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ABSTRACT 
Multirobot systems (MRS) hold the promise of improved 
performance and increased fault tolerance for large-scale 
problems. Multirobot coordination, however, is a complex 
problem. One of the most important aspects in the design of multi-
robot systems is the allocation of tasks among the robots in a 
productive and efficient manner. An empirical study is described 
in the present paper for task allocation strategies. In general, 
optimal solutions can be found through an exhaustive search, but 
because there are mn×  ways in which m tasks can be assigned 
to n robots, an exhaustive search is often not possible. Task 
allocation methodologies must ensure that not only the global 
mission is achieved, but also the tasks are well distributed among 
the robots. An effective task allocation approach considers the 
available resources, the capabilities of the deployable robots, and 
then it appropriately allocates the tasks the candidate robots. This 
paper presents such task allocation methodologies for multi-robot 
systems by considering their capability in terms of time and space. 

Keywords 
Allocation model, assignment heuristic, allocation cost, load 
deviation ratio, multirobot, task allocation 

1. INTRODUCTION 
The study of multirobot system (MRS) has received increased 
attention in the recent years. Continually improving technology 
has made the deployment of MRS consisting of increasingly 
larger number of robots possible. It is obvious that multiple robots 
will be superior to a single robot in achieving a given task. 
Potential advantages of MRS over single robot systems (SRS) 
include reduction of total system cost by employing multiple 
simple and cheap robots as opposed to a single, complex and 
expensive robots. The inherent complexity of certain task 
environment may require the use of multiple robots as the demand 
for capability is quite substantial to be met by a single robot. 
Multiple robots are assumed to increase system robustness by 
taking advantage of inherent parallelism and redundancy. 
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Multirobot teamwork is a complex problem consisting of task 
division, task allocation, coordination, and communication. The 
most significant concept in multi-robot systems is 
cooperation. The cooperation of robots in a group can be 
classified into two categories of implicit cooperation and explicit 
cooperation. In the implicit cooperation case each robot 
performs individual tasks, while the collection of these tasks is 
toward a unified mission. The explicit cooperation is the case 
where robots in a team work synchronously with respect to time 
or space in order to achieve a goal. Regardless of the type of 
cooperation, the goal of the team must be transformed in to tasks to 
be allocated to the individual robots. In this paper, an attempt is 
made to empirically derive some guidelines for selecting task 
allocation strategies for multi-robot systems with implicit 
cooperation.  The explored strategies are individualistic in that 
they do not involve explicit cooperation and negotiation among 
the robots. However, they are a part of a large class approaches 
that produce coherent and efficient cooperative behavior. The 
approach presented in this paper can be advantageously used in 
real-world problems. The present work is aimed at proposing a 
methodology to allocate tasks to available multiple robots based 
on their capacity, availability and allocation cost. 
The allocation model (AM) is equivalent to a two-dimensional 
multi-type bin packing problem (2DMBP). Considering each 
robot as a two-dimensional bin, and each workstation a two-
dimensional object to be packed, the model can be viewed as 
assigning objects into an optimal set of bins such that both 
resource demands of each object are satisfied and neither of the 
capacity constraints of each selected bin is violated. Historical 
research in bin packing has focused on both the one-dimensional 
single-type bin packing problem (1DSBP) and its two dimensional 
extension-2DSBP [1], [2]. Both 1DSBP and 2DSBP have been 
proven NP-hard [3], [4]. Numerous investigators have examined 
the performance analysis of approximation algorithms designed 
for a number of 2DSBP variants [4,5,6,7]. Reported algorithms 
may be categorized as either on-line or off-line. Both types of 
algorithms are practical in real world applications. In this paper, 
the focus is on the development and implementation of an 
optimization algorithm for solving AM. Specifically, the objective 
of this work is to develop a solution algorithm that can be used to 
solve problems of a practical size within acceptable computational 
times. The characteristics of AM warrant the development of an 
off-line algorithm involving vector-packing. Although the 
algorithm described here is in the context of robotics, it is general 
and applicable to any real-world application. 
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2. ALLOCATION MODEL FORMULATION 
The present research problem explicitly addresses robots of 
different types with various service time and space capacities. The 
assignment model (AM) seeks an optimal selection of robots to 
serve all given work stations such that each work station's resource 
demands are satisfied, no robot capacity constraints are violated, and 
the total system cost is minimized. A mathematical model along 
with its solution algorithm is presented for allocation of robots to 
the workstations which is efficient and may serve as a planning 
tool. The model is formulated as a pure 0-1 mathematical 
program. The key parameters for the model can be categorized as 
geometrical, kinematic, dynamic, power and noise, and thermal. 
The two most important factors when assigning work stations to 
robots are the geometrical work envelope and the kinematic 
machine cycle time. The work envelope for a typical robot is 
represented by a diameter of a circle. However, for our model, it 
is not required that the work envelope be a complete circle. The 
time requirement of any workstation depends upon its relative 
distance from the robot. In addition, the space requirement of a 
workstation also depends upon its relative location. If the 
workstation is assigned to location nearer to the robot its space 
requirement is smaller than what is required if assigned at location 
one. In contrast, the time requirement of a workstation assigned 
at location farther to robot is smaller than the time requirement 
associated with location which is nearer from robot because the 
latter incurs a longer travel time. Thus, there exists a trade-off 
between the space requirement and machine cycle time 
requirement. In fact, both requirements are a function of the 
workstation's relative position from the robot. Our primary objective 
is to minimize the total robot acquisition costs while satisfying 
workstation resource demands. In order to make AM 
computationally tractable, we assume that all workstations are placed 
at the most remote location within the work envelope. This 
assumption decouples the interaction between space and time by 
allowing the resource requirements of a given workstation to be 
constant. Without this assumption, the model complexity is 
significantly increased. This trade-off between the number of 
robots required to serve a given set of workstations and the time 
required to serve a workstation could be considered by iteratively 
solving AM. The formulation of the AM is as follows. A set of robot 
types indexed by K = {1, 2, …, k}, is considered where each robot 
type is characterized by its time and space capacity. Specifically, 
space is measured in terms of the work envelope's swept area. The 
swept area is the total number of degrees around the central 
vertical axis that is within reach of the robot arm. All given 
workstations are indexed by I = {1, 2, …, n}.  

