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Abstract-The traditional methods for representing forward 

kinematics of manipulators have been the homogeneous matrix in 
line with the D-H algorithm. In this paper a new method known as 
quaternion algebra is described and it is used for three dimensional 
representation and orientation in robot kinematics. This method is 
compared with homogeneous transform in terms of easiness of 
representation, computational efficiency and storage requirement. 
Conclusion drawn was that quaternion is more compact and 
efficient method of representation than the matrix form. 

 
Keywords- forward kinematics, homogeneous matrix, spatial 

motion, quaternion algebra 
 

I. INTRODUCTION 
HE problem of finding mathematical tools to represent 
rigid body motions in space has long been on the agenda 

of physicists and mathematicians and is considered to be a 
well-researched and well-understood problem. The first and 
most common method in the robotics community is based on 
homogeneous matrix transformation. In robotics, this matrix is 
used to describe one coordinate system with respect to another 
one. This has been the basis of tracking the position of the 
end-of-arm tool since ages. Robotics, computer vision, 
graphics, and other engineering disciplines require concise and 
efficient means of representing and applying generalized 
coordinate transformations in three dimensions. So a number 
of different representations have been developed. However for 
the purpose of on-line control and manipulation of devices, it 
is important to have alternative method. Such method should 
be compact and computationally efficient for representations 
of spatial transformations. 

Michael W. Walker [1] present   the position of a 
manipulator expressed as either in joint coordinates or in 
cartesian coordinates. Funda, Taylor and Paul [2] implement 
three-dimensional modeling of rotations and translations by 
using an alternate approach, employing quaternion/vector 
pairs as spatial operators, and compare with homogeneous 
transforms in terms of computational efficiency and storage 
economy. It is found   that quaternion/vector pairs are 
efficient, more compact, and more elegant than their matrix 
counterparts. However for online operation and manipulation 
of the robotic manipulator in a flexible manner the 
computational time plays an important role. Again the appeal 
of homogeneous transforms is mostly due to their matrix 
formulation, which is familiar and lends itself to easy 
manipulation by a computer.  

 
 
 

 
 
 
 
 
 
 
 
 
On the other hand, such matrices are highly redundant to 

represent six independent degrees of freedom. This redundancy 
can introduce numerical problems in calculations, wastes 
storage, and often increases the computational cost of 
algorithms.  

In parallel implementations, the extra data required to fetch 
the operands can also be a significant factor. Despite these 
drawbacks in mind, alternative methods are being sought by 
various researchers for representing the same and reducing the 
computational time to make the system fast responsive in a 
flexible environment. Researchers in robot kinematics tried 
alternative methods in order to represent rigid body 
transformations based on concepts introduced by 
mathematicians and physicists such as Euler angle, Epsilon 
algebra, dual quaternion algebra, lie algebra. Nicholas and 
Dimitros [3] present three methods for the formulation of the 
kinematics equations of robots with rigid links, the second one 
is based on Lie algebra, and the third one on screw theory 
expressed via dual quaternion algebra. These three methods 
are compared for their use in the kinematics analysis of robot 
arms by using analytic algorithms and are presented for the 
solution of the direct kinematics problem. However the 
application has not been done in higher DOF manipulators. 
Funda and Paul [4] propose a computational analysis and com-
parison of line-oriented representations of general i.e. 
rotational and translational spatial displacements of rigid 
bodies. Aissaoui, Mecheri and Hagemeister [5] present a study 
to investigate the accuracy of a new algorithm based on dual 
quaternion algebra for the estimation of the finite screw axis. 
Although quaternion has been used extensively in kinematic 
analysis they have been relatively neglected in practical 
robotic systems due to some complications in dealing with the 
problem of orientation representation. Perrier, Dauchez and 
Pierrot [6] suggest a mobile manipulator, composed of a 
manipulator mounted on a vehicle, is a very useful system to 
achieve tasks in dangerous environments. They find ap-
plications in many areas of geometric analysis and modeling. 
Although most of the work has been done on the issue of com-
putational efficiency of effecting three-dimensional rotations 
and their compositions using quaternion, none of them 
addresses parallel implementations of the corresponding 
algorithms in robot kinematics. 

