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Abstract-- One of most important aspects in the design of 

multi-robot systems is the allocation of tasks among the robots 
in a productive and efficient manner. Task allocation 
methodologies must ensure that not only the global mission is 
achieved, but also the tasks are well distributed among the 
robots. An effective task allocation approach considers the 
available resources, the entities to optimize (time, energy, 
quality), the capabilities of the deployable robots, and 
appropriately allocates the tasks accordingly. This paper 
presents some important task allocation methodologies for 
multi-robot systems, providing a review of numerous approaches. 

Keywords--Distributed robotics, Multi-robot systems, Task 
allocation. 

I.  INTRODUCTION 
ne of the important recent trends in robotics is the 
study of teams of multi-robot systems. Research 

performed under such titles as distributed robotic 
systems, swarm robotics, sociorobotics, decentralized 
robotics, multi-agent robotics, and cellular robotics, has 
focused on the investigation of issues and applications of 
systems composed of groups of robots. The general idea is 
that teams of robots, deployed to achieve a common goal, are 
not only able to perform tasks that a single robot is unable 
to, but also can outperform systems of individual robot, in 
terms of efficiency and quality. In addition, groups of 
robots provide a level of robustness, fault tolerance, and 
flexibility, as the failure of one robot does not result in the 
unsuccessfulness of the mission, as long as the remaining 
robots share the tasks of the failed robot. Examples of tasks 
appropriate for robot teams are large area surveillance, 
environmental monitoring, autonomous reconnaissance, large 
object transportation, planetary exploration, and hazardous 
waste cleanup. 

Applications of robot teams are in four basic areas: 
handling large objects, covering large areas, performing 
iterative tasks, providing robustness and fault tolerance. 
There are a number of certain situations that lends 
themselves well to the task decomposition and allocation 
among multiple robots [1]. 

The most significant concept in multi-robot systems is 
cooperation. It is only through cooperative task 
performance that the superiority of robot groups can be 
demonstrated. The cooperation of robots in a group can be 
classified into two categories of implicit cooperation and 
explicit cooperation. In the implicit cooperation case each 
robots performs individual tasks, while the collection of  
 
 

 
 
 

 
 

these tasks is toward a unified mission. For example, when 
multiple robots are engaged in collecting rock samples and 
returning them to a common place, the team is accomplishing 
a global mission while cooperating implicitly. This type of 
group behavior is also called asynchronous cooperation, as it 
required no synchronization in time or space. The explicit 
cooperation is the case where robots in a team work 
synchronously with respect to time or space in order to 
achieve a goal. One example of such cooperation is 
transportation of heavy objects by multiple robots, each 
having to contribute to the lifting and moving of the object. 
This task requires the robots to be positioned suitably with 
respect to each other and to function simultaneously. 
Regardless of the type of cooperation, the goal of the team 
must be transformed into tasks to be allocated to the individual 
robots. 

Multi-robot teamwork is a complex problem consisting 
of task division, task allocation, coordination, and 
communication. Dudek et al. [2] present a general taxonomy 
to characterize multi-agent systems, consisting of the number 
of agents, communication, reconfigurability, processing 
mechanism, and differentiation. Simultaneous self-centered 
actions of robots do not result in multi-robot system teamwork. 
These actions must be defined in a framework of system's 
goal, which unites or separates robots in groups. The reason 
for robots to function in a group, whether all robots to 
function in a group, whether all robots have a unique goal 
like a soccer team or they have multiple goals such as a free 
market system, the behavior of the group of robots amongst 
themselves (help or impede one another) are some of the 
important issues which can be addressed by the proper task 
allocation mechanism.   The focus of this paper is on 
reviewing different task allocation methodologies for multi-
robot systems. 

II. TASK ALLOCATION 
One main issue in task allocation is the division of the 

tasks into homogeneous versus heterogeneous tasks. 
Goldberg and Mataric [3] studied homogeneous and 
heterogeneous task allocation for a foraging task such as trash 
collection. Their implementation ranged from homogenous 
system where all robots have the same task to a grouping, 
which divides the robots in different groups, and each group 
is assigned to do a different task. They used inference, 
spatial, and temporal parameters to evaluate different methods. 
Experimental result showed that although the grouping 
system is suitable for reducing interference, the best 
performance is obtained through homogenous task allocation, 
i.e., the fastest collection of trash than others. In another 
work, Sukthanker and Sycara [4] showed that augmenting 
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homogenous task allocation by making robots more team-
aware, results in systems that are substantially more efficient. 

