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Abstract - Adaptive equalisation in digital communication inherently dynamic. Actually RNNs model non-linear IIR
systems is a process of compensating the disruptive effects caused filters and can accurately realise the inverse of finite memory
mainly by inter symbol interference in a band-limited channel channels using relatively small number of neurons. Further
and plays a vital role for enabling higher data rate in modern RNNs are in some respect very similar to efficient Decision
digital communication system. Designing efficient equalisers Feedback Equalisers (DFE) because in that outputs are fed
having low structural complexity and faster learning algorithms back to the classifier to assist in subsequent decisions [4, 5, 6].
is also an area of much research interest in the present scenario. The most widely used Real-Time-Recurrent-Learing
This research work proposes adaptive channel equalisation (RTRL) algorithm, proposed by Williams and Zipser [7],
techniques on Recurrent Neural Network framework. update the weights of the RNN by computing the gradient of
Exhaustive simulation studies carried out prove that by the squared error with respect to the weights of the equaliser.
replacing the conventional sigmoid activation functions in each of Adaptive equalisation of linear and non-linear channels
the processing nodes of recurrent neural network with multi- using Recurrent Neural Network Equalisers have shown
level sigmoid activation functions, the bit error rate performance superiority over traditional equalisation algorithms as reported
have significantly improved. Further slopes of different levels of in the literature [8]. The block diagram of a conventional
the multi-level sigmoid have been adapted using fuzzy logic RNN based adaptive equaliser is illustrated in Fig. 1.
control concept. Simulation results cosidering standard channel
models show faster learning with less number of training samples +1 or -1
and performance level comparable to the their conventional
counterparts. Also there is scope for parallel implementation of e(n) Decision device
slope adaptation technique in real-time implementation. dd(n)

I. INTRODUCTION

Equalisation is a powerful techniques to combat Inter
Symbol Interference and distortion in a band limited
communication channel and is employed at the receiving end
to compensate for such distortions. By viewing equalisation
as a classification problem in which the optimal decision
boundary is highly nonlinear, the solution offered by a linear
equaliser is inherently sub-optimal. This drawback motivated
the development of efficient non-linear equalisers for
optimising the performance. In the recent past a lot of
researches have been carried out using Artificial Neural
Network (ANN) techniques since neural networks are well
known for their ability of performing classification tasks.
These include the development of many novel architectures Fig. 1 A conventional RNN Equaliser
and efficient training algorithms. The prime advantage of
using neural networks for equalisation is their capability NEURAL EQUALISERS
to model any non-linear decision boundaries and hence
they are well suited for developing high performance adaptive In this present work, processing units of conventional RNN
equalisers[1, 2]. equaliser are replaced by Multi-level sigmoid activation

Different ANN architectures such as multilayer perceptron function [9]. For this purpose of varying number of levels, the
(MLP), radial basis function (RBF) and recurrent neural sigmoidal activation function is taken as [9]
networks (RNN) for constructing adaptive equalisers have M-l 1 - -ei (X-(9i)
been suggested in the literatures [3]. Recurrent Neural JM (x) = _ B(x 1
Networks (RNN) store additional information about the past ± e -I (&I1)(
signals in the form of an internal state and incorporate
feedback mechanism. As a result their architectures become
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(6) where (pi,i =1,2. M-1 are points at which a level
( =rYk(n), 1.kInr for 1.1. (nx+nr) (3)

change occurs. , is slope parameter. 91 called as shifting ( xk(n), I <k <nx
parameter is set to a fixed negative value and, are calculated th

using theequation ~~~~~~The output of kh neuron of RNN at time nusing the equation
M- ,

C n-p

2 ~~ = ~M-1 1 -eJ3(Ck (n)-fi)
S ji=S -8(-,where -= M (2) Yk (n)+ e f(Ck(n)-9,pi) (4)

z ~~~~~~M-2 = + e
Now in we study the effect of level M and slope f on the nx+nr

performance of equaliser. Number of levels in sigmoidal where, Ck(n) E (n)-u,(n) (S)
activation function can be changed by varying value of M. =
activation functon canpbe agedbynarion val ofM w denotes nr by (nx + nr) weight matrix of RNN. The finalFor M=2, fM becomes simple sigmoid function when all (Pi output of the proposed equaliser structure is taken from the
are zeros. The four-level activation function is shown in output of jth neuron of RNN. By comparing yj(n) with the
Figure 2 for different values of qp and /?. desired value d(n), the error ej(n) is calculated.

