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Abstract 

 
Multirobot systems (MRS) hold the promise of 

improved performance and increased fault tolerance 
for large-scale problems. One of the most important 
aspects in the design of MRS is the allocation of tasks 
among the robots in a productive and efficient manner. 
Optimal solutions to multirobot task allocation 
(MRTA) can be found through an exhaustive search. 
Since there are mn ×  ways in which m tasks can be 
assigned to n robots, an exhaustive search is often not 
possible. Task allocation methodologies must ensure 
that not only the global mission is achieved, but also 
the tasks are well distributed among the robots. This 
paper presents task allocation methodologies for MRS 
by considering their capability in terms of time and 
space. A two-phase solution methodology is used to 
solve the MRTA problem wherein the task capacity of 
the robots is determined during the first phase and the 
task allocation optimization is done during the second 
phase using linear programming (LP). 

 
1. Introduction 

 
The study of multirobot system (MRS) has received 

increased attention in the recent years. Continually 
improving technology has made the deployment of 
MRS consisting of larger number of robots possible. 
Potential advantages of MRS over single robot systems 
(SRS) include reduction of total system cost by 
employing multiple simple and cheap robots as 
opposed to a single, complex and expensive robots. 
The inherent complexity of certain task environment 
may require the use of multiple robots as the demand 
for capability is quite substantial to be met by a single 
robot. Multiple robots are assumed to increase system 
robustness by taking advantage of inherent parallelism 
and redundancy. 

The cooperation of robots in a group can be 
classified into two categories of implicit cooperation 
and explicit cooperation. In the implicit cooperation 
case each robot performs individual tasks, while the 

collection of these tasks is toward a unified mission. 
The explicit cooperation is the case where robots in a 
team work synchronously with respect to time or space 
in order to achieve a goal. In this paper, an attempt is 
made to empirically derive some guidelines for 
selecting task allocation strategies for multirobot 
systems with implicit cooperation.  MRTA, in practice 
is a complex problem by itself and the formulation of 
this problem with multiple of robots of different types 
to take up large number tasks consists of several 
parameters that make it NP-hard. Therefore, the 
solution to this problem becomes computationally 
intractable. Heuristic approaches need to be followed 
to obtain a solution to such problems. However for 
finite and limited number of tasks it is possible as to 
the problem becomes NP-complete and optimization 
tools can be applied to get the solution. The present 
work aims at developing an approach for solving the 
MRTA problem considering a reduced domain. A 
generalized problem is formulated and considering the 
robots under question in terms of their space and time 
capabilities and the requirement of tasks an initial 
solution is obtained on the number of tasks that can be 
allocated to the candidate robots. Thereafter, LP 
technique is used to obtain the optimized MRTA. The 
approach presented in this paper can be 
advantageously used in real-world problems.  

The allocation model (AM) is equivalent to a two-
dimensional multi-type bin packing problem 
(2DMBP). Considering each robot as a two-
dimensional bin, and each task a two-dimensional 
object to be packed, the model can be viewed as 
assigning objects into an optimal set of bins such that 
both resource demands of each object are satisfied and 
neither of the capacity constraints of each selected bin 
is violated. Historical research in bin packing has 
focused on both the one-dimensional single-type bin 
packing problem (1DSBP) and its two dimensional 
extension—2DSBP [1, 2]. Both 1DSBP and 2DSBP 
have been proven NP-hard [3,4]. Numerous 
investigators have examined the performance analysis 
of approximation algorithms designed for a number of 
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2DSBP variants [5-10]. Reported algorithms may be 
categorized as either on-line or off-line. On-line 
algorithms pack a collection of objects that must be 
loaded as they are presented; in contrast, off-line 
algorithms pack the complete, possibly preordered, set 
of objects. Both types of algorithms are practical in 
real world applications. In addition, algorithms may 
also be categorized by the way that objects are packed. 
Specifically, the two packing strategies are box-
packing and vector-packing. In box-packing, objects 
are treated as rectangles which are packed into an 
open-ended bin of unit width and infinite height. The 
objective in box-packing is to minimize the height of 
the open-ended bin. By contrast, in vector-packing, 
each object and bin is treated as a two-dimensional 
vector. The objective of vector-packing is to minimize 
the use of bins such that all objects packed into a bin 
have a component-wise sum less than or equal to one. 
To date, there exists no efficient 2DSBP optimization 
algorithm for solving problems of a practical size. To 
our knowledge, there also does not exist an exact 
optimization algorithm for 2DMBP. In this paper, the 
focus is on the development and implementation of an 
optimization algorithm that can be used to solve 
problems of a practical size within acceptable 
computational times. 

