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Abstract: A hybrid neural network fuzzy expert 
system is developed to forecast short-term electric 
load accurately. The fuzzy membership values of 
the load and other weather variables are the 
inputs to the neural network, and the output 
comprises the membership values of the predicted 
load. An adaptive fuzzy correction scheme is used 
to forecast the final load by using a fuzzy rule 
base and fuzzy inference mechanism. Extensive 
studies have been performed for all seasons, and 
a few examples are presented in the paper, 
including average, peak and hourly load 
forecasts. 

1 introduction 

The short-term load forecast is very important to an 
electric utility. The quality of control of a power sys- 
tem, and economy of operation, are highly sensitive to 
forecasting error. A sound basis for load predictions is 
generalisation of past, known cases. The science of sta- 
tistics provides a range of tools for this purpose. They 
are based on the idea of fitting a particular class of 
models to data and then hypothesising that future 
events will conform to the fitted model. Many 
approaches have been applied to electric load forecast- 
ing, including linear regression, exponential smoothing, 
stochastic process and state space methods. While each 
of these methods demonstrates success in forecasting, 
they have serious disadvantages: reliance on large his- 
torical databases with possible obsolete and irrelevant 
data, assumptions about static load shapes and param- 
eters etc. A detailed comparison of various statistical 
approaches is found in [l]. 

One of the most promising application areas of the 
artificial neural network (ANN) is load forecasting [2- 
131. The neural network is able to perform nonlinear 
modelling and adaptation and does not rely on the 
explicitly expressed relationship between input varia- 
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bles and forecast load. When using neural networks for 
load forecasting, one needs to consider only the selec- 
tion of variables as the network input. The relationship 
between the input variables and predicted load will be 
formulated by a training process. Several authors have 
attempted to apply the backpropagation learning algo- 
rithm to train the ANNs for forecasting time series. 
The fuzzy expert system approach [14] has also been 
applied to forecasting where the advantage of an oper- 
ator’s expert knowledge is used. However, the fuzzy 
decision system for load forecasting requires detailed 
analysis of data and the fuzzy rule base has to be devel- 
oped heuristically for each season. The rules fixed in 
this way may not always yield the best forecast. On the 
other hand, hybrid solutions [15, 161 have been pro- 
posed for short-term forecasting of electric loads, 
whereby the functionality of the fuzzy expert system 
and the learning capabilities of the neural network can 
be merged to yield a forecasting system more powerful 
than either of its components alone. 

The present work is aimed at achieving the said 
objective of a robust load forecast with improved accu- 
racy using a fuzzy neural network for initial forecast 
and a fuzzy expert system (FES) producing load cor- 
rections to yield the final forecast. For the neural net- 
work to be called a FNN, the signal and/or the weights 
should be fuzzified. This type of FNN is based on the 
multilayer perceptron, using the backpropagation algo- 
rithm. The fuzzified input vector consists of the mem- 
bership values of the past load and weather parameters 
and the output vector is defined in terms of fuzzy class- 
membership values of the forecast load. A simple 
fuzzy-inferencing mechanism is used to yield the magni- 
tude of the forecast load during the initial phase. In the 
final phase a fuzzy expert system is used to produce 
load corrections. 

The input vector to the fuzzy expert system (FES) 
consists of differences in the weather parameters 
between the present and the forecasted instant. The 
output of the FES gives the load correction which, 
when added to the initial forecast, yields the final fore- 
cast. Thus, by using a hybrid approach the load-fore- 
casting errors are expected to reduce considerably. 
However, as the lead time increases from 1 h to 24h or 
48 h, the forecasting error increases, necessitating the 
use of an adaptive fuzzy load error correction scheme. 
Several examples presented in this paper include 24h- 
ahead average, peak and hourly load forecasts using 
the hybrid approach. The effects of both linear and 
nonlinear adaptive load-correction schemes are shown. 
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2 
form 

