illustrated and discussed. 
Finally, in section VII, we provide the conclusions. 

II. INDEPENDENT COMPONENT ANALYSIS (ICA) 

ICA is a computationally efficient statistical signal 
processing technique for revealing hidden factors that underlie 
sets of random variables, measurements or signals. The basic 
idea of the ICA is to minimize the dependency among the 
output components. A generative model for the observed 
multivariable data, which is typically given as a large database 
of samples is defined by ICA. The data variables in the model 
are assumed to be linear or non-linear mixtures of some 
unknown latent variables and the system of mixing is 
unknown. The extraction of source in this process is done 
based on the assumption that the latent variables are non-
Gaussian and statistically independent [20].  

Suppose a set of observations of random variables is 
))(),...,(),(( 21 txtxtx n    where t  is the time or the sample 

index and they are generated from a linear mixture of sources   
))()...()(( 21 tststs n that are statistically independent. This is 

expressed in the following form 
 

T
n

T
n tststsAtxtxtx )]()...()([)]()...()([ 2121   (1) 

 
where A  is some unknown mixing matrix and T stands for 

the transpose operator of a matrix. 
Independent component analysis estimates both A and 

)(tsi when only the observations )(txi  are at hand. Two 
fundamental restrictions of the model are that, firstly we can 
only estimate non-Gaussian ICs (except if just one of the ICs is 
Gaussian), and secondly, we must have at least as many 
observed linear mixtures as ICs. Moreover, the ICs and the 
columns of A  can only be estimated up to a multiplicative 
constant and their order of appearance is not known. For 

simplicity we assume a linear and noise free model of ICA 
here.  

The estimation of the data model of ICA is usually 
performed by formulating an objective function and then 
minimizing or maximizing it. Such a function is often called a 
contrast function or cost function which in the language of 
evolutionary computational techniques is known as fitness 
function or nutrient function. So the ICA method combines an 
objective function and an optimization algorithm. The 
statistical properties such as consistency, asymptotic variance 
and robustness of the ICA depend on the choice of the contrast 
function. The algorithmic properties such as convergence 
speed, memory requirements and numerical stability depend on 
the optimization algorithm. 

 

III. CONTRAST FUNCTIONS FOR ICA 

A. Kurtosis: 
An interesting characteristic of ICA is that maximizing non-

Gaussianity of data allows the ICs to be obtained. Non-
Gaussianity is measured by various methods. The first method 
uses kurtosis which is the fourth order moment of the random 
data. Given some random data, y , the kurtosis denoted by 

)(ykurt   is defined as 
224 }){(3}{)( yEyEykurt                             (2) 

where {.}E  is the statistical expectation operator. For 
Gaussian variables kurtosis is zero and for non-Gaussian 
variables it is non zero. Particularly when this value is positive 
the distribution is known as super Gaussian and when negative 
it is called sub Gaussian. The demixing matrix W   is so 
chosen that )( xwkurt  gives a maximum where x  is a 
column vector of the matrix in left side of (1) and w  is  
column of W  . 
B. Negentropy: 

A second method of measuring non-Gaussianity is 
negentropy which is based on the information theoretic 
differential entropy. The entropy of data is related to the 
information that is observed. The more random and 
unpredictable the data is, the larger entropy it will have. The 
entropy S of a random variable y with a density of )(p is 

 
)()(log)()( yyy dpppyS                    (3) 

 
Of all observed random variables with unit variance a 

Gaussian variable has the largest entropy value. Differential 
entropy normalized with respect to Gaussian variables result in 
negentropy. Negentropy denoted by H is defined as 

 
)()()( ySySyH gauss                                       (4) 

 

gaussy  is a Gaussian random variable with the same 
correlation and covariance as y. Since the negentropy is 
normalized, it is always non-negative and is zero if y is 
Gaussian distributed. 
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C. Mutual Information: 
Mutual information is a natural measure of dependence 

between random variables. If y is a n-dimensional random 
variable and )(yp  its pdf then vector y has mutually 
independent components if and only if 

 
)(...)().()( 21 21 nyyyy n

pppp                    (5) 
 

A natural way of checking whether y has ICs is to measure a 
distance between both sides of above equation 
 

),(
1

n

i
yy i

pp                                                          (6) 
Average mutual information of y as given by Comon [1] is 

given by 
 

dppppI yyyy ))()((log)()(    (7) 
 
