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Differential Evolution and Levenberg Marquardt
Trained Neural Network Scheme for Nonlinear System
Identification

Bidyadhar Subudhi · Debashisha Jena

Abstract This paper proposes a new nonlinear system identification scheme using
differential evolution (DE), neural network and Levenberg Marquardt algorithm (LM). Here,
DE and LM in a combined framework are used to train a neural network for achieving bet-
ter convergence of neural network weight optimization. A number of examples including a
practical case-study have been considered for implementation of different system identifica-
tion methods namely, only NN, DE+NN and DE+LM+NN. After, a series of simulation
studies of these methods on the different nonlinear systems it has been confirmed that the
proposed DE and LM trained NN approach to nonlinear system identification has yielded
better identification results in terms of time of convergence and less identification error.

Keywords Differential evolution · Evolutionary computation ·
Nonlinear system identification · Levenberg Marquardt

1 Introduction

There is a strong research in nonlinear system identification from the stand point of industry
and real world applications. In the past, a number of nonlinear system identification techniques
have been proposed such as Voltera series, Winner-Hammerstein model and polynomial iden-
tification [1] methods which involve computational complexities. Apart from these methods
there is lot of research directed towards applying neural networks [2,3] for nonlinear system
identification due to its function approximation capabilities. A number of theoretical and
practical system identification problems have been solved using neural network approach
with multi-layered perceptron (MLP) with back-propagation training [3]. From the previous
neural network system identification approaches, it is observed that even neural network has
been proved to be a successful technique for nonlinear system identification but there is a little
concern about its convergence and problem of being trapped at local minima. The Wavelet
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networks techniques [2] were also applied to system identification of nonlinear systems in
which adaptive techniques such as back propagation algorithm found to provide better accu-
racy compared to non-adaptive ones such as Voltera series, Winner-Hammerstein modeling
and polynomial methods.

In the last three decades Evolutionary algorithms (EAs), such as genetic algorithm (GA)
and evolutionary strategies (ES) have become very popular as function optimizers, because
these are easy to implement, and exhibit fair performance for a wide range of functions.
However, continued development in the research community has established that pure GAs
are often not good enough for fine tuning in complex search spaces.

A variant of evolutionary computing technique namely the Differential evolution (DE) [4,
5] is a population based stochastic optimization method similar to GA that finds an increasing
interest in the recent year as an optimization technique due to its achievement of a global
minimum. Differential evolution is an effective, efficient and robust optimization method
capable of handling nonlinear and multimodal objective functions. The beauty of DE is its
simple and compact structure which uses a stochastic direct search approach and utilizes
common concepts of EAs. Furthermore, DE uses few easily chosen parameters and provides
excellent results for a wide set of benchmark and real-world problems. Experimental results
have shown that DE has good convergence properties and outperforms other well known EAs
[5]. Therefore, there is scope of using DE approach to neural network weight optimization.

It may be noted that by using the DE approach alone may yield slow convergence speed
although it provides the global minimum as compared to classical optimization methods such
as the gradient descent and LM method. Therefore, the authors propose a DE+LM+NN
approach in view of achieving global minimum with good convergence speed. In this work,
a differential evolution method combined with LM has been applied as a global optimization
method for training a feed-forward neural network. In the proposed scheme, the DE is used
to train the neural network that is chosen as a suitable candidate for nonlinear system iden-
tification. After observing the trends of training towards minimum through DE, the network
is then trained by LM. The role of the DE here is to approach towards global minimum point
and then LM is used to move forward achieving fast convergence. The nonlinear systems
as considered in [6,7] have been chosen in this work for demonstrating the efficacy of the
proposed system identification approach.

The contribution of the paper is as follows. We proposed here an improved neural network
based nonlinear system identification scheme where the training of the neural network (NN)
employed for the identification has been made faster and accurate. This improved training
algorithm was achieved by virtue of two important benefits of hybrid use of two different
optimization schemes namely a stochastic evolutionary algorithm i.e. Differential Evolution
algorithm which provides a global search whilst the convergence of the proposed hybrid
(DE+LM+NN) training has been accelerated by the gradient based optimization technique
i.e. Levenberg Maquardt (LM) algorithm. We clearly demonstrated in the paper that our
proposed approach has been found to be successful in providing the best identification per-
formance amongst the other varieties of system identification schemes such as NN trained
by LM, and NN trained by DE.