Another main issue in task allocation is the study of multi-
robot systems in hardware with small population sizes (e.g., 
under twenty), versus the study of issues in multi-agents 
systems in simulation with large population sizes. 
Construction, maintenance, and utilization of large groups of 
robots have proven to be infeasible due to time and budget 
requirements. It is too difficult to build a team of 100 robots, 
make sure that all are functioning and perform experiments 
with them. Instead, the researchers have been conducting the 
hardware experiments with only a few robots, and then they 
have augmented their hardware studies with computer 
modeling and simulation of robot groups with large 
populations. It should be noted that the effects of team size 
and its scaling are integral issues in robot group studies, and 
the reliability of the simulation results remains to be seen. In 
some simulation and analytical studies, the focus is on 
complex emergent behavior of a collection of simple robots, 
i.e., collective behavior. These works use mathematics to 
predict and design working group of robots. Lerman et al. [5] 
propose a mathematical methodology based on viewing large 
colonies of robots (swarms) as stochastic systems, Markov 
property, to predict their emergent behavior. Because Markov 
property holds in many multi-agent systems (e.g. behavior-
based or reactive control) this analysis can be useful in many 
applications. Mathematical analysis has the following 
capabilities: predicating the collective emergent behavior, 
and the understanding of effects of each parameter on system. 

In terms of applications, certain missions are more 
suitable for the study of task allocation. Geometric formation 
is one such application. In geometric formation, a team of 
mobile robots attempts to achieve and maintain a geometrical 
shape, while moving toward their target. Some multi-robot 
missions such as exploration require team formation. For 
example, army mechanized scout platoon or dynamic radar 
surface coverage that are based on maintaining a constant 
distance from one another. This type of problem has been 
studied by multi-robot system researchers [6,7]. If 
formation is treated like a coordination problem a static task 
allocation usually works well. Balch and Arkin [1,6, 8] 
proposed a method of team formation where the task 
allocation takes place during system design. In this static 
approach, all of the robots have a predefined and similar task. 
This task can be expressed as "while avoiding to bump to any 
object, including other robots go to target point and meanwhile 
maintain formation." This work used schema-based 
architecture [9] to implement motor schema navigation. 
Perceiving sensed data activates schemas in parallel. These 
asynchronous processes start behaviors, and the result of 
these behaviors (a vector format) will be multiplied by an 
importance weight. The sum of these factors is used to 
generate a global output for the control of the actuators (e.g. 
motors in mobile robots). Each robot maintains the formation 
by calculating its proper position in the group and executing a 
motor schema to move toward the goal position. 

The task allocation methodologies for multi-robot systems 
are presented in the following sections. 

 
III TASK ALLOCATION METHODOLOGIES 

A. Functionally-Accurate Cooperative (FA/C) Distributed 
Problem Solving 

In the FA/C Distributed Problem Solving approach [10] 
each robot has just partial data for solving the imperfect and 
temporal sub-problems. By considering the issue of reduction 
of the costly communication, this approach provides a 
structure to cooperate the interactions among the robots. In 
this architecture, robots work interdependently, where each 
robot is aware of its present situation and produces partial 
and intermediate stage results. 

This approach works even in cases where the lack of data 
has resulted in system inconsistency and uncertainty, through 
the resolution between interdependent middle data received 
from the other robots. As a result, this architecture has a 
very low bandwidth, is more reliable, and increases the 
effective agent operation time, i.e., less agent idle time. But it 
uses exhaustive computation. Fig. 1 shows an example of two-
agent system. 