Average mutual information vanishes if and only if the 

variables are mutually independent and strictly positive 
otherwise. In terms of negentropy mutual information is 
written as 

 
)()(),....( 2,1 i

i
n yJyJyyyI                     (8) 

 
The ICA of a random vector X for an invertible 

transformation Y=WX where the matrix W is determined so 
that the mutual information of the transformed components yi 
is minimized. 
D. Approximations of Negentropy: 

Negentropy may be practically difficult and require 
complex computations. Hence the approximations to 
negentropy in terms of expectations of certain nonlinear 
functions G is expressed as 

 
2)}]({)}({[)( GEyGEKyH i                     (9) 

 
Where k is constant and  is a Gaussian variable of zero mean 
and unit variance. The key is to choose the nonlinear function 
G correctly. The frequent choices of G are 

)cosh(log
1

)( 1
1

1 ya
a

yG                                       (10) 

)2exp(
1

)( 2
2

2
2 ya

a
yG                                 (11) 

4
3 4

1
)( yyG                                                             (12) 

where 1a  and 2a  are constants. 

Under the approximation 

ij
T
j

T
i zwzwE ))({(                                                 (13) 

above equation simplifies to 

)}({)( zwGEwH T                                                (14) 

ICs are revealed when the function )(wH  is maximized. 
E. Choice of Practical Contrast Function: 

The properties like consistency, asymptotic variance and 
robustness are considered for choosing the a contrast function 
for practical applications. The major drawback of kurtosis is 
that it is sensitive to outliers in data. 1G  is a good general 
purpose contrast function. For highly super Gaussian ICs and 
robustness 2G  is a better choice. For reducing computational 
overhead a piecewise linear approximations of 1G  and 2G is 
good choice. 

IV. CONSTRAINED GA BASED ICA ALGORITHM 

 
A. The Genetic Algorithm: 
 

The operations like encoding of parameters, initialization of 
population, mate selection, crossover, mutation and population 
replacement constitute a canonical GA. These operations of a 
GA are described in the following manner 
Encoding: The parameters of the independent component 
analysis system to be optimized are generally encoded into 
genes and chromosomes (also called individuals) as a string of 
binary digits using one’s complement representation. The 
parameters are assumed to be bounded in the region. 

kk b   for hk ,........,1  

where h  represents the number of parameters. The length of 
the gene and individuals can be computed as the length of the 

binary string kB  to be encoded k based on kb and the desired 

accuracy. Other encoding methods are also possible.  
Initial population generation: The initial population is 
generated randomly in the range of each parameters. Therefore, 
at the beginning of the separating procedure, N individuals are 
generated as random binary string. 
Evaluation of fitness: After the initial population generations, 
the fitness of each individual is determined. Fitness is a 
numeric index to measure the effectiveness of each individuals 
of the population as a solution, which is usually utilized to 
select members of the population for reproduction. For the ICA 
problem, we can define the fitness function based on defined 
cost function in (2) or (14).  
Selection Operation: A pair of individuals is selected from the 
current population for mating using tournament selection. 
Crossover Operation: A multipoint crossover with probability 

cP  is applied to the newly selected (parents) individuals to 

generate two offspring. Specifically, the number of crossover 
points in our application is equal to the number of the 
parameters to be optimized. 

Mutation Operation: Random mutation operator is applied 
to the newly generated offspring to prevent from premature 
convergence. It randomly alters the gene from zero to one or 
from one to zero with a probability expressed by, mP , 
where mP is called  mutation probability. 
B. Constrained GA based ICA Algorithm 

 
With Genetic Algorithm based optimization we use kurtosis 

as the contrast function to be optimized. A random column 
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vector w  which is represented as two chromosomes is used to 
find the linear transformation zwT . 
 
Step-1: Data Centering 

The mean T
nmmmm xxxX )...,,( 21  of the observed mixed 

signal data T
nxxxX )...,,( 21 is computed and the mean is 

subtracted from the observed data set to make it zero mean. 

mc XXX                                                             (16) 

Step-2: Whitening 

The covariance matrix CovX  of the centered data cX is 

computed. The eigenvalue decomposition of CovX  is 
performed. If D  is the eigenvalue matrix and E is the 
eigenvector matrix then 

cXEDZ *2/1                                                    (17) 
Step -3: GA-based ICA Iteration  
The following iterative procedure is followed to implement GA 
based ICA algorithm. 