2 Differential Evolution

In a population of potential solutions to an optimization problem within an n-dimensional
search space, a fixed number of vectors are randomly initialized, then evolved over time to
explore the search space and to locate the minima of the objective function.
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In DE, individuals are represented as real-valued vectors. For each generation of the
evolution process, each individual (target individual) of the population competes against a
new individual (trial individual) for survival to the next generation. Only the fitter of the two
survives. The trial individual is created by recombining the target individual with another
individual created by mutation (mutant individual). Mutation is performed on the best indi-
vidual found so far in the evolution process. For each target vector xi,G a mutant vector is
produced using the following formula

vi,G+1 = xr1,G + F(xr2,G − xr3,G) (1)

where i, r1, r2, r3 ∈ {1, 2, . . . , NP} are randomly chosen and must be different from each
other. In Eq. 1, F is the mutation factor. Recombination creates an offspring (trial individual)
by selecting parameters from either the target individual or the mutant individual. There
are two methods of recombination in DE, namely, binomial recombination and exponential
recombination. In binomial recombination, a series of binomial experiments are conducted
to determine which parent contributes which parameter to the offspring. Each experiment
is mediated by a crossover constant, CR, (0 ≤ CR ≥ 1). Starting at a randomly selected
parameter, the source of each parameter is determined by comparing CR to a uniformly dis-
tributed random number from the interval [0, 1). If the random number is greater than CR, the
offspring gets its parameter from the target individual; otherwise, the parameter comes from
the mutant individual. In exponential recombination, a single contiguous block of parameters
of random size and location is copied from the mutant individual to a copy of the target indi-
vidual to produce an offspring. A vector of solutions are selected randomly from the mutant
individuals when randj (randj ∈ [0, 1], is a random number) is less than CR.

In crossover, the parent vector is mixed with mutated vector to produce a trial vector tj i,t+1

tj i,t+1 =
{

vji,t+1 if (randj ≤ CR)

wji,t+1 if (randj > CR)
(2)

j = 1, 2, . . . , D, where D is the number of parameters to be optimized.
At each generation, new vectors are generated by the combination of vectors randomly

chosen from the current population (mutation). The upcoming vectors are then mixed with
a predetermined target vector. This operation is called recombination and produces the trial
vector. Finally, the trial vector is accepted for the next generation iff it yields a reduction in
the value of the objective function. This last operator is referred to as a selection.

Figure 1 shows a two dimensional objective function that illustrates the different vectors,
xi which are important in differential evolution. It shows the process of generating trial vector
for the scheme explained in Eq. 2.

3 Proposed DE–LM–NN System Identification Scheme Training Algorithm

In the sequel, we describe how a DE is applied for training neural network in the frame
work of system identification (see Algorithm-1). DE can be applied to global searches within
the weight space of a typical feed-forward neural network. Output of a feed-forward neural
network is a function of synaptic weights w and input values x, i.e. y = f (x, w). The role
of LM in the proposed algorithm has been described in Sect. 1. In the training processes,
both the input vector x and the output vector y are known and the synaptic weights in w
are adapted to obtain appropriate functional mappings from the input x to the output y.
Generally, the adaptation can be carried out by minimizing the network error function E
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Fig. 1 Two dimensional
objective function
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which is of the form E(y, f (x, w)). In this work we have taken E as mean squared error i.e.
E = 1

N

∑N
k=1

[
y − f (x, w)

]2, where N is the number of data considered.
The optimization goal is to minimize the objective function E by optimizing the values

of the network weights w, where w = (w1, . . . , wd).

Algorithm-1 (DE+LM+NN Identification Algorithm)

Step 1 Initialize population pop: Create a population from randomly chosen object vectors
with dimension NP.

PG = (w1,G, . . . , wNP,G)T , G = 1, . . . , Gmax

wi,G = (w1,i,G, . . . , wD,i,G), i = 1, . . . , NP

where D is the number of weights in the weight vector and in wi,G, i is index to the population
and G is the generation to which the population belongs.

Step 2 Evaluate all the candidate solution inside pop for a specified number of iterations.