Fuzzy pattern representation in linguistic 

The approach used in this paper is aimed at improving 
the prediction by handling uncertain and ambiguous 
variations of load patterns and weather parameters 
using a fuzzy linguistic approach. Since it is easier to 
convert exact information into linguistic form than vice 
versa, we consider the major linguistic properties small, 
medium, and large as the attributes of the input fea- 
ture. Any input feature value can be described in terms 
of some combination of membership values for these 
properties. In traditional two-state classifiers, an ele- 
ment x either belongs or does not belong to a given 
class A; thus, the characteristic function is expressed as 

1 i f a : E A  

0 otherwise 
P a ( X )  = 

In real-life problems such as load forecasting, the 
classes are often ill  defined, overlapping, or fuzzy and a 
pattern point may belong to more than one class; in 
such situation, fuzzy set theoretic techniques can be 
very useful. 

We use the modified n-function [17, 181, lying in the 
range [0,1] to assign membership values for the input 
features corresponding to the linguistic properties 
small, medium, and large. 

The membership function of the input feature 

otherwise 
where hi > 0 is the radius of the n-function with ci as 
the central point at which p(xi )  = 1. This is shown in 
Fig. 1. 

Xirnin Csmoh ‘medium ‘Iorgeximm - ’medium -4 

I---- ~~%ar+-- ’ / 2 L o d  
Fig. 1 n-function representation 

2. I 
Let x,,,, and x,,,, denote the upper and lower bounds 
of the observed range of feature x, in all L pattern 
points, considering numeric values only. Then, for the 
three linguistic property sets, the following are used: 

Choice of parameters for the .n-function 

L d t U m ( ~ )  = 0.5(& m a z  - G mtn) 

c m e d z u m ( 2 , )  xz mzn + X m e c i z u m ( X z )  

( 3 )  
Xsma11(&) = ( l / f d ) { C m e c l z u m ( & )  - & m z n }  

csmall ( 2 % )  = cmedzzlm(2t) - O . 5 X S m a 1 ~  (zZ) 
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;\large (xz) = (l/fci) { 5% m a x  - C m e c i z u m ( x z ) }  

C i a r g e ( G )  = C m e d t u m ( 2 z )  + 0 . 5 h a r g e ( X z )  
where 0.5 5 f d  5 1.0 is a parameter controlling the 
extent of overlapping. The n-function representation 
permits a more compact and meaningful representation 
of each pattern point in terms of its linguistic proper- 
ties, and ensures better handling during both the train- 
ing and testing phases of the proposed fuzzy neural 
network model. 

3 

The present work attempts to build a fuzzy neural net- 
work model based on the multilayer perceptron using 
the gradient descent based backpropagation algorithm 
by incorporating concepts from fuzzy sets at various 
stages. Fig. 2 shows the fuzzy neural network model 
for obtaining the initial forecast. The fuzzy sets for 
load, temperature and humidity parameters are shown 
in Figs. 3-5. The input to the fuzzy neural network 
comprises the membership values to the overlapping 
partitions of linguistic properties small, medium, and 
large corresponding to each input feature such as past 
load, temperature, humidity etc. This provides scope 
for incorporating linguistic information in both the 
training and testing phases of the said model and 
increases robustness in tackling imprecise or uncertain 
input specifications. The components of the output 
layer consist of the membership values to the overlap- 
ping partitions of linguistic properties small, medium 
and large corresponding to the forecast load magni- 
tude. During training, the network backpropagates the 
errors with respect to the desired membership values at 
the output nodes. After a number of cycles, the neural 
network converges to a minimum error solution by 
using a gradient descent algorithm as shown in the 
Appendix. 

Fuzzy neural network for initial forecast 

h 

I th layer j th layer k th  layer I th layer 
Fig. 2 Fuzzy neural network for initia1,forecast 
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temperature (normalised) 
Fig. 4 

~ small 
-0- medium 
-x- large 

Fuzzy membership grade for temperature 

humidity (normalised) 
Fig. 5 

~ small 
-0- medium 
-x- large 

Fuzzy membership grade for humidity 

After the learning phase is over, when separate load 
and weather patterns are presented at the input layer, 
the output nodes automatically generate the member- 
ship values corresponding to the linguistic properties 
small, medium and large. Thus a centroid defuzzifica- 
tion technique [I91 is used to obtain the initial load 
forecast from the membership values and the corre- 
sponding loads obtained from the n-functions. 