Table 1. Notation for AM 

Notation  Definition 
k Number of robot types 
K Robot type index set, K = {1, 2, ..., k} 
n Number of workstations 
I Workstation index set, I = {1, 2, ..., n} 
mk Maximum number of type k robots Kk ∈∀   
Jk Robot index set for type k robots, Jk= {1,2,…, mk}, Kk ∈∀  
tik Normalized time requirement of workstation i when served 

by a type k robot, KkIi ∈∈∀ ,  
sik Normalized space requirement of workstation i when served 

by a type k robot, KkIi ∈∈∀ ,  
fk  Fixed charge incurred if `a type k robot is purchased, 

 Kk ∈∀  

Each workstation i demands a known amount of time and space 
when served by robot type k, denoted by tik and sik respectively. In 
addition, for a given set of n workstations, let mk denote the 
maximum number of robots of type k necessary to serve all 
workstations assuming only robots of type k are available. 
Further, let Jk = {1, 2, ..., mk} denote the index set for type k 
robots. It is assumed that a fixed-charge, fk, will be incurred if the 
jth robot of type k is employed. For easy reference, all useful 
notations for AM are summarized in Table 1. A decision variable, 
xijk, is defined as: 

otherwise
typeofrobot toassignedisnworkstatioif

0
1 kji
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⎩
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⎧

=  

With no loss of generality, the time and space requirements for 
each workstation (i.e., tik, and sik , respectively) can be normalized 
by dividing the robot resource capacities into the corresponding 
workstation resource demands. This macro planning model does 
not consider variable costs and the solution algorithm developed 
in this paper is general. The robot selection and assignment (RSA) 
can be written as equation (1) through equation (6): 
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}{ kjkijk JjKkIiyx ∈∈∈∀∈ ,,1,0,  (6) 
Condition (2) ensures that each workstation i is assigned to 
exactly one robot. Conditions (3) and (4) ensure that workstations 
assigned to any robot will not violate the corresponding time and 
space constraints. The AM is a pure 0-1 integer program (IP). 
Therefore, it is impractical to directly solve AM by using any 
available IP code. In the present work an optimization algorithm 
based on heuristic covering all the necessary parameters is 
developed for solving the task assignment problem in a 
heterogeneous multirobot environment.  