Step 3 For each ith candidate in pop select the random variables r1, r2, r3 ∈ {1, 2, . . . , NP}
Step 4 Apply mutation operator to each candidate in population to yield a mutant vector i.e.

vj,i,G+1 = wj,r1,G + F(wj,r2,G − wj,r3,G), for j = 1, . . . , D

(i �= r1 �= r2 �= r3) ∈ {1, . . . , NP} and F ∈ (0, 1+]
Step 5 Apply crossover i.e. each vector in the current population is recombined with a mutant
vector to produce trial vector.

tj,i,G+1 =
{

vj,i,G+1 if randj [0, 1) ≤ CR

wj,i,j otherwise

where CR ∈ [0, 1] .
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Step 6 Apply selection i.e. between the trial vector and target vector. If the trial vector has
an equal or lower objective function value than that of its target vector, it replaces target
vector in the next generation; otherwise, the target retains its place in the population for at
least one more generation

wi,G+1 =
{

ti,G+1 if E(y, f (x, wi,G+1)) ≤ E(y, f (x, wi,G))

wi,G otherwise

Step 7 Initialize the weight matrix of Levenberg–Marquardt algorithm taking the values of
weights obtained after the fixed number of iterations. Find out the value of E.

Step 8 Compute the Jacobian matrix J(w).

Step 9 Find �w using the following equation

�w =
[
JT (w)J (w) + µI

]−1
JT (w)E

Step 10 Recompute E using (w+�w), if this new E is smaller than that computed in Step 7
then reduce µ and go to Step 1, where µ is the damping factor.

Step 11 The algorithm is assumed to have converged when the norm of the gradient i.e.
‖∇E‖ = ‖JT (w)y − f (x, w)‖ is less than some predetermined value, or when the sum of
squares of errors has been reduced to some error goal.

4 Results and Discussion

We present here the performance achieved through using the proposed DE+LM+NN
scheme to a number of bench mark problems as follows

4.1 Example-1

The nonlinear system [6] to be identified is expressed by

yp(k + 1) = yp(k)[yp(k − 1) + 2][yp(k) + 2.5]
8.5 + [yp(k)]2 + [yp(k − 1)]2 + u(k) (3)

where yp(k) is the output of the system at the kth time step and u(k) is the plant input which is
uniformly bounded function of time. The plant is stable at u(k) ∈ [−2 2]. The identification
model be in the form of

ypi(k + 1) = N(yp(k), yp(k − 1)) + u(k) (4)

where N(yp(k), yp(k − 1)) is the nonlinear function of yp(k) and yp(k − 1). The inputs to
the neural network are yp(k) and yp(k − 1). The output from neural network is ypi(k + 1).
The goal is to train the networks such that when an input u(k) is presented to the network and
to the nonlinear system, the network outputs ypi(k) and the actual nonlinear system output
yp(k) will match as close as possible.
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Fig. 2 Identified and actual
models (NN identification)
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Fig. 3 Error in modeling
(NN identification)
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4.1.1 NN Identification (Figures 2, 3)

The neural network identifier structure consisted of eleven numbers of neurons in the hidden
layer. After 1,000 epochs the training of the neural identifier has been stopped. After the
training is over, its prediction capability has been tested for input.

u(k) = 2 cos(2πk/100) k ≤ 200 and

u(k) = 1.2 sin(2πk/20) 200 < k ≤ 500

Figure 2 shows the system identification results obtained with using NN. The error is more
at time steps 100 and 200. Figure 3 shows the identification error.

4.1.2 DE+NN Identification (Figures 4,5)

Figure 4 shows the identification performance of the system using NN and differential evolu-
tion. Here the network is trained by using differential evolution instead of classical ones such
as gradient descent and Levenberg Marquardt algorithm. The results obtained with NN–DE
indicate no significant improvement over the previously discussed existing ones. Here also
eleven number of hidden layer neurons and thousands number of epochs were taken Fig. 5
shows the identification error in the case of NN+DE approach.

4.1.3 DE+NN+LM Identification (Figures 6,7)

Figure 6 gives the result of proposed DE+LM+NN scheme. In this case the network is
trained by both DE and Levenberg Marquardt algorithm. Here eleven number of hidden
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Fig. 4 Identified and actual
models (NN–DE identification)
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Fig. 5 Error in modeling
(NN-DE identification)
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Fig. 6 Identified and actual
models (DE+LM+NN
identification)
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Fig. 7 Error in modeling
(DE+LM+NN identification)
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layer neurons are considered. This result (Fig. 7) clearly indicates accurate identification of
nonlinear system is achieved i.e. the superior identification capability of the proposed scheme
over the other methods NN and NN+DE.