4 Selection of training patterns 

The utility data studied here are susceptible to large 
and sudden changes in weather and load, so selection 
of appropriate training cases plays a vital role in train- 
ing the network. Several techniques for the selection of 
training patterns have been suggested in [l l-131. The 
present paper discusses a different training scheme for 
the selection of training patterns for hourly load fore- 
cast. To predict hourly loads the following load model 
is chosen: 
y ( i ,  t )  = f { y ( i  - m ) , y ( i ,  t - m ~ I), . . . , y(i ,  t - m - nl ) ,  

(4) 
and 

where y and z are the load and weather variables, 
respectively; i and t indicate the day and the hour, 
respectively, m indicates the lead time for the hourly 
load forecast, (i.e. m = 1 for 1 h-ahead forecast, m = 24 
for 24h-ahead forecast, m = 48 for 48h-ahead forecast, 
m = 168 for 168h-ahead forecast); nl indicates the data 

z(2, t - m),z(Z,  t ) ,  . . . , z(2 - t - m ) }  

m = n2 
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length for load; and n2 indicates the data length for 
temperature. 

For hourly load forecasting, eqn. 4 is used to select 
the training patterns. Various lengths of the past his- 
torical load and temperature values are used and their 
effects on the load-forecast accuracy are studied. It is 
found that, with nl > 0 and n2 > 0, there are no 
marked improvements in the results for the utility data 
used in this paper. Also the training time increases con- 
siderably with larger values of nl and n2. Therefore, n1 
= 0 and n2 = 0 are chosen in this paper. 

Using the above scheme, the network is trained for 
14 days (i = 1, ..., 14) at time t and load is predicated 
for the next 14 days (i = 15, ..., 28) at time t. Hence to 
predict for all 24h of a given day, 24 different neural 
networks are used, each one trained separately with the 
same parameters. This is desirable because the training 
set is small for each neural network consisting of a few 
patterns (14 patterns only in this case) with irrelevant 
data for other hours being discarded. Further, depend- 
ing upon the difference of the load responses on the 
day of the week, a day-of-the-week indicator is intro- 
duced along with the input vector to the network. 

As the weather variable temperature is the most 
important parameter in short-term load predictions, an 
all-temperature model is used to obtain the hourly fore- 
casts. The training data used for 1 h-ahead predictions 
are: 
Input pattern: 
P(i,t) = power at tth instant of ith day, 
e(i,t) = temperature at (t+l)th instant of ith day, 
@(i,t+ 1) = temperature at (t+ 1)th instant of ith day 
wd(i) = day of the week indicator i. 
Output pattern: 
P(i,t+l) = power at (t+l)th instant of ith day. 
The training data for 24h-ahead, 48h-ahead and 168h- 
ahead predications are 
Input patterns: 
P(i,t) = power at tth instant of ith day, 
O(i,t) = temperature at tth instant of ith day, 
B(i+m,t) = temperature at tth instant of (i+m)th day. 
Output pattern: 
P(i+m,t) = power at tth instant of (i+m)th day 
where m = 1, 2, 7 for 24h-, 48h- and 168h-ahead pre- 
dictions, respectively. 