The homogeneous matrix method has been used widely by 
the robotics community, and analytical algorithms have been 
written for the solution of the kinematic problem of robot 
arms. The popular method of homogeneous transformation 
matrix has so far overshadowed any other method. It is also 
true that quaternion algebra provides a strong base for the 
similar purpose and also it is useful in representation of 
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rotation and translation of points and members in spatial 
plane. However its use for studying the kinematic behavior of 
rigid manipulator has not been made. The use of this approach 
can be made advantageously for kinematic representations of 
mechanisms largely because of two reasons: computationally 
the quaternion algebra is quite faster as it involves less number 
of parameters compared to the homogeneous representation 
and secondly, less mathematical complicacies involved in 
understanding the representations. The present work aims at 
developing a novel representation of the manipulator 
kinematics using quaternion algebra and comparing the same 
with the homogeneous transformation method for its 
effectiveness in terms space and time. An example problem is 
taken up to illustrate the practical implementation of this new 
method. The geometrical significance of the transformation 
operators and parameters are studied in order to show the 
physical meaning of them apart from the algebraic analysis. 
Finally a comparison in terms of computational time has been 
made with the homogeneous matrix method that shows the 
superiority of the new method over the traditional method. 

II. METHODS OF REPRESENTATION 
The first method based on homogeneous transformation is 

formulated by using D-H algorithm which depends upon 
already derived transformation operators such as matrices or 
vector. The second method in general is a line transformation 
method. In this method step by step calculation of the 
transformation operator is done along with line vectors. Since 
this is a open chain of rigid links connected successively by 
revolute or prismatic joints, the kinematic parameter definition 
is based on Denavit-Hartenberg   notation. 

A. Homogeneous Matrix Method 
The mechanical manipulator can be modeled as several 

rigid bodies or links connected in series by either revolute or 
prismatic joints. In most robotic application; spatial 
description of the end-effector of the manipulator with respect 
to a fixed reference coordinate system is required. The total 
spatial displacement of the end effectors is due to the angular 
rotation and linear translations of the links. Homogeneous 
matrix method is the classical method to describe the 
relationship between two adjacent rigid mechanical links. To 
use homogeneous matrix method for displacement analysis of 
a spatial linkage we need to attach a coordinate frame to each 
link. These coordinate systems are established in a systematic 
manner following Denavit-Hartenberg’s algorithm. Basic 
rotation matrices can be multiplied together to represent a 
sequence of finite rotations about the principal axes.  

The basic rotation around x-axis is represented by  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

θθ
θθ

cossin0
sincos0

001

xR                           (1)                                                                                           

Where, θ = angle of rotation   
       xR =rotation matrix about ox axis. 
The resultant   rotation   matrix is given by multiplying the 

three basic rotation matrices. 

, , ,y Z xR R R Rφ θ α=                                                           (2) 
where 

,yR φ = rotation about y-axis with an angleφ  

,zR θ = rotation about z-axis with an angleθ  

,xR α = rotation about x-axis with an angleα  
This can be written in short as; 
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The matrix representation for rotation of a rigid body 
simplifies many operations but it needs nine elements to 
completely specify the orientation of a rotating rigid body it 
does not lead directly to a complete set of generalized 
coordinates, such a set of generalized coordinate can describe 
the orientation of a rotating rigid body with respect to a 
reference coordinate frame. The 3X3 matrix does not give any 
provision for translation and scaling, so a fourth coordinate or 
component is introduced to a position vector p where, 

),,( zyx pppp =                                                            (4)               

The homogeneous transformation matrix is a 4X4 matrix 
which maps a position vector expressed in homogeneous 
coordinates from one coordinate system to another coordinate 
system. The basic homogeneous matrix is represented by 
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                                                                                           (5) 
 In a kinematic chain the transformation matrix t

t A1−  

describes the local coordinate frame for t th link of the 
manipulator with respect to the local frame of the previous 
link 1−t .The forward kinematic equation of the manipulator 

can be developed by multiplying the above matrix t
t A1−  

calculated sequentially for each link. 
Using the 

 t
t A1−

  matrix one can relate a point tp  at rest in 
link t  and expressed in homogeneous coordinates with 
respect to the coordinate system 1−t  established at link 

1−t  by 1−tp =   t
t A1−

tp . Alternatively the orientation 
matrix can be represented through Euler angles. There are 
different sequences of Euler angle representation. Here the 
sequence of Euler angle followed is  
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ψθφψθφ ,,,,, xyz RRRR =

   

 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−+
+−

=
ψθψθθ

ψφψθφψφψθφθφ
ψφψθφψφψθφθφ

ccscs
sccssccssscs
sscsccsssccc

                 

(6)

 The orientation of a body in three dimensions is difficult to 
visualize and describe, so alternative methods have been tried. 
In the orientation matrix nine parameters are used to represent 
three degrees of freedom to specify the orientation of a body. 
In general the homogeneous method of representation is 
highly redundant since it requires 12 numbers to completely 
represent six degree of freedom.