 1) An initial population 
1

}ˆ{
i

i N  of size N  is created 

from a random initial set of parameter. The encoding length of 
each parameter is 15 bits. By decoding the individual to get the 
parameter of the system, the fitness for each individual is 
evaluated. 
 2) Two mates are selected for reproduction with 
probabilities proportional to their using tournament selection. 
 3) The multipoint crossover operator with crossover 

operator with crossover probability cP is applied to the two 

mates and a pair of offspring are generated. 

4) The mutation operator with probability mP is 

applied to the newly generated offspring. 
5) The fitness value for the off spring are computed 

after they are decoded as the parameter sets of the parametric 
system. 

6) Steps 2-5 are repeated until an entirely new 
population of individuals is generated. 

7) The previous population is replaced with the new 
population with the addition of an elitist selection. 

8) If the stopping criterion is satisfied, go to step 11. 
9) If generation number is greater than a 

predetermined value go to step 2. 
10) Reinitialize the population survival, go to step 2. 
11) Output the individual with the best fitness value 

and terminate the iterative procedure. 
 
Step-4: Evaluation of Second Independent Component  

To estimate the other ICs step 3 of the algorithm is repeated 
for getting weight vectors nww ,...,2 . To prevent different 
vectors from converging to the same optimum and hence the 
same IC, the weight vectors are decorrelated using Gram-
Schmidt like orthogonaliztion. When p vectors 

pww ,...,1 have been estimated, step 3 is run for 1pw and after 
every iteration step the following iteration steps are performed. 

p

j
jj

T
ppp wwwww

1
111 )(                                 (21) 

11

1
1

p
T
p

p
p

ww

w
w                                                    (22) 

Above equations constrain the GA based optimization 
process. 

 

V. SIMULATION EXPERIMENT 

 
In the experimental studies for the verification of the validity 

and performance of the proposed constrained GA optimization 
based ICA algorithm, programs for separating the signals 
blindly from their observed mixtures were written. In the 
simulation environment, the two signals were mixed by a 
known matrix A  and the mixed signals were the inputs to the 
CGAICA algorithm for separation. Two different examples 
were taken to verify the separation capability of the proposed 
algorithm. For a particular example, the parameters such as a 
number of chromosomes cN , number of bits of binary coded 
GA bN , number of generations reN , probability of crossover 

cP  and probability of mutation mP  parameters are tuned, to get 
the proper separation. In this simulation for CGAICA we have 
considered the following typical 
values: 85.0,10,15,2,8 crebc PNNpN  
and 01.0mP .  

The separation performance parameter, the mean square 
error was evaluated. For the first example, separation was 
performed by using contrast functions kurtosis and 
approximations to negentropy with function as in (10).The 
minimum value of the reciprocal of fitness function J is 
plotted against the number of its evaluations. 

VI. RESULTS  & DISCUSSIONS 

The separation capability of CGAICA was verified through 
following three examples. 
 
Example 1: 

A random binary wave and a sine wave with 400 samples as  
as shown in fig 1 are mixed by the mixing matrix 

7348.04763.0

2292.09121.0
A                                      (23) 

Their mixtures are represented in fig 2. Using CGAICA the 
two signals or ICs are recovered in the decreasing order of the 
value of their contrast function. For the case of kurtosis as 
contrast function the separated signals are depicted in fig 
3.Random binary signal has more kurtosis value than the sine 
wave used. So it is observed that the random binary is 
recovered first and the sine wave comes as the second IC. The 
same random binary signal and sine wave were considered for 
400 samples each and mixed by mixing matrix A  as in (23). 
Applying CGAICA algorithm the signals were separated 
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clearly shown in fig 3 in the case of 400 samples. Two sets of 
tuned values of 
 the optimization parameters for CGAICA algorithm with 
kurtosis as the contrast function and the corresponding mean 
square error (MSE) for random binary signal is summarized in 
table 1. 
Example 2: 

In this example two speech signals (fig 4) with 50000 
samples each were taken and instantaneously mixed by the 
artificial mixing matrix A  as given in (23) which is shown in 
fig 5. The mixed signals were applied to CGAICA algorithm 
for separation using kurtosis as the contrast function. The 
estimated speech signals show a clear separation from the 
mixtures which is depicted in fig 6. first followed by the 
speech signal with lower value of kurtosis. 