 

 
Fig.  1.  An example of a two-agent distributed aircraft monitoring scenario 

B.  Auction Algorithm 
Bertsekas[11] presents an algorithm that can be 

utilized in task allocation in multi-robot applications, 
especially suitable for parallel computation. This approach 



IEEE Sponsored Conference on Computational Intelligence, Control And Computer Vision In Robotics & Automation 

© IEEE CICCRA 2008 

101

attempts to find the best assignment between tasks and users, 
while maximizing the total benefit. It iterates between users 
and in each iteration tries to assign a task to a user who offers 
the most. In consecutive iterations, other users may bid for 
other tasks and if more than one bids for the same task, it 
will increase the cost of task until finally just one task-user 
pair match takes place, i.e., iterative improvement. The 
iteration terminates when all users are happy with their 
match, otherwise an unhappy user will bid higher for another 
task and this process will continue. 

Although auction algorithm may have some similarities to 
the free market approach, there are a few differences. One 
difference is that in the free market approach, robots can 
cooperate in order to gain a maximum profit for all of them, 
however in the auction algorithm every robot is considered 
a rival. Another dissimilarity is that the auction algorithm uses 
a unique mathematical model for all the applications, while 
the free market approach does not. In addition, the free 
market technique is based on the collection of 
heterogeneous robots, while in the auction algorithm the 
robot set is homogeneous. The auction algorithm is presented 
in Fig.2.  

 
 
 
 
 
 
 
 
 
 

Fig.  2.  The Auction algorithm 

C.  Alliance 
The Alliance approach [12, 13, 14, 15, 16] is focused on 

small to medium size robot teams. It is a fault-tolerant, 
behavior-based architecture that assigns tasks dynamically. Its 
behavior-based controller uses different sets of behavior for 
different tasks. This architecture assumes a heterogeneous 
team of robots. Each robot just needs to run an Alliance 
process as a requirement in order to cooperate. Task 
allocation between different robots with different structures 
takes place in the Alliance. The Alliance architecture is 
shown in Fig. 3. The robots communicate explicitly and 
globally. An extended approach, which incorporates learning, 
is called L.Alliance [17, 18]. 

The selection of a suitable action is based on a concept 
called motivation. Motivation is mathematically modeled 
with two functions of impatience and acquiescence. Each 
robot has a partial knowledge of its own and other robots' 

state. This partial knowledge plus impatience and acquiesce 
is used to calculate the level of activation as a probability 
value computed for each action. Impatience happens when a 
robot perceives that another robot (considering its effect on 
the environment) has not achieved enough. Acquiesce happens 
when a robot understands its incapability to complete a task 
using its sensory feedback. 

 
 
 
 
 
 
 
 

 

 

Fig.  3.  The alliance architecture 

D. Task Acquisition using Multiple Objective Behavior 
Coordination 

Pirjanian and Mataric present a task allocation approach 
for deliberative behavior-based architecture [19, 20] for 
multi-robot systems. This methodology uses a behavior-
based architecture for single robot control, and a deliberative 
task planning system for team interaction and task allocation. 
In this approach the whole system does not have a unique goal 
but each robot may have its own individual goal. The 
proposed architecture enables each robot to select its action, 
and to maximize each robot's achievement while also 
maximizing the group gain. The concept of optimality may 
not exist in many situations. Therefore this approach looks 
for solutions that are just partially optimal. Action selection is 
performed through voting and global communication among 
agents. The Multiple Objective Behavior Coordination 
(MOBC) is the main thesis of this approach and proposes 
command fusion among robots. 
E. A Free Market Architecture for Distributed Control of a 
Multi-Robot Systems 

Stenz and Dias [21] implement task allocation as a free 
market system. Some of the important features of this 
approach are dynamical task allocation, group learning, 
and minimum communication dependability. This approach 
is based on free market, i.e., the opposite to the central 
market system. This technique manages the robots as 
economical entities.  Each individual robot acts based on its 
own benefit and is self-centered. This results a good group 
performance, where separate profits are added and thus 

Motivational 
Behavior 

Motivational 
Behavior 

Motivational 
Behavior 

Behavior 
set 0 

Behavior 
set 1 

Behavior 
set 2 

Layer 2

Layer 1

Layer 0

Actuator

Sensors

Cross-inhibition 

Inter-Robot 
Communication 

Here aij =c>0 for all(i,j) with i=1,2,3 and j=1,2 and aij=0 for 
all (i,j) with i=1,2,3 and j=3  

OBJECTS 

Initially assigned to 
object 1 

PERSONS 

Initially assigned to 
object 2 

Initially unassigned  
 

Initially price=0 
 

Initially price=0 
 

Initially price=0
  1  1 

 2  2 

 3  3 



IEEE Sponsored Conference on Computational Intelligence, Control And Computer Vision In Robotics & Automation 

© IEEE CICCRA 2008 

102

generate the total team profit. The robots may cooperate in 
order to improve the overall benefits. 