The characteristics of AM warrant the development 
of an off-line algorithm involving vector-packing. 
Although the algorithm described here is in the context 
of robotics, it is general and applicable to any real-
world application that requires the assignment of a set 
of two-dimensional objects to bins with two capacity 
constraints.  

 
2. Allocation model formulation 

 
The present research problem explicitly addresses 

robots of different types with various service time and 
space capacities. The allocation model (AM) seeks an 
optimal selection of robots to serve all given tasks such 
that each task's resource demands are satisfied, no robot 
capacity constraints are violated, and the total system cost 
is minimized. A heuristic model along with its solution 
algorithm is presented for allocation of robots to the 
tasks which is efficient and may serve as a planning 
tool. The initial model is formulated as a pure 0-1 
mathematical program. The two most important factors 
when assigning tasks to robots are the geometrical work 
envelope and the kinematic machine cycle time. The 
work envelope for a typical robot is represented by a 
diameter of a circle. However, for our model, it is not 
required that the work envelope be a complete circle. 
The time requirement of any task depends upon its 
relative distance from the robot. Thus, there exists a 

trade-off between the space requirement and machine 
cycle time requirement. In fact, both requirements are 
a function of the task's relative position from the robot. 
Our primary objective is to minimize the total robot 
allocation costs while satisfying task resource demands. 
In order to make AM computationally tractable, it is 
assumed that all tasks are placed at the most remote 
location within the work envelope. This assumption 
decouples the interaction between space and time by 
allowing the resource requirements of a given task to be 
constant. Without this assumption, the model complexity 
is significantly increased. This trade-off between the 
number of robots required to serve a given set of tasks 
and the time required to serve a task could be 
considered by iteratively solving AM. The formulation 
of the AM is as follows. A set of robot types indexed by 
K = {1, 2, …, k}, is considered where each robot type 
is characterized by its time and space capacity. 
Specifically, space is measured in terms of the work 
envelope's swept area. All given tasks are indexed by I 
= {1, 2, …, n}. Each task i demand a known amount of 
time and space when served by robot type k, denoted 
by tik and sik respectively. 

 
Table 1. Notation for AM 

 
Notation  Definition 

k Number of robot types 
K Robot type index set, K = {1, 2, ..., k} 
n Number of tasks 
I Task index set, I = {1, 2, ..., n} 
mk Maximum number of type k robots Kk ∈∀   
tik Normalized time requirement of task i when 

served by a type k robot, KkIi ∈∈∀ ,  
 sik Normalized space requirement of task i 

when served by a type k 
robot, KkIi ∈∈∀ ,  

 
In addition, for a given set of n tasks, let mk denote 

the maximum number of robots of type k necessary to 
serve all tasks assuming only robots of type k are 
available. Further, let K denote the index set for type k 
robots. For easy reference, all useful notations for AM 
are summarized in Table 1. A decision variable, xik, is 
defined as: 

otherwise
typeofrobot toassignedis

0
1 kinworkstatioif

xik
⎩
⎨
⎧

=

 With no loss of generality, the time and space 
requirements for each task (i.e., tik, and sik, 
respectively) can be normalized by dividing the robot 
resource capacities into the corresponding task 
resource demands. The robot selection and assignment 
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(RSA) can be written as equation (1) through equation 
(5): 
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Condition (2) ensures that each task i is assigned to 

exactly one robot. Conditions (3) and (4) ensure that 
tasks assigned to any robot will not violate the 
corresponding time and space constraints. The AM is a 
pure 0-1 integer program (IP). Therefore, it is 
impractical to directly solve AM by using any 
available IP code. In the present work an optimization 
algorithm based on heuristic covering all the necessary 
parameters is developed for solving the task 
assignment problem in a heterogeneous multirobot 
environment. This is a general two-dimensional 
problem that is NP-hard, and it is computationally 
intractable. The MRTA becomes computationally 
tractable by using a two-phase methodology. During 
the first phase, the RSA provides the initial solution for 
distribution of tasks which is then formulated as linear 
programming problem to be solved in the second 
phase. 
 
3. Methodology 

 
Before allocation of tasks to the candidate robots, it 

is essential to determine the capacity of the candidate 
robots. The task capacity of a robot depends on its 
reach, speed, and pay load specifications. In addition 
to the robot’s capability, the loading capacity also 
depends on the requirement of the task (kind of 
operation, motion, and dimensions) and its location in 
the workspace. During the first phase, the task capacity 
is determined by using the load deviation ratio which 
uses the normalized time and space requirement for 
various combinations of robot-task. The load deviation 
ratio encompasses all the required parameters for 
deciding the loading capacity. Load deviation ratio is 
the ratio of difference between the normalized space 
requirement (si1) and normalized time requirement (ti1) 
to the summation of normalized space requirement (si1) 
and normalized time requirement (ti1).  