3.  SOLUTION METHODOLOGY  
The solution algorithm for AM uses a greedy heuristic-First Fit by 
Ordered Deviation (FFOD) to generate an initial feasible solution. 
The algorithm is used to search for the optimum. The heuristic 
provides an initial feasible solution which serves as an upper 
bound. This solution and its corresponding objective function 
value are then iteratively expanded and solved by using a 
decomposition procedure. At the end of each iteration, new 
groupings are generated [8]. The best or a few good groupings are 
appended to the problem. This iterative solution process continues 
to refine the objective function until no more new groupings with 
non-negative reduced costs can be generated [9,10]. If the final 
solution is all integers, then an optimal solution to the original 
AM problem has been found and the algorithm terminates. 
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4. ALGORITHM DETAILS 
4.1 Assignment Heuristic (AH) 
Given any workstation, three possibilities exist. The workstation 
can be time intensive, space intensive or neither. A heuristic is 
developed by examining these three cases, and the load balance 
on each candidate robot. The AH is based on the concept of 
allocation cost, which is computed as a function of the resource 
demands of each workstation and a robot's load balance. Let jkΔ  
denote the load balance factor associated with the jth robot of type 
k. That is, jkΔ is defined as the difference between the total 
allocated (normalized) machine time and the total allocated 
(normalized) work space for robot j of type k. Let and where xijk is 
a 0-1 variable. Hence, jkΔ  can be expressed as follows 

kjkjkjk jjKkST ∈∈∀−=Δ ,  (7) 
If a robot’s resource load is nearly balanced, then the load balance 
factor will be approximately zero. If the robot's load is time 
intensive, then 0 < jkΔ < 1, and if the robot's load is space 

intensive, then -1 < jkΔ  < 0. Hence, the further the resource load 
factor is away from zero, the greater the load imbalance is.In 
addition, let ijkδ denote the adjusted demand when the ith 
workstation is served by the jth robot of type k. That is, 

}{
}{⎪⎩

⎪
⎨
⎧

≤ΔΔ+

>ΔΔ−
=

0if,MAX

0if,MAX

jkikjkik

jkjkikik
ijk st

st
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Since 0<tik ≤ 1, 0 <sik ≤ 1, and -1< jkΔ <1, we know 10 ≤< ijkδ . 

To illustrate how the adjusted demand is employed by AH, 
consider two robots of type k, say A and B. Assume that 

4.0=Δ Ak  and .3−=ΔBk  Therefore, robot A is time intensive. In 
order to improve the load balance for robot A, we should prefer 
the assignment of a workstation which is space intensive (i.e., tik < 
sik) to those which are time intensive. By contrast, for robot B, the 
assignment of workstations which are time intensive should be 
given preference over workstations which are space intensive. An 
example is given below for illustration. Suppose the workstation 
to be assigned next is time intensive; that is, tik= 0.3 and sik= 0.2. 
Also, assume both robot A and B have enough remaining time and 
space capacities to serve this candidate workstation. The goal of 
our assignment heuristic is to balance the resource load on each 
robot. Since the candidate workstation is time intensive, it should 
be assigned to a robot which is space intensive. Plugging the 
given figures into equation (8), we have 3.0=iAkδ  and 2.0=iBkδ . 

