
 

 

Archives of Control Sciences 
Volume 18(LIV), 2008   

No. 1, pages 5–13 
 

 

 

 

 

 

 

 

 

 

http://dspace.nitrkl.ac.in/dspace 

 



A comparative study on estimation techniques with
applications to power signal frequency

B. SUBUDHI, P.K. RAY, S.R. MOHANTY and A.M. PANDA

An extended least square (ELS) technique has been proposed in this paper for power system
frequency estimation. The validation of the above technique has been made by comparing its
performance with the existing techniques such as Kalman filter (KF) and least mean square
(LMS) technique etc. It has been observed through a series ofsimulation studies on frequency
estimation that the ELS technique exhibits better performance in comparison to both the LMS
and KF methods of power system frequency estimation. In Kalman filter, the determination
of covariance matrix is very crucial leading to delay in convergence. LMS algorithm becomes
complicated with the incorporation of correlation matrix,which may affect the convergence.
On the contrary extended least square algorithm seems to be very simple and attractive without
the implementation of covariance and correlation matrix. The feasibility of the ELS algorithm
for frequency estimation has been tested with a signal buried with noise. The above estimation
technique can be applied in real-time implementation, which will be immensely helpful for
the power system protection. A comparative study on performance of the KF, LMS and ELS
techniques for power system estimation has been made and included in the paper.

Key words: extended least square (ELS) technique, Kalman filter, leastmean square
(LMS) technique, power system parameters

1. Introduction

In a complex power system the fast and accurate estimation ofsupply frequency,
voltage and its variation in real-time is essential. Variations in system frequency from
its nominal value indicate the occurrence of a corrective action for its restoration to its
original value. In this context a large number of numerical methods are available for
frequency estimation from the digitized samples of the system voltage. Conventional
methods assume that the power system voltage waveform is purely sinusoidal and there-
fore the time between two zero crossings is an indication of system frequency. Dis-
crete Fourier transforms, least error squares technique, recursive Newton-type algorithm,
adaptive notch filters [7, 8, 9] etc. are some of the popular signal processing techniques
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used for frequency measurements of power system signals. A large number of numeri-
cal techniques and their practical implementations are found in the literature but these
set of approaches suffer from inaccuracies due to the presence of noise and harmonics
and other system changing conditions such as change in faultinception angle, change in
fault resistance etc. with amplitude, phase and frequency of a signal buried with noise
and harmonics. It may be noted that the extended least squaretechnique has attracted
widespread attention due to its fast and accurate estimations. In view of addressing the
difficulties of the existing methods and to achieve fast and accurate estimation of nomi-
nal and off-nominal power system frequency, the extended least square technique [4, 5]
has been suggested for power system frequency estimation problems.

2. Different algorithms for estimation of frequency

2.1. Kalman filter

Kalman filter [1, 2] is a stochastic state estimator for parameter estimation. From the
discrete values of the three phase voltage signal of a power system, a complex voltage
vector is formed using the well knownα− β transformation. A non-linear state space
formulation is obtained by Kalman filter approach and frequency is modeled as a state
here. The estimation of the state vector yields the unknown power system frequency. The
mathematical formulation and implementation of the Kalmanfilter is given by the set of
equations.

Van = Vmcos(ωn∆T + ϕ)+ εan

Vbn = Vmcos(ωn∆T + ϕ−

2π
3

)+ εbn

Vcn = Vmcos(ωn∆T + ϕ+
2π
3

)+ εcn























(1)

whereV is the test signal,Vm is the amplitude of the signal,ω is the angular frequency,
ε is the noise term,∆T is the sampling interval,n is the sampling instant,ϕ is the phase
of fundamental component. The complex form of signal derived from the three-phase
voltages is obtained by transform as shown below

Vα =

√

2/
3(Va−0.5Vb−0.5Vc),

Vβ =

√

2/
3(0.866Vb −0.866Vc).