However, for average daily and peak-load predic- 
tions, the following training data are used: 
Input and output patterns: 
P(i-1) = average load on (i-1)th day, 
Qmln(i-I) = minimum temperature of (i-1)th day, 
OmaX(i-l) = maximum temperature of (i-1)th day, 
O,,(i) = minimum temperature of ith day, 
Omax (i) = maximum temperature of ith day, 
P(i) = average load for ith day. 
The same data can be used for the peak load forecast. 
Although an all-temperature model will produce an 
accurate forecast in most seasons, the other weather 
parameters like humidity and wind speed affect the 
forecasting accuracy during summer and winter, respec- 
tively. Thus, if humidity records are available in a par- 
ticular season, they may be included in a training 
pattern. 
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5 Fuzzy expert system for final forecast 

During training, the neural net produces an initial fore- 
cast with a set of initial load, temperature and humid- 
ity data expressed in terms of fuzzy membership values. 
The error between the actual load A(i) and predicted 
load P(i) for a given hour or a given day (ith hour or 
day) is expressed as 

In a similar way, temperature and humidity errors are 
expressed as 

aqi) = ~ ( i )  - ~ ( i )  

AO(2) = O ( 2 )  - O ( 2  - 1) 
AH(2) = H(2)  - H(2 - 1) 

( 5 )  

(6) 

However, if maximum and minimum temperatures are 
used, 

(7)  
AQmaz (2) = Q m a z  (2) - Qmaz (2 - 1) 
~ Q m z n ( 2 )  = Q m z n ( 2 )  - Qmzn(i - 1) 

The errors in the weather parameters and load-correc- 
tion values are fuzzified using six fuzzy sets such as SP 
(small positive), MP (medium positive), LP (large posi- 
tive), SN (small negative), NM (medium negative) and 
LN (large negative). Figs. 6 and 7 show the fuzzy sets 
for temperature and humidity errors. These sets are 
obtained using the n-function given in eqn. 2. Both 
positive and negative fuzzy sets are symmetrical about 
the origin. 

-0.06 -0.03 0 0.03 0.06 
error (normalised) 

Fig. 6 
~ small 
-0- medium 
-x- large 

Fuzzy membership grade for temperature errors 

-0.12 -0.06 -0.04 0 0.04 0.06 0.12 
error (normalised) 

Fig. 7 
~ small 
-0- medium 
-x- large 

Fuzzy membership grade for humidity errors 

The load correction output sets have six members 
and use a linear fuzzification principle for obtaining 
membership grades as shown in Figs. 8 and 9. 

Nonlinear membership grades can also be used for 

obtaining load corrections for the final forecast. The 
sets for load corrections are classified as SPC (small 
positive correction), MPC (medium positive correc- 
tion), LPC (large positive correction) etc. The corre- 
sponding negative fuzzy sets are SNC, MNC, and 
LNC, respectively. 

1 .OR t I f 

-1.5 -1.2 -0.6 0 0.6 1.2 1.5 
correction (normalised) 

Fig. 8 
~ small 
-0- medium 
-x- large 

Membership grades for load correction (linear) 

0 0.4 0.8 1.2 1.6 2.0 
correction (normalised) 

Membership grades for load correction (linear) Fig. 9 

The membership values of the load correction APc 
output is given by 

b m a z  
where C,,, is the slope of the load error correction and 
eLc is the maximum load error correction for the corre- 
sponding linguistic set (for which the membership value 
becomes unity). The value of C,,, for different output 
linguistic sets SPC, MPC and LPC is CLax,  C$,, 
CL,, respectively, and these values are obtained by 
observing the load prediction errors over a two-week 
period prior to forecasting. 

The fuzzy rule base is formed by trial and error to 
reduce the load correction to a very small value during 
training. However, a fuzzy basis function approach [19] 
can be used to select the appropriate rules automati- 
cally out of a large number of possible combinations. 
Two sample rules for an all-temperature model for 
average load forecast will be 
Rule 1: IF AOmaX(i) is LN and AO,,(i) is SP, THEN 
AP,(i) is MPC 
Rule 2: IF AOmaX(i) is MP and AOmin(i) is LP, THEN 
AP,(i) is LPC 

In a similar way the two-sample rule for the peak- 
load forecast are 
Rule 1: IF AOmaX(i) is SP THEN AP,(i) is SPC 
Rule 2: IF AO,,,(i) is LN THEN AP,(i) is MNC. 
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However, if a load forecasting model with both temper- 
ature and humidity parameters is used, the rules are of 
the form 
Rule 1: IF AQ(i) is SP and H ( i )  is MP THEN AP,(i) is 
MPC 
Rule 2: IF AQ(i) is SN and AH(i) is LN THEN AP,(i) is 
LNC. 
The total number of production rules in the fuzzy 
knowledge base using two variables and six categories 
of sets is 36. 