However, task assignment in cooperative control 
requires online real-time solution. A single robot is 
able to service multiple tasks. Furthermore, some tasks 

must be serviced following a specific sequence in time. 
Therefore, task assignment for cooperative control is 
fundamentally different from off-line static task 
assignment studied in the literature. When a task is 
detected, it needs to be classified. If classified, the task 
can be assigned. An important point is once a task is 
assigned, the task is viewed by other robots to ensure it 
has been assigned. The tasks must be correctly 
assigned and distributed as per load deviation ratio. 
Therefore, the task assignment in cooperative control 
is a dynamical process with unexpected and changes in 
the task in the system, and in the environment. During 
the second phase, the problem of multiple task 
assignment using linear programming is formulated.  

 
4. Algorithm details  
 
4.1. Allocation heuristic (AH) 

 
The task may be time intensive, space intensive or 

neither. A heuristic is developed by examining these 
three cases and the load balance on each candidate 
robot. The AH is based on the concept of allocation 
cost, which is computed as a function of the resource 
demands of each task and a robot's load balance. Let 

kΔ  denote the load balance factor associated with the 
robot of type k. That is, kΔ is defined as the difference 
between the total allocated (normalized) machine time 
and the total allocated (normalized) work space for 
robot of type k. Hence, kΔ  can be expressed as 
follows: 

KkST kkk ∈∀−=Δ  

If a robot’s resource load is nearly, balanced, then 
the load balance factor will be approximately zero. If 
the robot's load is time intensive, then 0 < kΔ < 1, and 
if the robot's load is space intensive, then -1 < kΔ  < 0. 
Hence, the further the resource load factor is away 
from zero, greater the load imbalance is. In addition, 
let ikδ denote the adjusted demand when the ith task is 
served by the robot of type k. That is, 

}{
}{⎩

⎨
⎧

≤ΔΔ+
>ΔΔ−

=
0if,MAX
0if,MAX

kikkik

kkikik
ik st

st
δ     (6) 

Since 0<tik ≤ 1, 0 <sik ≤ 1, and -1< kΔ <1, we 
know 10 ≤< ikδ . To illustrate how the adjusted 
demand is employed by AH, consider two robots of 
type k, say A and B. Assume that 4.0=ΔAk  and 

.3−=ΔBk  
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Therefore, robot A is time intensive. To improve 
the load balance for robot A, the assignment of a task 
which is space intensive (i.e., tik < sik) should be 
preferred to those which are time intensive. By 
contrast, for robot B, the assignment of tasks which are 
time intensive should be given preference over tasks 
which are space intensive. As an example, let the task 
to be assigned next is time intensive; that is, tik= 0.3 
and sik= 0.2 and assume both robot A and B have 
enough remaining time and space capacities to serve 
this candidate task. The goal of the assignment 
heuristic is to balance the resource load on each robot. 
Since the candidate task is time intensive, it should be 
assigned to a robot which is space intensive. Plugging 
the given figures into equation (7), we have 3.0=iAkδ  
and 2.0=iBkδ . These adjusted demands, i.e., ikδ  
contribute to the “allocation costs”. In general, if the 
fixed cost of all robot types is equal, the task should be 
assigned to the robot which produces the smallest 
adjusted demand. Since, not all robots have equal fixed 
cost, the allocation cost, aik incurred by the ith task 
when served by the robot of type k is the product of its 
adjusted demand and the fixed cost of the robot, i.e., 

ikkik fa δ*=  (7) 

Since 10 ≤< ikδ , we have kik fa ≤<0 . Thus, aik 
reflects the adjusted proportion of the fixed cost that 
task i incurs when it is assigned to robot of type k. For 
each robot type k, the heuristic calculates the load 
deviation ratios and sorts them into a nondecreasing 
order. These load deviation ratios indicate the balance 
between the time and space requirements of each task 
when served by each robot type k. Then, the AH is 
employed to assign tasks to robots based on the sorted 
load deviation ratios.  