(2)

A complex voltage can be obtained from above as

Vn = Vαn + jVβn, (3)

h =
[

0 1
]

, (4)

k = p̂∗T(hp̂h∗T + r)−1
, (5)
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wherek is the Kalman gain,h is the observation vector,p is the covariance matrix,r is
the variance of the signal. Thus the covariance matrix is related with Kalman gain with
the following equation

p̂ = p̂−khp̂. (6)

The updated estimated state is related with previous state with the following relation

x̂ = x̂+k(V −hx̂), (7)

f =
1

2π∆T

(

sin−1 Im(x̂)
)

, (8)

where f is the estimated frequency of the signal.

2.2. Least mean square algorithm

To enhance the convergence characteristics of a power system signal, least mean
square (LMS) algorithm is adopted where the formulated structure looks very simple and
this algorithm is found accurate under various systems changing condition to estimate
correct measure of frequency. The complex voltage signal asexpressed in Kalman filter
is given by

Vn = Vαn + jVβn. (9)

The voltage can be modeled as

Vn = Aej(ωn∆T+ϕ) + εk,

V̂n = Vn−1 ejωn∆T
.

(10)

This model is utilized in the proposed frequency estimationalgorithm and the scheme
that describes the estimation process. The error signal in this case is

en = Vn−V̂n (11)

whereVn is the estimated value of voltage at thenth instant, and

V̂n = WnV̂n−1

whereWn = ejω̂n∆T denotes the weight,̂ω is the estimated angular frequency. The sig-
nificance of the above model is that the input vector containsone element only and so
also the weight vector. The complex LMS algorithm is appliedto estimate the state. The
algorithm minimizes the squared error recursively by altering the complex weight vector
Wn at each sampling instant as

Wn = Wn−1 +µnenV̂
∗

n (12)

where∗ represents the complex conjugate of that value andµ is the convergence factor
controlling the stability and rate of convergence of the algorithm. The step sizeµn is



8 B. SUBUDHI, P.K. RAY, S.R. MOHANTY, A.M. PANDA

varied for better convergence of the LMS algorithm in the presence of noise. For complex
states, the equations are modified as

µn+1 = λµn + γpnp∗n (13)

wherepn represents the autocorrelation ofen anden−1 and is computed as

pn = ρpn−1 +(1−ρ)enen−1 (14)

whereρ is an exponential weighting parameter and 0< ρ < 1. Parametersλ (0< λ < 1)
andγ > 0 control the convergence time. Parameterµn−1 is set toµmax or µmin when it falls
below or above the lower and upper boundaries, respectively. These values are chosen
on the base of signal statistics. At each sampling interval,the frequency is calculated as

fn =
1

2π∆T
sin−1 [Im(Wn)] (15)

where Im(·) stands for the imaginary part of a quantity.

2.3. Extended least square algorithm

Let the signal buried with noise is represented by the following structure

z(n) = A1sin(ω0n+ φ1)+µ(n). (16)

Normally, signal to noise ratio in a power system can be takenfrom the range 30dB to
40dB. Thus for the purpose of estimation

z(n) = [sinω0n cosω0n] [α β]Tµ(n) (17)

or in the standard form
z(n) = φ(n)θ+µ(n). (18)

Herez(n) is the noisy measurement,φ(n) is the system structure matrix,θ is the vector
of unknown parameter. The estimate for the required parameter is expressed as follows

θ̂ = [φ(n)φT(n)]−1φ(n)z(n). (19)

α, β are the parameters to be estimated and are given by

α = A1cosφ1, (20)

β = A1sinφ1. (21)

After the estimation ofθ (unknown parameter), amplitudeA1 and phaseφ1 can be cal-
culated as

A1 =
√

α2 + β2 (22)

φ1 = tan−1 β
α

(23)

whereα = θ11 and β = θ21. Once the estimate of amplitude and phase is done, it is
required to estimate the frequency. This can be evaluated from equation(16) as

f0 =
1

2πn

[

sin−1
(

z(n)−µ(n)

A1

)

−φ
]