These adjusted demands, i.e., ijkδ  contribute to the “allocation 
costs”. In general, if the fixed cost of all robot types is equal, the 
workstation should be assigned to the robot which produces the 
smallest adjusted demand. Since, not all robots have equal fixed 
cost, the allocation cost, aijk incurred by the ith workstation when 
served by the jth robot of type k is the product of its adjusted 
demand and the fixed cost of the jth robot. That is, 

ijkkijk fa δ*=      (9) 

Since 10 ≤< ijkδ , we know that kijk fa ≤<0 . Thus, aijk reflects 
the adjusted proportion of the fixed cost that workstation i incurs 
when it is assigned to robot j of type k. The heuristic is used to 

produce a good feasible solution. For each robot type k, the 
heuristic calculates the load deviation ratios and sorts them into a 
nondecreasing order. These load deviation ratios indicate the 
balance between the time and space requirements of each 
workstation when served by each robot type k. Then, the AH is 
employed to assign workstations to robots based on the sorted 
load deviation ratios. Since AH is simple and efficient, it is rerun 
once more based on a nonincreasing order of load deviation ratios. 
Our computational results indicate that AH provides a very good 
feasible and optimal solution.  

4.2 AM Example 
Using realistic data, the following example is provided to 
highlight the solution process for a AM problem. While Table 2 
summarizes major parameter values for four different robot types, 
Table 3 presents the normalized space and time requirements of 
fifteen workstations. 

Robot-4 has a fixed charge of $60,000, a swept area of 320°, a 
maximum reach of 1250 mm, and an average arm movement 
speed of 3.09 m/sec. Each entry in column two of Table 3 
provides the diameter (D) of a circle encompassing the 
workstation. It is assumed that each workstation is placed at the 
most remote location within the work envelope. Therefore, the D 
associated with each workstation is in fact a chord to the work 
envelope. Knowing the value of D and the maximum reach (R) of 
a robot, we can derive the arc length subtended by a workstation, 
which is )2/(sin2 1 RDwhereR −=θθ . Here, θ represents the 
workstation's space requirement in degrees. Usingθ and the swept 
area (S), a workstation's normalized space requirement can be 
determined. Considering workstation one and robot type one, we 
have D = 1.0 meter, R = 1.25 meters, and S = 320°. Using this 
data, we haveθ =47.15° and thus 147.0)32015.47(11 ==S . In 
contrast, the time requirement of a workstation can only be 
determined after a thorough motion study of robot. In this macro 
planning model, the time requirement for each workstation is 
estimated based on two major components: (1) robot arm travel 
time; (2) robot service time. Both components are normalized by 
the total available machine time, which in practice is defined by 
the time available during peak machine hours. Using the above 
data and the aforementioned optimization algorithm, the AM 
example is optimally solved. To proceed with the solution for 
allocation model, all the options of employing the available robot 
types are tried. The load balance factor jkΔ and the allocation cost 
for each option are determined. 

Table 2. Fixed costs and parameter values of the robots 

 Robot-1 Robot-2 Robot-3 Robot-4 
Specification (Puma 

560-c) 
(Adept one 

XL) 
Fanuc Arcmate

Sr.R.J 
Staubli RX 

130B 
DOF 6 4 6 6 

Pay Load 4 kg 12 kg 10 kg 12 kg 
Swept Area 320° 270° 300° 320° 
Max. Reach 878 mm 800 mm 1529 mm 1250 mm 
Max Speed 1.0 m/sec 1.2 m/sec 3.60 m/sec 3.09m/sec 

Type Jointed Scara Jointed Jointed 
Cost $35,000 $19,500 $56,400 $60,000 
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Table 3. Normalized space and time requirements of 
workstations 

Workstation Normalized space 
requirement 

Normalized time 
requirement 

No.(i) Size(D) R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4 
  Si1 Si2 Si3 Si4 ti1 ti2 ti3 ti4 