The system's performance is measured based on the 
revenue/cost balance. The ultimate goal is to maximize the 
value of the revenue minus the cost. The functions for defining 
the revenue and the cost for the team, and also the method for 
task and related cost distribution among robots must be 
determined. A robot can gain revenue by contributing to the 
team's goal and also through trading services and goods with 
other robots. 

 

 

 

 

 

 
 

 

 

Fig.  4.  The winning TSP tour from robot A. 

The core of this approach is based on two functions. One 
function maps the result of each action to a revenue value and 
a second function that maps each method for performing a 
single task to its cost values. The calculation of the 
minimum value of the difference between the two 
functions results in a factor for selecting the most suitable 
task. For each given application, the human user must 
customize and change these two functions based on provided 
requirements. An example of the problem is presented in   
Fig. 4. 

F.   Team Formation-Based Task Allocation 
Stone and Veloso [22] use a dynamic task allocation, 

targeted for the robot soccer application. In this approach all 
homogeneous robots are set to function with a predefined 
strategy and have predefined tasks. Later on, a robot uses its 
perception of the world, and can decide to change its tasks. 
Because of the changes in the robot's internal state, its 
external behavior will change and finally its effect on 
environment will change. This yields new task requirement 
for other robots in environment. Each change in inner state of 
a robot is communicated to other robots in order to generate a 
new team formation. A global goal and a set of tasks are 
assigned to the robot team in certain periods, such as half 
times in soccer. 

G.  Murdoch: Publish/Subscribe System 
Gerkey and Mataric present Murdoch [23,24], a dynamic 

task allocation mechanism using a communication method 
called publish/subscribe for performing distributed control 
and multi-robot coordination. The proposed system is 

successfully tested on both tightly coupled and loosely 
coupled systems. The whole system is seen as a collection of 
resources that must be assigned to tasks. Because of the 
uncertainty associated with the status of each robot, task 
assignments do not address robots directly. Instead, the 
technique uses publish/subscribe paradigm, which provides 
anonymous task-robot sets. Each robot subscribes to a set of 
tasks based on resources that it can deploy. Robots can 
subscribe to different message lists based on their 
capabilities (e.g., mobile, sonar, vision, etc.), and based on 
current state information (e.g., seeing an object, pushing 
one, or so on). The subjects of the message could be the 
robot's capability or its status.   

Murdoch declares and defines different tasks based on the 
tasks' subjects, referred to as subject-base addressing. These 
include the robot's capabilities (ownership of resources for 
a task) or robot status (e.g., the robot's energy). The system 
then publishes that message, addressed by the content, instead 
of their targets in entire network. Robots who subscribed to 
that subject will receive the associated message. Thus tasks 
are divided at the behavior abstraction level instead of robot 
abstraction level. For instance, a task requiring sonar, laser, 
and vision publishes using the tuple of sonar laser camera as 
shown in Fig. 5 to push the box along the desired trajectory. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig.  5. The model used to derive the pushing velocities for moving the 
box along the desired trajectory 

A best-fit selection algorithm is used to choose the best 
among robots that are registered for a particular subject. The 
human user or another component of the system must 
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perform task decomposition. Each task is accompanied with a 
metric as a measure of fitness. This metric is application-
dependant and can be related to the robot's state or other 
computation. Afterwards, each registered robot measures its 
own fitness based on the metric and communicates the score 
to the others. The winner gains a time limit within which to 
accomplish the given task. 