Because of partial matching of the fuzzy rules and 
the fact that preconditions do overlap, more than one 
fuzzy control rule can fire at a time. For the fuzzy rules 
used for load forecasting, the truth values of the pre- 
conditions are (considering a temperature-humidity 
model) 

i = 1, 2, ..., k and k = number of rules fired for a given 
value of AO(i), and AH(i) belonging to fuzzy classifiers 
SP, MP, LP etc. and A denotes a conjunction operator 
(usually a minimum operator). The output of rule (i) is 
calculated by applying the matching strength of its pre- 
condition on its conclusion as 

j = 1, 2, ..., 6 and cALax is the value of C,,, for the out- 
put set Ay If two rules have the same consequent out- 
put set, the Lukasiewickz OR rule is used as 

ai = A [ P { A @ ( i ) ) ,  Pu(AH(411 (9) 

APc(i)  = a,c2a, (10) 

a; = min[I,p{AO(i)} + p { A H ( i ) } ]  (11) 
A centroid defuzzification technique is used to yield the 
load correction as 

APc(i)  = aiAPc/ a, 

= a:C2u,l ai (12) 

APc(i)  = a:c2,z/ a2 (13) 

However, by taking the load correction as CAAax, for 
which the output membership function is unity, the 
value of AP,(i) is obtained as 

The final value of forecast load is thus obtained by 
summing the ANN output, and the output from the 
fuzzy expert system is 

The block diagram for the integrated fuzzy neural net- 
work and fuzzy expert system is shown in Fig. 10. 

p(t-1)- 
w - 1 ) -  defuzzification 
e o )  -- I 

Pf(2) = P(2) + APc(i) (14) 

fuzzyfication 

i - 

ANN 

defuzzification 
\ - - 

M t )  -+- 
fuzzy rule base 
and fuzzy inference 

Fig. 10 Integrated fuzzy neural network-fuzzy expert system 

5. I Adaptive load correction 
For small load correction eqns. 10 and 11 are adequate 
to produce accurate forecasts (usually for a lead time 
from 1 - 6h). However, as the lead time increases to 

110 

24, 48, 72 or 168h, the membership function for the 
load-error correction is adapted as 

1 
p{apc(z)~ = c,,, f ac,,, apc(~) (15) 

the value of AC,, is obtained as a function of load- 
correction errors from the training cases using different 
lead times for predictions. Fig. 11 shows the linear 
adaptive correction ACmax as a function of the normal- 
ised error. The nonlinear adaptive version of the load- 
error correction is shown in Fig. 12. For adaptive cor- 
rections, eqns. 12 and 13 are rewritten as 

and 

Some of the results are given below for the various 
models considered in this paper. 

80 

I increment / 

decrement \ I 
-801 I I I I I I I I 

0 0.002 0.004 0.006 0.008 ,010 ,012 014 
maximum error (normalised) 

Fig. 11 

60 I 

Linear adaptive load correction 

decrement 

-20 

-40 
increment 

I 1 I I I 1 I I 
0001 0002 0 003 0 004 0005 

maximum error (normalised) 
Fig. 12 Nonlinear adaptive load correction 

6 Forecasting results 

6. I Average load forecasting 
To evaluate the fuzzy ANN and fuzzy expert system 
approach, load forecasting is performed on the load 
data collected at the Virginia Polytechnic Institute and 
State University. The fuzzy neural network (FNN) is 
compared with the combined FNN and fuzzy expert 
system model using ordinary backpropagation algo- 
rithm for obtaining one-day-ahead average load fore- 
casting during a 14 day period in the month of May. 
The input layer of the FNN comprises 15 neurons for 
five input features and the output layer has three neu- 
rons. The number of neurons in the hidden layer is 
fixed as 17 for this particular forecast, to obtain the 
best results. If the day-of-the-week indicator is used, 
one more neuron is added to the input layer. Back- 
propagated errors are assigned appropriate weightage 
for weight updating depending on the membership val- 
ues at corresponding outputs. The learning rate r\ and 
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momentum coefficient a are gradually decreased to 
prevent oscillations as the neural network converges to 
a minimum-error solution in a maximal number of 
sweeps through the training set. 