 
A. Comparison with Gradient Based  Optimization Scheme 
 

The signal separation as done in example 1 was also 
performed by the most popular fast ICA algorithm which is a 
gradient based scheme to have a comparison with our proposed 
CGAICA algorithm. Table 2 summarizes the typical MSE 
values estimated for random binary and sine wave components 
for fast ICA and CGAICA algorithms. We have chosen the GA 
with 15 bits which is most commonly considered for binary 
GAs. If we increase the number of bits for binary coding then 
MSE performance improves significantly which is very much 
natural for binary GAs as with higher number of bits they tend 
towards real coded GA. It is clearly observed that CGAICA 
yields almost comparable performance as that of the most 
popular fast ICA algorithm. The MSE performance of fastICA 
algorithm varies with varying initialization. 
B. Convergence 
 

In GA schemes, a gene is converged when 95% of the 
population share the same value. To know the convergence of 
CGAICA, we studied the variation of the best value of fitness 
function with the number of times the fitness function is 
evaluated. In the case of example 1 with same mixing 
matrix A , CGAICA was performed. Fig 7 shows the variation 
of the reciprocal of fitness function J  values with the number 
of J evaluations for random binary component. Similar results 
were obtained by taking approximation to negentropy as a 
contrast function. 

 
C. Permutation Ambiguity 
 

From all the above two examples it was observed that using 
CGAICA ICs were recovered always in a fixed order in all 
runs of the simulation experiments. The IC for which the 
fitness function has a global maximum value appeared first and 
then appeared the IC with subsequent maximum value of the 
fitness function. So we can predict the order of the ICs if we 
relatively know about the value of their statistical property like 
kurtosis. Hence the permutation indeterminacy present in all 

ICA techniques seems to be dissolved by use of our proposed 
technique. This can be extended without loss of generalization 
to cases of ICA with any number of independent components. 

VII. CONCLUSION 

The Genetic Algorithm based optimization is used in a 
constrained manner to estimate the independent components 
from their observed mixtures. This scheme is tested using 
several examples including the speech signals for 
instantaneous mixing cases. From the simulation results it is 
very clear that in the CGAICA algorithm the MSE of the 
estimated ICs decreases with increase in the number of 
chromosomes. Also for a fixed number of chromosomes the 
number of generations affects the MSE. The CGAICA 
algorithm has almost comparable MSE as the fast ICA 
algorithm. The permutation ambiguity present in ICA 
techniques is resolved by use of the CGAICA algorithm if we 
have relative knowledge of the statistical characteristics of the 
signals to be estimated. However care should be taken while 
adjusting the parameters for constrained Genetic Algorithm 
based optimization so that premature convergence in a local 
optimum does not occur. For this the parameters should be 
initially varied over a large range to ensure the proper 
convergence to a global optimum.   
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Fig.1 (Original Signals) 
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Fig.2 (Mixer of Random Binary & Sine wave) 
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Fig.3 (The Recovered Independent Components) 

 
 

Table 2 (Comparison of fast ICA and CGAICA) 
MSE 

Algorithm 
Random Binary Sine wave 

Fast ICA 2.5004×10-9 8.58×10-2 

CGAICA 2.1811×10-8 8.58×10-2 
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Fig.4 (Recorded Speech Signals) 

 
 
 
 

No of Chromosomes cN  4 8 8 10 20 

No of Generations reN  5 10 20 20 20 

No of Bits bN  15 15 15 15 15 

Probability of Crossover cP  0.85 0.85 0.85 0.85 0.85 

Probability of Mutation mP  0.01 0.01 0.01 0.01 0.01 

MSE for Random Binary IC 3.562×10-4 4.5883×10-5 2.7647×10-5 1.2268×10-6 2.1811×10-8 
MSE for Sine Wave IC 8.60×10-2 8.61×10-2 8.60×10-2 8.58×10-2 8.58×10-2 
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Fig5. (Speech Signals mixed with artificial mixing matrix) 
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Fig.6 (Speech Signals recovered by CGAICA) 
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Fig. 7 (Convergence of CGAICA)
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