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A comparative study on estimation techniques with
applications to power signal frequency

B. SUBUDHI, P.K. RAY, S.R. MOHANTY and A.M. PANDA

An extended least square (ELS) technique has been proposes paper for power system
frequency estimation. The validation of the above techaijas been made by comparing its
performance with the existing techniques such as Kalmaer fiKF) and least mean square
(LMS) technique etc. It has been observed through a serisismflation studies on frequency
estimation that the ELS technique exhibits better perfoicean comparison to both the LMS
and KF methods of power system frequency estimation. In Kalffilter, the determination
of covariance matrix is very crucial leading to delay in cemgence. LMS algorithm becomes
complicated with the incorporation of correlation matnich may affect the convergence.
On the contrary extended least square algorithm seems terpesinple and attractive without
the implementation of covariance and correlation matrbe Teasibility of the ELS algorithm
for frequency estimation has been tested with a signal Guvith noise. The above estimation
technique can be applied in real-time implementation, twhidll be immensely helpful for
the power system protection. A comparative study on perdoce of the KF, LMS and ELS
techniques for power system estimation has been made dndéakin the paper.

Key words: extended least square (ELS) technique, Kalman filter, leasin square
(LMS) technigque, power system parameters

1. Introduction

In a complex power system the fast and accurate estimati@umdly frequency,
voltage and its variation in real-time is essential. Vaoias in system frequency from
its nominal value indicate the occurrence of a correctii@ador its restoration to its
original value. In this context a large number of numericatimods are available for
frequency estimation from the digitized samples of the&psvoltage. Conventional
methods assume that the power system voltage waveformesy/minusoidal and there-
fore the time between two zero crossings is an indicationysfesn frequency. Dis-
crete Fourier transforms, least error squares technigaaersive Newton-type algorithm,
adaptive notch filters [7, 8, 9] etc. are some of the poputamadiprocessing techniques
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used for frequency measurements of power system signakg& humber of numeri-
cal techniques and their practical implementations areddu the literature but these
set of approaches suffer from inaccuracies due to the presgfimoise and harmonics
and other system changing conditions such as change inraafition angle, change in
fault resistance etc. with amplitude, phase and frequeheysignal buried with noise
and harmonics. It may be noted that the extended least stpEvrique has attracted
widespread attention due to its fast and accurate estingtio view of addressing the
difficulties of the existing methods and to achieve fast arwligate estimation of nomi-
nal and off-nominal power system frequency, the extendast lisquare technique [4, 5]
has been suggested for power system frequency estimatibieprs.

2. Different algorithms for estimation of frequency

2.1. Kalmanfilter

Kalman filter [1, 2] is a stochastic state estimator for patanestimation. From the
discrete values of the three phase voltage signal of a poystera, a complex voltage
vector is formed using the well knowm— 3 transformation. A non-linear state space
formulation is obtained by Kalman filter approach and fremyeis modeled as a state
here. The estimation of the state vector yields the unknawep system frequency. The
mathematical formulation and implementation of the Kalrfither is given by the set of
equations.

Van = Vm COS(OOI’IAT + ¢) =+ €an

2n
Von = VinCOJ WNAT + ¢ — 3) ~+ €pn (1)

21
Ven = VinCO WNAT + ¢ + 3) +€cn

whereV is the test signhaly, is the amplitude of the signady is the angular frequency,
€ is the noise termAT is the sampling interval) is the sampling instant) is the phase
of fundamental component. The complex form of signal derifrem the three-phase
voltages is obtained by transform as shown below

Va = 1/ 2/3(Va— 0.5V — 0.5V;),

Vg = \/%(0.86% —0.866V). (2)

A complex voltage can be obtained from above as
Vi = Van =+ Vpn, 3
h=|o 1], (4)

k=p"T (hph'" +1)"%, (®)



A COMPARATIVE STUDY ON ESTIMATION TECHNIQUES OF SIGNAL FREQENCY 7

wherek is the Kalman gainh is the observation vectop is the covariance matrix, is
the variance of the signal. Thus the covariance matrix etedl with Kalman gain with
the following equation

p=p—khp. (6)
The updated estimated state is related with previous sti#ttelve following relation
X=RX+k(V —hx), @)
_ in—L1m (g
f= TN (sin*Im(X)), (8)

wheref is the estimated frequency of the signal.

2.2. Least mean square algorithm

To enhance the convergence characteristics of a powemsystmal, least mean
square (LMS) algorithm is adopted where the formulatectsitne looks very simple and
this algorithm is found accurate under various systemsgihgncondition to estimate
correct measure of frequency. The complex voltage signekpsessed in Kalman filter
is given by

Vn =Von + jVBn- (9)

The voltage can be modeled as

Vi = Ag(OAT+0) | g

This model is utilized in the proposed frequency estimatitgorithm and the scheme
that describes the estimation process. The error signhisrcase is

a"l — Vn - \7n (11)
whereV,, is the estimated value of voltage at thté instant, and
\7n = Wn\7n—1

whereW, = el®AT denotes the weightp is the estimated angular frequency. The sig-
nificance of the above model is that the input vector contaires element only and so
also the weight vector. The complex LMS algorithm is apptedstimate the state. The
algorithm minimizes the squared error recursively by aitethe complex weight vector
W, at each sampling instant as

Wh=Wh_1+ l-ln%\?r;k (12)

wherex represents the complex conjugate of that value|aisdthe convergence factor
controlling the stability and rate of convergence of theodthm. The step sizg, is



8 B. SUBUDHI, P.K. RAY, S.R. MOHANTY, A.M. PANDA

varied for better convergence of the LMS algorithm in thespree of noise. For complex
states, the equations are modified as

Hn+1 =AM + YPnPh (13)
wherep, represents the autocorrelationegfande, 1 and is computed as
Pn = PPn-1+ (1—pP)enn-1 (14)

wherep is an exponential weighting parameter and p < 1. Parameters (0 <A < 1)
andy > 0 control the convergence time. Paramegigrn is set tomax OF Unin When it falls
below or above the lower and upper boundaries, respectiVelyse values are chosen
on the base of signal statistics. At each sampling intetkialfrequency is calculated as

fn sin 1 [Im (Wp)] (15)

N
where In{-) stands for the imaginary part of a quantity.