H.  Broadcast of Local Eligibility (BLE) using Port Arbitration 
Behavior (PAB)  

Werger and Mataric [25, 26, and 27] present a task 
allocation methodology based on calculating the local 
efficiency of a robot for a task, and then communicating it 
with other robots. The most efficient robot inhibits others and 
performs the task. This approach is based on behavior-based 
control, and uses a technique called Port Arbitration 
Behavior (PAB), which is an architecture for conflict 
resolution among robots. PAB uses a collection of behavior 
production modules (BPM), which are the programmed 
code that produce a robot behavior. Each BPM can be 
considered as a control software component. Each of these 
components has an interface port that is accessible from the 
other components. These ports can be connected to each 
other with unidirectional communication paths (called 
connections). 

In multi-robot applications the separation of BPMs from 
the connections is advantageous in terms of the code 
reusability. Therefore in different coordination methods, 
only the connections attributes must be changed. 

Each BPM computes its own local eligibility and send it to 
all other robots. This communication is very simple. Each 
robot then sends its calculated eligibility value to all other 
robots. Each robot compares its computed local eligibility in 
relation to others. If one recognizes that it has the best 
eligibility, then it produces the desired behavior and inhibits 
the other robots' behaviors. This is achieved by inhibiting 
the others' port via the connection between them. One issue 
of concern for the designers is in finding a function to 
compute local eligibility for any given application. The 
function must be at least partially dependant on the sensor 
outputs. The scheme of the process is shown in Fig. 6. 

 
Fig. 6.  Initial assignments and final tours for 2 robots and 8 cities 

I. Distributed Multi-Robot Task Allocation for Emergency 
Handling 

Ostergaard and Mataric [28] propose an algorithm for task 
allocation that assigns dynamically to each "emergency" 
situation a suitable and capable robot to handle it. Task 

allocation is dynamic and happens on a needed basis. The 
assignment of tasks to the robots are done based on two 
factors. The first factor is the commitment, defined based on 
whether a robot should finish its assigned task or should 
move on to the next more beneficial task. The second 
factor is coordination, defined as the awareness of other 
robots and whether or not to communicate. 

Task allocation utilizes a robot as a blackboard upon 
which the rest of the robots write to and read from. Each 
robot reads data from the blackboard often and if the intensity 
of the signal that was sent by a goal and received by it is at the 
maximum value, it then selects that task and starts running it. 
This approach assumes that if all robots have same 
information, then they collectively choose the most efficient 
task for system performance. Thereafter they update the 
blackboard. 

This distributed task selection functions based on selecting 
the task which sends the maximum intensity of the sensed 
signals. 

 
 
Definition 1: The Emergency Handling  
Task consists of: 

• An environment, E 
• A set of robots, R 
• A set of alarms, A 
• A set of tools, T 
• A capability function, c: R → T 
• A requirement function, s : A → T 

One robot can carry |c(rj)| tools, where 0 ≤ |c(rj)| < |T|,0 
≤ i < |R|.  

Each alarm can require |s (ai)|,0 < |s(ai) |  ≤ 
min(|R|,|T),0 < i <|A| tools to be fixed. We require that 
all alarms can be handled with one or more of the 
available tools. Robots are heterogeneous if they are 
equipped with different tools or have different capabilities.  

Otherwise, the robots are homogeneous. 
 

 
Fig.  7. The emergency handling 

J.  Ants Algorithms 
The basic idea of Ants algorithm [29, 30] is based on 

adaptability of groups of ants to their environment changes. 
The method is based on some biologic facts about ants, where 
they leave some amount of pheromone on their trail, and 
they prefer to follow the paths with most pheromone on it. 
This approach can be considered as task allocation, since each 
path/trail can be thought of as a task which must be selected 
with a probability function. This methodology is based on a 
few assumptions, including the fact that ants walk in a direct 
path, moving in a two-dimensional dimension. Another 
assumption is that when a group of ants encounters an 
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obstacle, they divide into two equal sub-groups. An important 
feature of this approach is the indirect communication 
between ants, resulting in emergent behavior. 

  

 

 

 

Fig.  8.  Single agent controller. 