 
Table 2. Fixed costs and parameter values 

of the robots 
 

 Robot-1 Robot-2 Robot-3 Robot-4 
Specification (Puma 

560-c) 
(Adept 

one XL) 
Fanuc 

Arcmate 
Sr.R.J 

Staubli 
RX 

130B 
DOF 6 4 6 6 

Pay Load 4 kg 12 kg 10 kg 12 kg 
Swept Area 320° 270° 300° 320° 
Max. Reach 878 mm 800 

mm 
1529 mm 1250 mm

Max Speed 1.0 
m/sec 

1.2 
m/sec 

3.60 
m/sec 

3.09 
m /sec 

Type Jointed Scara Jointed Jointed 
Cost $35,000 $19,500 $56,400 $60,000

 
 

Table 3. Normalized space and time 
requirement of tasks 

Task Normalized space 
requirement 

Normalized time 
requirement 

No. 
(i) 

Size 
(D) R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4 

 Si1 Si2 Si3 Si4 ti1 ti2 ti3 ti4 
1 1.0 0.216 0.286 0.127 0.147 0.214 0.216 0.203 0.2 
2 0.7 0.146 0.192 0.088 0.101 0.143 0.145 0.141 0.142
3 1.1 0.242 0.321 0.14 0.163 0.237 0.243 0.225 0.228
4 1.05 0.229 0.303 0.133 0.155 0.224 0.229 0.213 0.216
5 0.9 0.192 0.253 0.114 0.131 0.188 0.191 0.181 0.184
6 1.01 0.219 0.289 0.128 0.148 0.215 0.219 0.205 0.208
7 0.65 0.135 0.177 0.081 0.094 0.133 0.134 0.13 0.131
8 0.7 0.146 0.192 0.088 0.101 0.143 0.145 0.14 0.142
9 0.75 0.158 0.207 0.094 0.109 0.154 0.156 0.15 0.152

10 0.85 0.18 0.237 0.107 0.124 0.177 0.179 0.171 0.173
11 1.1 0.242 0.321 0.14 0.163 0.237 0.243 0.224 0.227
12 1.5 0.366 0.515 0.195 0.23 0.359 0.39 0.313 0.322
13 1.4 0.33 0.452 0.181 0.212 0.324 0.342 0.29 0.297
14 1.2 0.269 0.359 0.154 0.179 0.264 0.272 0.246 0.25 
15 1.18 0.263 0.351 0.151 0.176 0.258 0.266 0.241 0.245

 
4.2. Example problem  

 
Using realistic data, the following example is 

provided to highlight the solution process for an AM 
problem. Table 2 summarizes major parameter values 
for four different robot types, and Table 3 presents the 
normalized space and time requirements of fifteen 
tasks. Robot-4 has a fixed charge of $60,000, a swept 
area of 320°, a maximum reach of 1250 mm, and an 
average arm movement speed of 3.09 m/sec. Each 
entry in column two of Table 3 provides the diameter 
(D) of a circle encompassing the task. It is assumed 
that each task is placed at the most remote location 
within the work envelope. Therefore, the D associated 
with each task is in fact a chord to the work envelope. 
Knowing the value of D and the maximum reach (R) of 
a robot, the arc length subtended by a task 
is )2/(sin2 1 RDwhereR −=θθ . Here, θ represents the 
task's space requirement in degrees. Considering task 
one and robot type one, we have D = 1.0 meter, R = 
1.25 meters, and S = 320°. Using these data, θ =47.15° 
and 147.0)32015.47(11 ==S . 

In this model, the time requirement for each task is 
estimated based on two major components:  robot arm 
travel time, and robot service time. Both components 
are normalized by the total available machine time, 
which in practice is defined by the time available 
during peak machine hours. To proceed with the 
solution for allocation model, all the options of 
employing individual and/or combination of available 
robot types are tried. Table 4 provides the load balance 
factors calculated for the robots. This is a problem 
specific condition and it largely depends on number of 
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factors such as time and space requirement. This is 
mainly due to low value of task size and relatively high 
value of the speed of the robots. Table 5 presents the 
allocation cost of four robots. The load balance factor, 
time requirement, space requirement and allocation 
cost are considered for the assignment of the robots to 
the tasks in question. Figure 1 shows the capacity 
curves of the four individual robots that decides the 
allocation strategy. 

 

 
Figure 1. Load deviation ratio of robots 

 

 
Figure 2. Results of the LP using LINGO 

LINGO is a comprehensive tool designed to make 
building and solving linear, nonlinear and integer 
optimization models faster, easier and more efficient. It 
provides a completely integrated package that includes 
a powerful language for expressing optimization 
models, a full featured environment for building and 
editing problems, and a set of fast built-in solvers. For 
creating a LINGO model, an optimization model 
consists of three parts; a) objective function – that 
describes exactly what the model should optimize, b) 
variables – the quantities that can be changed to 

produce the optimal value of the objective function, 
and c) constraints – the formulae that define the limits 
on the values of the variables. 