2.3. Extended least square algorithm
Let the signal buried with noise is represented by the fahgwstructure
z(n) = Assin(won+ @) + K(n). (16)

Normally, signal to noise ratio in a power system can be tdkam the range 30dB to
40dB. Thus for the purpose of estimation

z(n) = [sinwpn coswon] [a B]Tu(n) 17)
or in the standard form
2(n) = Q(n)8 -+ u(n). (18)
Herez(n) is the noisy measuremengn) is the system structure matri@i,is the vector
of unknown parameter. The estimate for the required paemsexpressed as follows

6= [n)g" (n)] e(n)z(n). (19)
a, B are the parameters to be estimated and are given by
o = A; COSPL, (20)
B =Assing. (21)
After the estimation 0B (unknown parameter), amplitud® and phasep, can be cal-

culated as
Ar =02+ B2 (22)

1B
@ = tan 16 (23)

wherea = 8117 and 3 = 6,1. Once the estimate of amplitude and phase is done, it is
required to estimate the frequency. This can be evaluated équation(16) as

fo= % [sin‘l <Z(”)A;l“(”)> — cp} . (24)
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3. Simulation results

A synthetic signal of 1 p.u amplitude, 50 Hz frequency and @i phase angle
is generated in MATLAB platform. Then the algorithms suchkadman filter, LMS
and ELS are implemented with the sampling interval of 1 selliond. The three phase
signal with 1 p.u amplitude in each phase is also generat®thiFLAB platform. From
the complex signal a two phase signal is generated by transformation. The initial
covariance matrix is taken gd wherel is the identity matrix ang > 1. Here the
observation vectoh is taken ag0 1. The signal to noise ratio (SNR) is taken as 30dB.
The frequency estimation can be done with the steps illiegtran the Kalman filter
algorithm.

Similarly for LMS algorithm the complex signal is also gesmied as that of the
method adopted in Kalman filter. The complex weight matriypslated with the right
choice of step sizéu= 0.18) and correlation matrixP = 0). From the complex weight
matrix the estimation of frequency is made.

For the extended least square technique the signal is egoré@s parametric form.
Evaluating the pseudo inverse of the system structure x@ddes the estimation of the
parameterp. The sampling time is taken as 1 millisecond. The estimatitinequency
is done in three steps. The first two steps as described inematical formulation are
made to estimate amplitude and phase, followed by estimafierequency.

Amplitude in p.u.

'
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Figure 1. Three phase signals.
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Figure 2. Comparison of estimation of amplitude.
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Figure 3. Comparison of estimation of frequency.

4. Discussion

Three phase signal of 1 p.u amplitude is generated in MATLA&ia shown in Fig.
1. Estimation of amplitude for real signal is done by Kalmdteifiand ELS method.
From the Kalman filter algorithm it is found that the estinthtamplitude is 1.068 p.u
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Figure 4. Comparison of estimation error.

for 0.003 sec. and 1 p.u for the rest period but in case of EQ6riélhm the estimated
amplitude is 1 p.u for the entire simulation period whichhswn in Fig. 2.

Estimation of frequency by different algorithms is supgyosed in Fig. 3. From Fig.
3 itis reflected that Kalman filter approach exhibits morellzdion and does not settle
around 50 Hz. At the same time LMS approach exhibits osihatin the few initial
samples and finally settles around 50 Hz. But ELS algorithhibits fewer oscillations
and also settles around 50 Hz. So the estimation of frequeyn&LS algorithm is pre-
ferred.

Estimation error is the difference between actual frequamel estimated frequency.
Estimation of error by different algorithms is done in Fig.l4 the case of Kalman
filter the estimation error is almost constant and comes aleaut 0.0152 Hz. In LMS
algorithm the estimation error is more for few initial saegphnd it is found to be 0.0086
Hz for the rest of samples. However, for ELS algorithm théeation error is reduced
for the total simulation time and found as 0.0001 Hz which éfirdtely superior as
compared to previous methods.

It can be seen from Table 1 that the computational time fomasion of frequency
by ELS algorithm is 0.2340 sec. which is less in comparisoother two methods.

Table 1. Comparative assessment of methods

Method | Estimation error (RMS) Computational time in seg
KF 0.0152 1.1870
LMS 0.0086 0.3440
ELS 0.0001 0.2340
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5. Conclusions

This paper presents the estimation of frequency of a syintbiginal by various sig-
nal processing techniques. However, choice of the covegiamatrix is very crucial at the
initial instant for Kalman filter algorithm. Improper cheiof covariance matrix leads to
longer computational time with larger estimation error. &ldlgorithm seems very com-
plex due to the implementation of correlation matrix andessdy of proper choice of
step size. But at the same time ELS algorithm is very simplegipyesentation of the
parametric form of the signal. With the one step computateramplitude and phase of
the signal is determined followed by the estimation of fiergry. The computational time
is less due to the simplicity of the algorithm and estimagamor is also lower. Validation
of the extended least square algorithm can be done in MATLREBEqm with various
system changing conditions and all possible types of faRli&al time implementation
of the algorithm can be realized with a DSP processor.
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