Note that the parameters q and a traverse a range of 
values in the course of computations and one may 
choose 0.6 < a < 1.0, and 0.0001 < q < 0.1. The values 
of p and y are chosen for best performance as 

0 < p < 0.02 
0.2 < y < 0.6 

For the present study the initial learning rate q and 
momentum a are 

and 

The percentage error PE is evaluated as 

7 = 0.01, a = 0.8 

/!? = -0.015, 7 = 0.4 

forecast load - actual load 
PE = x 100 

forecast load 
and percentage absolute error PAE = lPEl 

The average load profile for the 14 day period in 
May is shown in Fig. 13. Fig. 14 presents the PAE for 
24h period ahead forecast. The maximum PAE for a 
24h-ahead forecast during a 14 day period in May is 
1.75 using the FNN and fuzzy expert system in com- 
parison with 3.40 for the FNN only. Weekdays, week- 
ends and Sundays are all included in this model. 
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Fig. 13 Average loudprojile forecast for the month of May 
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Percentage absolute error in average load profile forecast for the 

6.2 Peak-load forecast 
Figs. 15-18 show the actual peak loads and PAEs for a 
31 day period during May and December. The maxi- 
mum temperature errors are used for fuzzy corrections. 
The combined model produces a maximum PAE of 
about 1.65 for a 24h-ahead peak-load forecast during 
the month of December. During May, the maximum 
PAE is 7.5 for a 24h-ahead peak-load forecast using 
the FNN model. However, using fuzzy correction, the 
maximum PAE is reduced to 5.5. Both the forecasts 
shown in these Figures include weekdays, and week- 
ends etc. Special holidays like Christmas etc. are 
included in obtaining the peak-load forecast for the 
month of December. These errors can be reduced fur- 
ther by using adaptive load-correction schemes. 

6.3 Hourly load forecasts 
The data from a utility in Virginia is used to produce 
24h- and 48h-ahead hourly forecasts. For this utility, 
both temperature and humidity records are available 
during all seasons of the year. However, the forecasting 
errors for 21 and 22 January over a 24h period are 
shown in Figs. 19-22. The maximum PAEs for 24h- 
and 48h-ahead forecasts are 2.8 and 3.5 without fuzzy 
corrections and 0.69 and 1.72 with fuzzy corrections, 
respectively. The corresponding load profiles are also 
shown in these Figures. 
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24h ahead hourly load forecasts with temperature and humidity 

6.4 Hourly load forecasts using adaptive 
correction 
Figs. 23 and 24 show the 24h ahead forecast errors for 
a summer day (27 May) using an all-temperature 
model and the data from the experimental setup at the 
Virginia Polytechnic. Both linear and nonlinear adap- 
tive fuzzy corrections are used to provide a more accu- 
rate forecast. From the Figure it is found that the 
percentage absolute-load-prediction error over the 
entire 24h period comes down significantly using both 
adaptive-fuzzy-correction formulations. However, the 
difference between the two versions is not very signifi- 
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cant, and thus the PAE with the nonlinear version is 
shown in the Figure. The nonlinear version is pre- 
ferred, as it is expected to produce significant accuracy 
for 1 to 2h ahead load forecast. The hourly-load-fore- 
cast accuracy is significant in this case as the University 
load profile (shown in the Figure) does not show signif- 
icant changes during the 24h period. 
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24h ahead hourly load forecasts with temperature and humidity 
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Figs. 25 and 26 show the 24h-ahead forecast errors 
for 15 February (winter day) using the nonlinear ver- 
sion of the fuzzy adaptive correction scheme along with 
FNN and FNN with fuzzy corrections. Significant 
accuracy in the hourly forecast is also obtained in this 
case using adaptive corrections. The above two days 
are nonspecial days and are chosen to illustrate the 
accuracy of the adaptive correction scheme. 
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7 Discussion 

The proposed fuzzy-neural-networklfuzzy-expert-sys- 
tem approach is found to be very powerful and robust 
for short-term load predictions. 