Table 4. Load deviation ratio 

Task R-1 R-2 R-3 R-4 
  LDR LDR LDR LDR 

1 0.004 0.139 0.23 0.153 
2 0.01 0.139 0.231 0.169 
3 0.01 0.138 0.232 0.166 
4 0.011 0.139 0.231 0.164 
5 0.01 0.139 0.227 0.168 
6 0.009 0.137 0.231 0.169 
7 0.007 0.138 0.232 0.164 
8 0.01 0.139 0.228 0.169 
9 0.012 0.14 0.229 0.165 
10 0.008 0.139 0.23 0.165 
11 0.01 0.138 0.23 0.164 
12 0.009 0.138 0.232 0.167 
13 0.009 0.138 0.231 0.167 
14 0.009 0.137 0.23 0.166 
15 0.009 0.137 0.229 0.164 

Table 5. Allocation cost of assigned task 

W.S R1 R2 R4 R3 
1 0.475 0.355 0.786 0.733 
2 0.513 0.384 0.852 0.795 
3 0.513 0.384 0.852 0.79 
4 0.553 0.414 0.912 0.846 
5 0.592 0.444 0.972 0.902 
6 0.633 0.475 1.038 0.964 
7 0.658 0.5 1.086 1.015 
8 0.674 0.507 1.104 1.021 
9 0.699 0.526 1.14 1.06 
10 0.759 0.573 1.2 1.145 
11 0.767 0.579 1.248 1.156 
12 0.803 0.607 1.296 1.201 
13 0.848 0.642 1.368 1.269 
14 0.848 0.643 1.362 1.263 
15 0.923 0.703 1.47 1.359 

 
The Solver Status box as shown in Figure 2 details 

the model classification (LP, QP, ILP, IQP, NLP, etc.), 
state of the current solution (local or global optimum, 
feasible or infeasible, etc.), the value of the objective 
function, the infeasibility of the model (amount 
constraints are violated by), and the number of 
iterations required to solve the model. After the solver 
status box the LINGO displays a solution report 
regarding the values of each variable and the complete 
allocation that will produce the optimal value of the 
objective function. The reduced cost for any variable 
that is included in the optimal solution is always zero. 
For variables not included in the optimal solution, the 
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reduced cost shows how much the value of the 
objective function would decrease (for a MAX 
problem) or increase (for a MIN problem) if one unit 
of that variable were to be included in the solution. 

 
5. Results and analysis  

 
The optimization algorithm discussed in the 

previous section was coded in LINGO for solving the 
linear program. All test problems are created by a 
problem generator using four major design parameters: 
1) the average robot service capacity (i.e., the average 
number of tasks that can be served by a robot based on 
one-dimensional resource demand of tasks), 2) the 
average space required by the given tasks, 3) the 
average machine time required by the given tasks, and 
4) the number of tasks to be assigned. For all test 
problems, four robot types with fixed charges are 
considered as candidate robots. The results of the 
allocation are presented in Table 6. The initial feasible 
solution generated by the heuristic takes no more than 
a second. The quality of the solution is reasonably 
good. The solution times for finding a near-optimum 
or an optimum are also recorded. Thus, the algorithm 
provides significant and useful results. The total cost 
of assigned task is 13.931. 

Table 6. Robot selection and assigned task 

Robot Assigned task 
Robot-1    WS-13 
Robot-2    WS-12, WS-14, WS-15 
Robot-3    WS-5 WS-6, WS-7, WS-8, WS-10, WS-11 
Robot-4    WS-1, WS-2, WS-3, WS-4, WS-9 
 

6. Conclusions 
 
Multirobot facility design and planning have 

become increasingly important in modem production 
over the past decade. In this paper, a mathematical 
model and solution algorithm is developed to support 
robot selection and task assignment in a system 
employing multiple robot types. Specifically, our 
model considers selection of a proper mix of multiple-
type robots such that operational requirements for a 
given number of tasks are satisfied. Each robot is 
characterized by its unique fixed charge and subject to 
its machine time and space capacity constraints. Each 
task has known time and space demands for each type 
of robot. A model of L.P is developed for multirobot 
assignment. The result implies that that the size of the 
linear programming is determined by the number of 
tasks, independent of robots linear. The model is 
initially formulated as a pure 0-1 mathematical 

program. The initial solution obtained from the first 
phase is utilized to decide the task performing 
capacities of the candidate robots. The model is then 
simulated by number of tasks to make it suitable for 
application of LP in order to find out the optimized 
task allocation. In order to test the efficiency of the 
methodology an example problem with four 
heterogeneous robots and fifteen different tasks is 
worked out. Computational results indicate that the 
algorithm is effective and efficient in solving problems 
of a practical size.  
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