 

K. Task Allocation in uncertain environment 
Multiple cooperating robots hold the promise of improved 

performance and increased fault tolerance for large-scale 
problems such as planetary survey and habitat construction. 
Multi-robot coordination, however, is a complex problem. 
This problem in the framework of multi-robot dynamic task 
allocation under uncertainty and describe an empirical study 
that sought general guidelines for task allocation strategies in 
multi-robot systems. MATARIC et.al[30] identified four 
distinct task allocation strategies, and demonstrate them in 
two versions of the multirobot emergency handling task. In 
this paper describe an experimental setup to compare results 
obtained from a simulated gridworld to those obtained from 
physical mobile robot experiments. Data resulting from eight 
hours of experiments with multiple mobile robots are 
compared to the trend identified in simulation. The data from 
the simulations show that there is no single strategy that 
produces best performance in all cases, and that the best task 
allocation strategy changes as a function of the noise in the 
system. This result is significant, and shows the need for 
further investigation of task allocation strategies and their 
application to planetary exploration. 

L. Robot exploration with combinatorial auctions 
Berhauld , Huang and Keskinocaki [31] propose how to 

coordinate a team of mobile robots to visit a number of given 
targets in partially unknown terrain. Robotics researchers 
have studied single item auctions (where robots bid on single 
targets) to perform this exploration task but these do not take 
synergies between the targets into account. We therefore 
design combinatorial auctions (where robots bid on bundles 
of targets), propose different combinatorial bidding strategies 
and compare their performance with each other, as well as to 
single item auctions and an optimal centralized mechanism. 
The results of Team Bots, a multi-robot simulator, indicate 
that combinatorial auctions generally lead to significantly 
superior team performance than single-item auctions, and 
generate very good results compared to an optimal 
centralized mechanism. 

For the exploration tasks, robots are a natural choice for 
the bidders, and targets are a natural choice for the items. The 
auctioneer is a virtual agent who has sole responsibility for 
holding auctions and determining their winners but has no 
other knowledge and cannot control the robots. Initially, no 
robot owns any targets. Whenever a robot visits a target or 
gains more information about the terrain, it shares this 
information with the other robots and the auctioneer starts a 
new auction that contains all targets that have not yet been 
visited. (The auctioneer could hold auctions less frequently or 
with fewer targets, but this would decrease the responsiveness 
of the robots to new information about the terrain.) Each 
robot, including the current owner of a target, then generates 
bids in light of the new information. We use sealed-bid 
single-round combinatorial auctions. (Alternatively, we could 
have used multi-round combinatorial auctions that save 
bidders from specifying their bids for a large number of 
bundles in advance, and can be adapted to dynamic 
environments where bidders and items arrive and depart at 
different times. However, the auctioneer would then have 
needed to determine winners in every round and 
communicate some information about the current bids to the 
bidders, which would have increased the amount of 
computation and communication, respectively.) The 
auctioneer closes the single-round auction after a 
predetermined amount of time, determines the winning bids, 
and notifies the winning robots. The winning bids are those 
that maximize the revenue of the auctioneer with the 
restriction that each robot wins at most one bundle per 
auction. 

M. Cooperative task planning of multi-robot systems with 
temporal constraints 

Lian and Murray [32] discuss a design methodology of 
cooperative trajectory generation for multi-robot systems. 
The trajectory of achieving cooperative tasks, i.e., with 
temporal constraints, is constructed by a nonlinear trajectory 
generation (NTG) algorithm. In this paper three scenarios of 
robot tasking from home base to target position. 
• A single robot is tasking from the home base position to 
the target position. The target position and the designated 
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action at the position is simply instructed by an upper-level 
command unit.  
• In the second case, three robots might he instructed by 
the same activity command, and need to move together in a 
designated formation. Hence, the controller at each individual 
robot should generate a set of feasible, real-time trajectories 
which guarantee the group of robot to move in the designated 
formation.  
• The third case considers a more general scenario where 
multiple robots from different home bases are commanded to 
either one common target or multiple targets. At some 
location, these robots are commanded to move together and 
have a certain level of formation interaction. Conceptually, 
this scenario can be viewed as a combination of the first two 
cases. 

For a given system dynamics and a set of state and input 
constraints, and to minimize a pre-specified cost function, the 
NTG algorithm first makes use of the differential flatness 
property to find a new set of outputs in a lower dimensional 
space and then parameterizes the outputs by the B-spline 
basis representation. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig.  9. The AHS and MICA hierarchies and their key elements and 
functions. 