 
The basic homogeneous matrix can be represented as  
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         (7)  

where,  n =normal vector of the hand 
s =sliding vector of the hand 
a =approach vector of the hand 
p =position vector of the hand  

An algorithm is presented for the derivation of kinematic 
equation of a n-link robot which is based on homogeneous 
transformation. 

i) Assignment of a local coordinate system to every link 
and a global one to the base of the robot. 

ii) Determination of the kinematic parameters for the links 
1 to n. 

iii) Determination of the transformation matrices t
t T1− for 

t =1 to n , describing each local coordinate system with 
respect to its previous one by 

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−

−

=
−−−−

−−−−

−

−

1000
dccscss
dsscccs

l0sc

T
t1t1t1tt1tt

t1t1t1tt1tt

1ttt

t
1t

αααθαθ
αααθαθ

θθ

   (8) 

 
iv) Calculation of the final transformation matrix nT0 of 

the end effector coordinate system with respect to the base 
frame is done using following equation. 

                  n
1n

3
2

2
1

1
0

n
0 TTTTT −×××= .          (9) 

The position of the end effector is given by the last column 
of the matrix and orientation is given by upper left 3 X 3 sub 
matrix. The foundation of this algorithm is formulation of the 
combined homogeneous matrix. Once this matrix is obtained 
subsequent matrices are calculated sequentially for higher 
order links. The final matrices are formulated by multiplying 
the transformation matrices representing simple rotation about 
the principal axis and translations along the principal direction 
of the local coordinate system of the links. Homogeneous 

matrix method thus provides a systematic way to understand 
and implement the algorithm step by step. 

B. Quaternion Algebra Method 
Quaternion were introduced by Hamilton in late 1843. In 

this section quaternion algebra is presented and it is used to 
formulate the forward kinematic problem of the robot arm. 
Rotation quaternion can be used to calculate the rotated point 
from the original position of the point; this allows translation 
of points without using matrices. Since then they have found 
application in many areas of geometric analysis and modeling. 
Recently general properties of quaternion like special type of 
rotations, formulations of reflection and translation are 
discussed a lot by many authors. 

Quaternion plays a vital role in the representation of 
rotations in computer graphics, primarily for animation. 
However, quaternion rotation is often left as an advanced topic 
in computer graphics education due to difficulties in 
portraying the four dimensional space of the quaternion. 
Interpolating the quaternion representation of a sequence of 
rotations is more natural than doing so for the familiar Euler 
angles, such as yaw, pitch, and roll. The quaternion occupies a 
smooth, seamless, isotropic space which is a generalization of 
the surface of a sphere.  

Before going into detail analysis of quaternion and steps of 
formulation of kinematic equation for robot arm some 
properties of quaternion algebra is presented. Quaternion can 
be represented as  

kzjyixwq +++=                (10)  

Here w is the real part and x, y, z are imaginary parts. Each 
of these imaginary dimensions has a unit value of square root -
1, all are mutually perpendicular to each other known as i, j, k.   

i) Conjugate of quaternion: 
The conjugate of a quaternion number is a quaternion with 

the same magnitudes but with the sign of the imaginary parts 
changed. So conjugate of kzjyixwq +++=  is 

kzjyixwq −−−=′ .                 (11) 
ii) Magnitude: 

The magnitude of a quaternion kzjyixwq +++=  is 

)zyxw( 2222 +++                                                           (12) 

iii) Norm: 
Norm of a quaternion is defined by  
 || q  || = square root of ( q *conj( q )) 

= )zyxw( 2222 +++                (13) 

iv) Inverse: 

The inverse of a quaternion refers to the multiplicative 

inverse 
q
1 and can be computed by )qq(qq 1 ′∗′=−

           (14) 

 If a quaternion q  has length 1, we say that q is a unit 
quaternion. The inverse of a unit quaternion is its conjugate, 
i.e., qq ′=−1 1−q . One of the major properties of quaternion is 
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that they are anti commutative. Quaternion algebra can be 
understood as an extension of complex number. As we know 
complex number consist of one real part and one imaginary 
part similarly quaternion has four dimensions i.e. one real part 
and three imaginary part.  