. (24)
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3. Simulation results

A synthetic signal of 1 p.u amplitude, 50 Hz frequency and 0.5p.u phase angle
is generated in MATLAB platform. Then the algorithms such asKalman filter, LMS
and ELS are implemented with the sampling interval of 1 millisecond. The three phase
signal with 1 p.u amplitude in each phase is also generated inMATLAB platform. From
the complex signal a two phase signal is generated byα−β transformation. The initial
covariance matrix is taken asρI where I is the identity matrix andρ > 1. Here the
observation vectorh is taken as[0 1]. The signal to noise ratio (SNR) is taken as 30dB.
The frequency estimation can be done with the steps illustrated in the Kalman filter
algorithm.

Similarly for LMS algorithm the complex signal is also generated as that of the
method adopted in Kalman filter. The complex weight matrix isupdated with the right
choice of step size(µ= 0.18) and correlation matrix(P = 0). From the complex weight
matrix the estimation of frequency is made.

For the extended least square technique the signal is expressed in parametric form.
Evaluating the pseudo inverse of the system structure matrix does the estimation of the
parameterφ. The sampling time is taken as 1 millisecond. The estimationof frequency
is done in three steps. The first two steps as described in mathematical formulation are
made to estimate amplitude and phase, followed by estimation of frequency.

Figure 1. Three phase signals.
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Figure 2. Comparison of estimation of amplitude.

Figure 3. Comparison of estimation of frequency.

4. Discussion

Three phase signal of 1 p.u amplitude is generated in MATLAB and is shown in Fig.
1. Estimation of amplitude for real signal is done by Kalman filter and ELS method.
From the Kalman filter algorithm it is found that the estimated amplitude is 1.068 p.u
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Figure 4. Comparison of estimation error.

for 0.003 sec. and 1 p.u for the rest period but in case of ELS algorithm the estimated
amplitude is 1 p.u for the entire simulation period which is shown in Fig. 2.

Estimation of frequency by different algorithms is superimposed in Fig. 3. From Fig.
3 it is reflected that Kalman filter approach exhibits more oscillation and does not settle
around 50 Hz. At the same time LMS approach exhibits oscillations in the few initial
samples and finally settles around 50 Hz. But ELS algorithm exhibits fewer oscillations
and also settles around 50 Hz. So the estimation of frequencyby ELS algorithm is pre-
ferred.

Estimation error is the difference between actual frequency and estimated frequency.
Estimation of error by different algorithms is done in Fig. 4. In the case of Kalman
filter the estimation error is almost constant and comes nearabout 0.0152 Hz. In LMS
algorithm the estimation error is more for few initial samples and it is found to be 0.0086
Hz for the rest of samples. However, for ELS algorithm the estimation error is reduced
for the total simulation time and found as 0.0001 Hz which is definitely superior as
compared to previous methods.

It can be seen from Table 1 that the computational time for estimation of frequency
by ELS algorithm is 0.2340 sec. which is less in comparison toother two methods.

Table 1. Comparative assessment of methods

Method Estimation error (RMS) Computational time in sec.

KF 0.0152 1.1870

LMS 0.0086 0.3440

ELS 0.0001 0.2340
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5. Conclusions

This paper presents the estimation of frequency of a synthetic signal by various sig-
nal processing techniques. However, choice of the covariance matrix is very crucial at the
initial instant for Kalman filter algorithm. Improper choice of covariance matrix leads to
longer computational time with larger estimation error. LMS algorithm seems very com-
plex due to the implementation of correlation matrix and necessity of proper choice of
step size. But at the same time ELS algorithm is very simple byrepresentation of the
parametric form of the signal. With the one step computationthe amplitude and phase of
the signal is determined followed by the estimation of frequency. The computational time
is less due to the simplicity of the algorithm and estimationerror is also lower. Validation
of the extended least square algorithm can be done in MATLAB platform with various
system changing conditions and all possible types of faults. Real time implementation
of the algorithm can be realized with a DSP processor.
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