1 1.0 0.216 0.286 0.127 0.147 0.214 0.216 0.203 0.2 
2 0.7 0.146 0.192 0.088 0.101 0.143 0.145 0.141 0.142
3 1.1 0.242 0.321 0.14 0.163 0.237 0.243 0.225 0.228
4 1.05 0.229 0.303 0.133 0.155 0.224 0.229 0.213 0.216
5 0.9 0.192 0.253 0.114 0.131 0.188 0.191 0.181 0.184
6 1.01 0.219 0.289 0.128 0.148 0.215 0.219 0.205 0.208
7 0.65 0.135 0.177 0.081 0.094 0.133 0.134 0.13 0.131
8 0.7 0.146 0.192 0.088 0.101 0.143 0.145 0.14 0.142
9 0.75 0.158 0.207 0.094 0.109 0.154 0.156 0.15 0.152
10 0.85 0.18 0.237 0.107 0.124 0.177 0.179 0.171 0.173
11 1.1 0.242 0.321 0.14 0.163 0.237 0.243 0.224 0.227
12 1.5 0.366 0.515 0.195 0.23 0.359 0.39 0.313 0.322
13 1.4 0.33 0.452 0.181 0.212 0.324 0.342 0.29 0.297
14 1.2 0.269 0.359 0.154 0.179 0.264 0.272 0.246 0.25 
15 1.18 0.263 0.351 0.151 0.176 0.258 0.266 0.241 0.245

 
Figure 1 shows the allocation cost of the combinations. There is a 
clear indication that the individual robots are better suited for the 
tasks only on the basis of their allocation cost than any of their 
combinations. This is a problem specific condition and it largely 
depends on number of factors such as time and space requirement. 
In other words, this is mainly due to low value of workstation size 
and relatively high value of the speed of the robots. The load 
balance factor, time requirement, space requirement and 
allocation cost are considered for the assignment of the robots to 
the workstations in question. 

 

 
 

Figure 1. Allocation cost with all options 

5. RESULTS AND ANALYSIS 
To further examine the robustness and effectiveness of our 
optimization algorithm, problems are generated and tested based 
on our key design parameters. The optimization algorithm 
discussed in the previous section was coded in MATLAB for 
solving the linear programs. All test problems are created by a 
problem generator using four major design parameters: 1) the 
average robot service capacity (i.e., the average number of 
workstations that can be served by a robot based on one-
dimensional resource demand of workstations); 2) the average 

space required by the given workstations; 3) the average machine 
time required by the given workstations; 4) the number of 
workstations to be assigned, n. For all test problems, four robot 
types with fixed charges are from a uniform distribution over (0, 
0.41). The machine time is a weighted sum of two randomly 
generated values from an exponential distribution with a mean 
equal to 0.2. The first random variable represents the service time 
and the second, robot arm travel time. The results of the allocation 
are presented in Table 4. Overall, the computational results 
indicate the initial feasible solution generated by the FFOD 
heuristic takes no more than a second. The quality of the solution 
is reasonably good. The solution times for finding a near-optimum 
or an optimum are also recorded. As noticed, the computing 
efficiency is very sensitive to the problem size. However, since 
macro planning for a multirobot system is quite important to a 
designer, then the one time computing cost for optimization 
should not be a major concern. Thus, the algorithms developed in 
this paper provide significant and useful results. 

Table 4. Robot selection and assigned workstation 

Robot Assigned Workstation 
Robot-1 WS-1 
Robot-2 WS-6, WS-14, WS-12,  
Robot-3 WS-5, WS-4, WS-9, WS-10, WS-11, WS-15 
Robot-4 WS-2, WS-8, WS-7, WS-3, WS-13 

6. CONCLUSIONS 
Multirobot facility design and planning have become increasingly 
important in modem production over the past decade. In this 
paper, a mathematical model and solution algorithm is developed 
to support robot selection and workstation assignment in a system 
employing multiple robot types. Specifically, our model considers 
selection of a proper mix of multiple-type robots such that 
operational requirements for a given number of workstations are 
satisfied. Each robot is characterized by its unique fixed charge 
and subject to its machine time and space capacity constraints. 
Each workstation has known time and space demands for each 
type of robot. The model is formulated as a pure 0-1 mathematical 
program, which is shown harder than the two-dimensional bin 
packing problem, a well-known NP-hard problem. An 
optimization algorithm is developed using a greedy heuristic. 
Computational results indicate that the algorithm is effective and 
efficient in solving problems of a practical size. It is worth noting 
that the algorithm developed in this paper has applicability to 
many other problems such as file placement for a storage system, 
using different types of storage devices, and job scheduling for a 
multi-processing computer system. Future research will involve 
both improvements in solution methods and extensions to the 
current model.  
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