N. Integer programming for combinatorial auction winner 
determination 

Andersson,Tenhunen and Ygge[33] propose on 
Combinatorial auctions are important as they enable bidders 
to place bids on combinations of items; compared to other 
auction mechanisms, they often increase the efficiency of the 
auction, while keeping risks for bidders low. However, the 
determination of an optimal winner combination in 
combinatorial auctions is a complex computational problem. 
In this paper we (i) compare recent algorithms for winner 
determination to traditional algorithms, (ii) present and 
benchmark a mixed integer programming approach to the 
problem, which enables very general auctions to be treated 
efficiently by standard integer programming algorithms and 

(iii) discuss the impact of the probability distributions chosen 
for benchmarking. 

O. Physical interference impact in multi-robot task allocation 
auction methods 

Guerrero and Oliver [34] present Task allocation is one of 
the main problems in multirobot systems. Among other 
factors, to get a good task allocation, we have to take into 
account the physical interference effects between robots, that 
is, when two or more robots want to access to the same point 
at the same time. This paper analyzes interference impact 
using auction methods, one of the most popular task 
allocation systems. This paper shows how the performance of 
the auction utility function can be improved if interference 
impact is included in it. We also provide a framework to 
simplify one of the main problems of all auction systems 
which is finding a good utility function.  

Classical auction methods have been modified to select 
which robots, and very specially, how many of them are 
needed to execute a task. In an initial stage, each robot is 
looking for a task. When a robot finds a new task, it will try 
to lead it. There is only one leader for each task. If a robot is 
promoted to leader, it will create, if necessary, a work group; 
that is, a set of robots that will cooperate to execute this 
specific task. In that case, the leader must decide which the 
optimum group size is and what robots will be part of the 
group. To take this decision, the leader uses an auction like 
mechanism. During this process robots bid using their work 
capacity. The work capacity is the amount of work that a 
robot can execute per time unit, thus, this value is the utility 
function of our auction method. The leader selects the robots 
with the highest work capacity, until it detects that the group 
is able to reach its deadline, that is, until this condition is 
verified: 

Also, in general, utility functions are not linear, so the 
learning process can be very hard. To simplify the process, 
some parameters can be analyzed previously, using an ideal 
environment, and then modified during the execution of the 
task in 3 steps: 

Individual utility: during the first stage, we evaluate the 
characteristics of each single robot without taking into 
account the others. Here it will be include some 
characteristics like velocity, acceleration, etc. 

Group utility: in this step, the robot will take into account 
the other ones to create a coalition or working group. Here 
some parameters, like interference effect, will be included. 
That is, the robots will calculate the utility function of the 
group. 

Inter-Group utility: finally, the robots have to take into 
account that the decision of one group can affect to other 
groups. This inter-group dependency must be included in the 
utility function during the final step. 

 

 

 

AHS MICA 

Network 

Link 

Planning 

Regulation 

Physical 

ORS 

TCT 

TDT 

CPP 

VDC 

route 

path 

mancuver 

task 

vehicle 

resource 

learn 

activity 

path 

vehicle 

Key function Key function 

complete  
task 

control 
vehicle 

manage 
mancuver 

decide roué, 
admission 

assign path, 
target speed 

resource 
planning, 
human 
allocate 
team

task team 
activity

generate 
trajectory 

control 
vehicle

Key element 



IEEE Sponsored Conference on Computational Intelligence, Control And Computer Vision In Robotics & Automation 

© IEEE CICCRA 2008 

106

IV. CONCLUSION 

Although numerous important results have been obtained 
by the researchers in the area of multi-robot systems, a great 
deal of work remains to be done in order for the group 
behavior of robots to be fully understood and utilized in real 
world applications. The concept of task allocation remains 
an essential component of this challenge. A survey of this 
field was included in this paper. Productive, efficient, and 
dynamic approaches to allocating tasks among robots will 
result in further utilization of multi-robot systems.  

Task allocation and decomposition methodologies will 
serve as design guidelines to allow multi-robot systems gain 
efficiency. It is important to invest time to understand 
different methodologies before applying them to real world 
applications. We believe that a comprehensive and integrated 
survey will help accelerate this understanding. The intent of 
this article was to provide readers with a global perspective on 
the research literature on multi-agent task allocation systems. 
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