3 ej (n) d (n) - yj (n) (6)
(a)

(b) i Since e, (n) is known at all times, determination of the partial
2 (c) derivative is required to implement RTRL algorithm.

A sensitivity parameter is described by a triply indexed set of
1 + r + variables }, where

. y (n)
pkl(n) 1 <k < nr and Il < (nr+ nx) (7)

O ; wkl (n)
The evaluation of this partial derivative is carried out as

-1 + >---- follows: P/, (0) 0, (8)
Xkj is a Kronecker delta defined as

-2 akj=l for k=j

- 0, otherwise. (9)

-10 -8 -6 -4 -2 0 2 4 6 8 1 0 The variables Pjk/ for all appropriatej, k, and I is
Input nr

p (n+1=F '(cj (n))L wji (n) *Pkp(n) + kju (n) (10)
Fig. 2. Examples of 4-level sigmoid function _ .l

(a) /5 =1, (PI =0, (b) 5 = 1.5, ( = -4, (c) A5 =2, P = -6 taking initial condition pJ (0) = 0 and the derivative

III. MODIFIED RTRL ALGORITHM M-1 -,8(Ck(n)-Qi) (1)

The RTRL algorithm used for weight updation has been F '(c j(n)) E /8*2* 2
suitably modified due to the presence of the M-level activation K± 8jl(Ck(n)Q1<]
function at each node. While the modified RTRL algorithm K )
takes control by recursively updating the network weights and
threshold values, the fuzzy controller approach adjusts the Usethe values of P k/ obtaied anderror signal e1(n) to
slope of each level of the activation function at the same time. compute the corresponding weight changes
The BER performances of these proposed RNN based Awk,(n) =7q , e (n)p kl (12)
equalisers are compared with that of a conventional recurrent whJerihrS the learning-rate parameter.
neural equaliser. The learning algorithm for proposed structure
is summarized below. Update the weight Wkl in accordance with

For every time step n, use the dynamic equations of the wkl(n + 1) =wkl(n) + Awkl(n) (13)
RNN network, the output values of the n neurons is computed. and repeat the computation till the error is minimized.
For the initial values of the weights are chosen from a set of
uniformly distributed random numbers. The RNN chosen here The output of the decision device can be defined as
has nx external inputs and nr fully interconnected recurrent -d) = f 1 if y(n) .0 (14)
processing units. Thus input of RNN is a vector u(n), 1th 1t-i otherwise
element ofwhich u,(n) is define The ws (weights) in Equation (13) are values specified

by the training algorithm, so that after training is completed
the equaliser will self-adapt to the changes in the channel
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characteristics occurring during transmission (decision * If 5(n) is SN and AS (n) is SP, then Ad (n) is ZE.
directed mode). . If8(n) is SP and AS(n) is LP, then Ad (n) is LP.

IV.PROPOSED RNN BASED EQUALISER ............................................................

WITH SLOPE ADAPTATION * If8(n) is MP and AS(n) is LN, then Ad (n) is SN.