 
A dual number can be defined as   

0qq ε+                                                                             (15) 

where,  
q  and 0q are real numbers with  ε  as a dual unit having 

property 12 =ε .  
Representation using quaternion 
Quaternion can be used to represent rotation and 

quaternion multiplication can be used to get the result of 
subsequent rotation. 

(a)Representation of rotation. 
Let 1q and 2q  are unit quaternion representing two 

rotations. Then subsequent rotation can be done by, rotating 
first q1 and then q2. The composite rotation is represented by 
the quaternion 

12 qq ∗ . 

1
1212

1
2

1
112

1
2

1
1122

)qq(P)qq(
)qq(P)qq(
q)qPq(qP

−

−−

−−

∗∗∗∗=

∗∗∗∗=

∗∗∗∗=

                                             (16) 

 
where, 

1p = vector representing the initial position of a point 
being transformed. 

2p =vector representing the final position of the point after 
translation. The quaternion can represent 3D reflections, 
rotations and scaling, however a single quaternion operation 
cannot include translations with rotation. So for rotation, 
reflection or scaling around a point other than the origin, we 
would have to handle the translation part separately.  

(b) Representation of pure translation 
The translation in quaternion algebra is done by using a 

quaternion operator and it is defined by                

εεε k)2z(j)2y(i)2x(1q 111 +++=                           (17)  

where, 
 111 ,, zyx are the translation carried out along x,y,z 

direction respectively. 
Quaternion transformation is represented as 

qpqp ′∗∗= 12                                                           (18) 

where, 

1p  and 2p   are initial and final position of a point         
q =dual quaternion operator representing transform. 
q′=conjugate of q . 
Quaternion follows certain rules while performing 

multiplication. 
 Here,   1222 −=== kji  . 

            kji =∗  
           ikj =∗  
            jik =∗   
Multiplication of quaternion numbers together behaves 

similarly to cross product of the unit basis vectors. Unit line 
vector is a vector which is constrained to lie on a definite line 
in Fig.1, u is a unit vector and 0u = ur× is the moment vector, 
where r is the position vector of an arbitrary point P  on the 
line. The vectors 0,uu  are often called plucker vectors. 

 
 
Fig.  1.  A unit line vector 
 
A unit line vector in its dual form can be represented as;   

 0ˆ uuu ε+= .                                                                    (19) 
From the geometrical point of view a quaternion can also 

be represented as;  

2
sin

2
cos θθ uq +=                                         (20) 

where, 
2

cos θ , the first part of the equation is the real part and 

the second part 
2

sinθ  is the complex part. Quaternion can be 

thought of as an axis angle u  along which rotation is 
consided. It is quite difficult to give physical meaning to a 
quaternion but it forms an interesting mathematical system. A 
quaternion can also be written as 

kqjqiqqq zyx +++= 0                                         (21) 

which is  a combination of a scalar 0q , and kqjqiq zyx ++   
represents the vector component along three mutually 
perpendicular directions. A dual quaternion may be written as 

k)qq(j)qq(i)qq(1)qq(Q 0
zz

0
yy

0
xx

0
00 εεεε +++++++=  

(22) 
The combined rotation and translation can be represented 

by quaternion operator. The relationship between two non 
parallel and non intersecting unit line vector can be obtained 
as follows.  
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Let, 
=û A unit line vector. 
=v̂ Unit line vector obtain by translation of û  by a 

distance d , followed by rotation of a dual angle dεϕϕ += . 
The transformation of û  into v̂  is given by   

uQv ˆˆˆ =                                                                             (23)                                          

The transformation operator is defined as 

ϕϕ ˆsinˆˆcosˆ eQ +=                                                           (24)                     

which is also a dual quaternion. So by multiplying a unit 
line vector by the transformation operator Q̂  the image of that 
line is obtained in a new location defined by the parameters of 
this transformation operator. 

(c) Application of quaternion in formulation of kinematic 
equation of 3R robot arm 

A dual quaternion is the set of four dual numbers in a 
definite manner. Just like we extend 3 X 3 matrices to 4 X 4 
matrices to allow them to translation in addition to rotation we 
extend quaternion to dual quaternion to allow them to 
represent translations in addition to rotation. The dual of a 
quaternion can model the movement of a solid object in 3 
dimensions which can rotate and translate without changing 
the shape. 