Although the results for two seasons of the year are 
presented in this paper for validating the effectiveness 
of this approach, extensive tests have been conducted 
for other seasons, Sundays, holidays and special days 
of the year. From the results presented in this paper, it 
is observed that significant accuracy can be achieved 
for 24h ahead hourly load forecasts and the PES could 
be even less than 1%. Adaptive fuzzy load correction 
schemes enhance the accuracy of the predictions in 
most cases. However, if the lead time increases to 48h, 
the percentage error will be around 2%. The accuracy 
of load predictions using both adaptive corrections will 
be the highest with loads which do not show large 
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hourly variations. However, significant accuracy can 
still be achieved with highly stochastic load variations, 
if a fuzzy basis function approach is used to arrive at 
adaptive corrections instead of the trial-and-error 
method presented in this paper. 
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Hourly load forecast with adaptive corrections for 15 February 
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Hourly load forecast with aduptive corrections for 15 February 

The results for average load forecast are very encour- 
aging and the maximum absolute percentage error is 
around 1.8. From the results for peak-load forecast 
presented in this paper, it is observed that except for 14 
and 15 May, the PAE is less than 2 for most of the 
days. The mean absolute error is evaluated for this 
month and is found to be 2.824 with the FNN model 
only and 1.150 using fuzzy corrections. 

The large errors for the above two days are probably 
due to other factors which have not been used in the 
training patterns. Although the results for 168 h-ahead 
load forecast using the above models have not been 
reported in this paper, the computations reveal that the 
mean absolute percentage error is around 2 and the 
maximum PE is 4.28 using the FNN model. With fuzzy 
corrections, the maximum PE is reduced to 2.16. This 
is quite comparable with the results for the ANN-based 
load forecasting technique presented by Karady et al. 
[12, 131. 

Although the studies reported here have utilised a 
few simple examples and models, they are extremely 
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valuable in identifying a promising hybrid forecasting 
methodology which can be investigated for larger 
number of inputs, more weather parameters, special 
load patterns, seasonal load changes, peak and total 
load forecasts one week ahead etc. 

8 Conclusion 

A new hybrid model integrating an artificial neural net- 
work and a fuzzy expert system is developed for 24 h 
ahead average and peak load forecasts and tested with 
historical load data. The hybrid model uses a fuzzy 
neural network for obtaining the initial forecast from 
the fuzzified input data and a fuzzy expert system gen- 
erating the load correction to produce the final fore- 
cast. The simulation results of the proposed method 
using historical data show that the forecasting errors 
are less than 2% for both 24h ahead average and peak 
load predictions. The selection of training pattern pre- 
sented in this paper does not classify the patterns to 
weekday and weekend day and thus the hybrid model 
is a promising approach for short-term load forecast 
for all days of the year. The paper also presents an 
adaptive fuzzy correction scheme to minimise the fore- 
cast errors more precisely and 24h ahead hourly fore- 
casts using this scheme yield significant accuracy. The 
fuzzy neural network and fuzzy expert system approach 
has also been applied to one week ahead load forecast, 
and the results are found to be very promising. 
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11 Appendix 

Weight updating using error backpropagation 
for fuzzy neural network 
The least-mean-square error in output vectors is mini- 
mised by using a gradient-descent algorithm by starting 
with any set of weights and repeatedly updating each 
weight by an amount 

where 
q = learning rate 
a, p = momentum coefficients 
n = iteration number 
E = error cost function 

Further, the learning rate q is adaptively varied as 

(19) 
where y determines the tuning of learning rate q.  
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