The error term at individual (neuron) of a neural structure is
to be minimised to get a pseudo-optimal solution. In a neural
network paradigm the synaptic weights and threshold values C
are generally considered as free parameters in conventional C
sense, which are adapted using appropriate learning F N E
algorithms in order to train the network. The proposed U T L
structure is built around the concept of tuning the slope . R 0 A| (n)
parameter of each level of the multilevel sigmoid activation A e
function to enhance the adaptability of the network. In the Y L K
present research work attempt has been made to adapt the = L

slope of the sigmoid activation function only using the fuzzy
E

logic controller approach. The fuzzy logic controller technique
[10,11] is applied to determine the amount of correction Fig. 3 Fuzzy logic control block
needed for the slope of the sigmoidal activation function at
each node of the network. Basically a fuzzy controller
evaluates the change in the control action based on the
information regarding error and rate of change of error at the
process output. The same concept is adopted in the present A86(n) Error term change
work.

The node error term is known as ej(n)and its rate of change 6(n) NL MN SN ZE SR MPLM

Aej (n) is described by are fed into the fuzzy controller block KN KN LN LKN MN SN ZE
as shown in Figure 3.

MN KN LN KN MNS N ZE SR
Aej (n) = ej (n) - ej (n -1) (15) E

MN SN ZES

The output generated from the control block A F(n), as SN LKN LN MN SN Z E SR MP
shown in Figure 3, is used to obtain the changed slope at the _

)th aciainL ZE KN MN SN ZE SR MR KR(n+±) time index d(n+l) of the sigmoidal activation
function using the relation SR MN SN ZE SR MR LR KR

d (n+1) =
d (n) + Ad (n) (16)

In the present investigation, seven categories of linguistic MR SN Z E SR MR LR LR LK
variables {Large Positive (LP), Medium Positive (MP), Small
Positive (SP), Zero (ZE), Small Negative (SN), Medium LK ZE SP MRP LP KP KP LK
Negative (MN) and Large Negative (LN)} are employed to
describe both the input variables and the output The
membership functions of fuzzy controller structure are V. SIMULATION STUDY
assumed to have Gaussian type distribution [11] and have
fxdcnres an wits The fuzfe inut ar use to The simulation model of an adaptive equaliser consideredcoxedcenstructthes rue b

.Taking ina unt the luiseti is illustrated in Figure. 4. In the simulation study the channel

information of the inputs and with a-priori knowledge about under investigation is excited with a 2-PAM signal, where the
the bounds of the sigmoid slope variation, the controller symbols are extracted from uniformly distributed bipolar
output is decided. random numbers {-1,1 }. The channel output is then

contaminated by an AWGN (Additive White Gaussian Noise).
In order to reflect this concept a fuzzy rule base is

cnaiae ya WN(diieVlieGusa os)
In odertoeflct hisconcpt fuzy ulebas is The pseudo-random input and noise sequences are generated

constructed as given in Table 1. The fuzzy control rules are
eXpressed in the form of 'IF... THEN' statements and some of with different seeds for the random number generators. The

the~~~~inepeatoso th fuzzy...rue for imia lp ower of additive noise has been taken as 0.01, representing a
adjustments have been listed below for clarification. SNR of 20dB. In the training phase the proposed equalisers

are trained with 50 training samples and an ensemble average
of 10 independent trials have been taken.
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CHANNF PNN

Delcy~~~~~~~~~~~~~~~~~~~~~Dcso device

Fig. 3 Simulation model of adaptive equaliser in training phase RNNT

. ~~~~02 4
6 8 I0 1 1s '16 18 mFor the performance evaluation in testing ph1ase, bit error

rate (BER) of each of proposed equalisers is observed over 105
test samples and 50 ensembles. Four-level sigmoid activation g t os ai nd
functions with intial slopes as discussed in Section 2 are used Fig. 4 BER performance comparison for channel H1 (z)
in the proposed equalisers. While the basic RTRL algorithm
with suitable modification explained in Section III updates 3
the network weights, the slope of each level of the multilevel r l r r l r r r r--;
sigmoid at the same time is tuned following the technique 2 (1)
discussed in Section IV.7

s(nq~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~2

VI RESULTS AND DISCUSSIONS
The first example used is two-tap minimum-phase channel R0