 Algorithm to formulate forward kinematic equation: 
i) Assignment of coordinate system to every link and to the 

base. 
ii) Determination of the kinematic parameters for the links 

1   to n. 
iii) Calculation of unit line vector which is coincident with 

the common normal between t th and )1( +t  th axis and ts  as 
the unit line vector along z axis of the t  th joint.                 

          ttttt aQa ,11, ˆˆ
−=+                

(25)

    
and tttt sQs ˆˆˆ 1,1 ++ =                                                       (26)   

for base frame  unit vectors 

   ia =1,0  and ks =1 .                                        (27) 

The transformation operators are  

              tttt sQ θθ ˆsinˆcosˆ += and                                   (28) 

            1,1,1,1,
ˆsinˆˆcosˆ

++++ += tttttttt aQ αα                             (29) 

where 1,ˆ +ttα  the dual angle between tŝ    and 1ˆ +ts is 
defined as   

              tt1t,t Lˆˆ εαα +=+                                               (30)  

and  tθ̂ , the dual angle between tta ,1ˆ
− and 1,ˆ

+tta is defined as                                                

               ttt dˆ εθθ +=                                                     (31) 

in terms of four D-H kinematic parameters. 

iv) The position vector of the end effector is given by 

)( 1,
1

+
=

+∑= ttt

n

t
ttn aLsdP .                                                     (32)  

v) The orientation matrix R of the end effector coordinate 
system by the three vectors      

                  1, += nnn an  
                  1,1 ++ ×= nnnn aso  
                  1+= nn sa .                                          (33) 
Following the steps of the given algorithm the kinematic 

equation of any spatial manipulator can be evaluated. The unit 
line vector ts  defines the axis of the joint t and 1,ˆ

+tta  defines 

the common perpendicular to the axes of the t   and 1+t   
joints. The dual quaternion transforms the unit line 
vector tta ,1ˆ −  to 1,ˆ +tta . In other words, the operator translates 

the x-axis of the frame 1−t  along the axis of the joint t  by 

an angle tθ .the dual quaternion 1,
ˆ

+ttQ is similar. It translates 

and rotates the joint axis along and about the common 
perpendicular to this joint axis and the next one.  

The vectors s and a  are the unit vectors defining the 
orientation of the z and x axis respectively. The unit vector of 
the Y axis of the last coordinate system is calculated by the 
vector product of the s and a  vectors. 

III. APPLICATION OF THE ALGORITHM IN A 3R 
ROBOT 

The algorithms explained for quaternion algebra is 
implemented to a 3R robot. The position and orientations are 
calculated by applying both homogeneous and quaternion 
algebra method. Let us consider a 3R robot having joint 
parameters as given in Table 1. 

TABLE 1 

KINEMATIC PARAMETERS OF 3R ROBOT 

 
Kinematic parameters of 3R robot 

t 
tθ  1, +ttα

 
1, −ttL  td  

1 90 -90 0 0 

2 0 0 431.8 mm 149.09 mm 

3 90 90 -20.32 0 

 
 In quaternion algebra method by using equation (24) to 

(32), the calculation can be made as follows. 
For base coordinate, 

0=t  
ia =01  

kst =  
This result has been obtained by using equation (32). 
For joint 1=t  
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kSCQ 111 +=  

jSiCa 112,1 +=  

2,12,1 aQ −=  

jCiSs 112 +−=  
02,11111 =+= aLsdP  

jan == 2,11  
kaso −=×= 2,121  

isa −== 21  

For joint t =2, 
Position of the end-effector is calculated by using equation 

(33).  
jiP 8.43109.1492 +−=  

jan == 3,22  
kaso −== 3,232  

isa −== 32  
For joint t=3, 
The position of the end effecter is calculated as 

k32.20j8.431i09.149P3 ++−=             
The orientation of the end effecter is given by  
Applying homogeneous matrix transformation matrix  

 3
2

2
1

1
0 TTTT ××=  

        

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−

−−

=

1000
32.20001

8.431100
09.149010

                  

Here we can observe that the position of the end effector is 
represented as last column of the homogeneous matrix is same 
with that obtained in quaternion algebra method. 

IV. DISCUSSION 
The observation made from the models and the subsequent 

solution prompt a comparision of the two methods. In the 
homogeneous transformation method, four trigonometric 
function calls and six multiplications are required for 
calculation of the transformation matrix t-1 T t. The operation 
used in this algorithm is the product of 4 X 4 transformation 
matrices. The multiplication of two 4 X 4 transformation 
matrices needs 48 multiplications and 36 additions and 
subtraction, since the elements of the last row of the matrix are 
constants. In n-link robot arm the number of transformation 
matrices is n, so n-1 number of matrix products is required in 
order to detrmine the toal transfrmation matrix. Hence, the 
determination of the end effector position and orientation 
needs (48(n-1) + 6n) multiplications and 36(n-1) additions and 
subtractions, while only the orientation needs 31(n-1) 
multiplications and 18(n-1) additions and subtractions. For the 
case of 3-R robot (n=3), 114 multiplications and 72 additions 
and subtractions are necessary. This speaks about the number 
of mathematical operations required for computing the 
homogeneous matrix and hence the time needed for the same.  