[12] with transfer function defined as p
H1 (z) =0.5±+ 1 z1 (17) .-
A Rec urrentNeuralEqualiser with a single recurrent unit in-

with 2 inputs is used here and the decision is delayed by one -2 _ 9(1)-intial 4-level sigmoid

test samples and 50 ensembles. Four-level sigmoid activation ~ ~ ~ ~ ~2)--Ieel igmidaftr fzzytunin

sample. The conventional RNN equaliser results a poor =-----------
performance (it yields a BER level below 10-25 at 18 dB SNR -3 .. -6 -4 -2 0 2 4l8 1
condition), where as the proposed RNN with Multi sigmoid -10algorithm
activation function (RNNMS) and further RNN with sigmoid Input
slope tunimg (RNNST) equalisers exhibit significant Fig. 5 Slope adaptation of a 4-level sigmoid for channel H1 (z)
improvement in BER performance at 18dB SNR (a practical
condition) as shown in Fig. 4. A 4-level sigmoid function -'
before and after alope adaptation by FLC approach used in the -
proposed neural equaliser is illustrated in Fig. 5.

A) -2 _\ppNN"

The next channel under study is a 5 tap channel [12] with X
transfer function defined as
H2 (z) =- 0.2052 - 0.513 1 zK ± 0.7183 z- ± 0.3695 ZK ± -3
0.2052z I4 (18) P N NM

A conventional RNN equaliser with 2 processing units,2
external inputs and decision delay 4 is used. It is observed 2 -

that in Fig.6, the application of the RNNMS and RNNST PHNTX
equalisers demonstrate SNR gains of more than 3 dB and 5 dB 4-t X
at a prefixed BER level of 1T0- over the conventional RNNe uap
Further the resultof slope adaptation alllevelsrin a 4-level F S a o a 4e sm

sigmoid function is shown in Fig. 7. Signal to Noisefcatio in d

Fig. 6. BER performance comparison for channel H2 (z)
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VII. CONCLUSION
1, pp. 270-280, 1989.

In the present work adaptive equalisers are proposed on the [8] G.Kechriotis, E. Zervas and E.S. Manolakos, "Using Recurrent Neural
Networks for Adaptive Communication Channel Equalisation", IEEE

backbone of Recurrent Neural Network and their efficacy are Transaction on Neural Networks, vol. 5, no. 2, pp. 267-278, March
verified by considering various standard channel models. It is 1994.
observed in the simulation study that by replacing the [9] Kadri Hacioglu, "An improved Recurrent Neural Network for M-PAM
conventional sigmoid activation functions in the RNN Symbol Detection", IEEE Transactions on Neural networks, Vol. 8,
processing units with Multi-level sigmoids, the bit error rate No. 3, May 1997.
performances have significant improvement. The adaptation [10] A.F. Stronach, P. Vas and M. Neuroth, "Implementation of Intelligent
of the slope parameter increases the degrees of freedom in the Self-organising Controllers in DSP Controlled Electromechanical
weight space of the conventional Recurrent Neural Network drives", IEE Proceeedings, Control Theory Application, Vol. 144, No.4,
configuration Further, tuning of slope parameters of different pp.324-330,July 1997.
levels of the M-level activation function has been incorporated [1 1] J.K. Satapathy and C.J. Harris, "Application of Fuzzy-Tuned Adaptive
using fuzzy logic concept which has enhanced the RNN Feedforward Neural Networks for Accelerating Convergence in
equaliser performance to a higher limit. These new approaches Identification", 3rd International Conference on Industrial Automation,
offer better adaptability and also result faster learning and pp. 6.1, June 1999.
performance improvement Further parallel implementation [12] S. Chen, G.J. Gibson, and C.F.N. Cowan, "Adaptive Channel
of sigmoid slope adaptation along with the weight adaptaton Equalisation using a polynomial-perceptron structure", Proceeding - I
during training mode will be beneficial in realtime ofthe IEE, Vol. 137, pp. 257-264, October 1996.
implementation using DSP, FPGA processors.
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