In dual quaternion method only the primary parts of the 
quaternion are required for the computation of the position 
and orientation of the end-effector. From 3rd step mentioned 
in section II, of the algorithm, it can be seen that all the 
necessary unit vectors are determined successively in a loop 
with t = 1 to n. In every step of this loop two main operations 
are performed. The first one is the determination of the 
transformation quaternion tQ̂  and 1tQ̂ +  using equation (28) 
and equation (29) respectively. For determination of each of 
these 3 multiplications are needed. The second operation is the 
quaternion product used to determine the unit line vectors 

1, +tta and ts  from equation (28) and equation (29). Here, 

the vectors a and s are considered as quaternions with zero 
scalar part. The quaternion product needs 8 additions and 
subtractions and 12  multiplications.  After the ending of this 
loop, the position vector of the end-effector is determined by 
adding the n position vectors of every joint in the open 
kinematic chain of the robot as represented in equation (32). To 
determine the position vector of every joint and to add it to the 
previous one, 6 additions and subtractions and 6 
multiplications are needed. The first and last column of the 
orientation matrix of the end-effector is known from the unit 

vectors 1t,ta +  
 
and 1ts + . The determination of the second 

column of the orientation matrix, which is the cross product of 
the other two columns, needs 3 additions and subtractions and 
6 multiplications. In summary, (22n + 3) additions and 
subtractions and (36n + 6) multiplications are required in 
order to determine the position and orientation of the end-
effector by the quaternion method. For the case of 3-R 
manipulator 114 multiplications and 69 additions and 
subtractions are necessary. 

It is supposed that the computational time to perform an 
addition is half of the time required for one 
multiplication. A comparison of the number of 
mathematical operations required for computation of 
end-effector position using the two methods is presented 
in Fig.2.It is clear from this comparison that the number of 
operations is almost same with manipulators having less DOF.  

 

 
 
 
Fig.  2.  Mathematical operations required with increasing DOF 
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As the number of DOF goes on increasing and the 

complicacies of computations increase the quaternion method 
scores significantly better than the homogeneous matrix 
method. It is obvious that for manipulators with more than 
three degrees of freedom, the quaternion theory based 
algorithm requires less computational time than the 
traditional homogeneous algorithms. Therefore, it can be 
concluded that for manipulators with high number of DOF 
the dual quaternion theory method is more cost effective than 
the homogeneous transformation. Further, in dual quaternion 
method the storage cost is minimum because it is not 
necessary to store all the transformation quaternions from the 
beginning. Quaternions require eight memory location  for the 
representation of position while three memory location for 
orientation.but the homogeneous method  requires 16 memory 
location for both position and orientation. The storage 
requirement affects the computational time as the cost of 
fetching an operand from memory exceeds the cost of 
performing a basic arithmatic operation.  

V. CONCLUSION 
It is evident from the results that a matrix product requires 

many more operations than a quaternion product. So a lot of 
time can be saved and at the same time more numerical 
accuracy can be preserved with quaternion than with matrices. 
In the example mentioned in the present work, it is clear that 
quaternion algebra provides a very effective and efficient 
method for representation of forward kinematics equation. 
Further, the method is cost effective as it requires less 
computer memory and saves lot of time by reducing the 
number of mathematical calculation. Comparing the two 
methods, it is observed that the quaternion method gives 
exactly same result as that of homogeneous method. This is a 
general method applied specifically to robot manipulator in 
the present work. However this can also be extended to any 
other open kinematic chain for the purpose of kinematic 
analysis. Therefore this can be used as a powerful tool in the 
solution of kinematic problems. 

This paper introduces a new formulation for the kinematic 
synthesis of open link robots having three joints. The standard 
kinematic equations of the chain are transformed into 
successive quaternion transformation and then expressed using 
dual quaternion. Presently there are many quaternion 
applications in the area of aerospace sequence, spherical 
trigonometry, calculus for kinematics and dynamics, rotation 
in phase space etc. A lot more research has to be done in this 
aspect and the days are not far behind when quaternion will 
replace the traditional homogeneous method of representation. 
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