Figure 7 shows its identification error curve for DE+LM+NN system identification.
From Fig. 7 it is clear that identification error is smaller compared to error in NN and
NN+DE.
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4.2 Example 2

The plant [6] to be identified is governed by the difference equation

yp(k + 1) = 0.3yp(k) + 0.6yp(k − 1) + f [u(k)] (5)

where the unknown function has the form:

f (u) = 0.6 sin(πu) + 0.3 sin(3πu) + 0.1 sin(5πu) (6)

In order to identify the plant a series parallel model governed by the difference equation

ŷp(k + 1) = 0.3yp(k) + 0.6yp(k − 1) + N [u(k)] (7)

was used.

4.2.1 NN Identification (Figures 8, 9)

The neural network identifier structure consisted of 11 numbers of neurons in the hidden
layer. After 1,500 epochs, the training of the neural identifier has been stopped. After the
training is over, its prediction capability has been tested for input given as

u(k) = sin(2πk/250)

As shown in the Fig. 8, the learned network is predicting the nonlinear system outputs.
Figure 9 shows the identification error. The figures clearly indicate the poor identification
performance of the neural identifier.

4.2.2 NN-DE Identification (Figure 10)

Figure 10 shows the identification performance of the system using differential evolution.
Here the network is trained by using differential evolution instead of classical ones such as

Fig. 8 Identified and actual
models (NN identification)
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Fig. 9 Error in modeling (NN
identification)
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gradient descent and LM algorithm. The results obtained with only DE indicate no significant
improvement over the previously discussed existing ones.

4.2.3 DE+LM+NN Identification (Figures 11, 12)

Figure 11 gives the result of proposed DE+LM+NN scheme. In this case the network is
trained both by DE and LM algorithm.

This result clearly indicates the superior identification capability of the proposed scheme
over the other two methods discussed i.e. NN and NN–DE approaches. Figure 12 shows its
identification error curve for DE+LM+NN system identification.

4.3 Example 3

Box and Jenkins’ gas furnace data are frequently used in performance evaluation of system
identification methods [7]. The data can be obtained from the site. The example consists
of 296 input–output samples recorded with a sampling period of 9 s. The gas combustion

Fig. 10 Identified and actual
models (DE identification)
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Fig. 11 Identified and actual
models (DE+LM+NN
identification)
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Fig. 12 Error in modeling
(DE+LM+NN identification)

0 100 200 300 400 500 600
-5

-4

-3

-2

-1

0

1

2

Time step

E
rr

or
 D

E
+

tL
M

+
N

N

123



294 B. Subudhi, D. Jena

process has one variable, gas flow u(k), and one output variable, the concentration of carbon
dioxide (CO2), y(k). The instantaneous values of output y(k) have been regarded as being
influenced by ten variables y(k−1), y(k−2), y(k−3), y(k−4), y(k−5)u(k−1), u(k−2),

u(k − 3), u(k − 4), u(k − 5). In the literature, the number of variables influencing the output
varies from 2 to 10. In the proposed method, ten variables were chosen. Results shown gives a
comparison of the identification methods such as neural networks trained with conventional
methods and neural networks trained with DE and hybrid differential evolution methods. For
all the methods eleven number of hidden layer neurons were taken and the results obtained
after 1,000 epochs. The number of training data was taken as 100 for all the cases and rest
196 data were the test data.

4.3.1 NN Identification (Figures 13)

Figure 13 shows the graphs of the identified obtained with NN and the actual system. Here, the
NN fails to identify the system dynamics at time step of 260 thus leads to a big identification
error.

4.3.2 NN-DE Identification (Figure 14)

The NN–DE identified system dynamics and the actual system dynamics were plotted in
Fig. 14, where from it is observed that no improvement in identification is observed with
respect to the previous one i.e. the NN identifier.

4.3.3 DE+LM+NN Identification (Figures 15, 16)

Figure 15 shows the identification performance of the proposed new DE+LM+NN
approach.

Fig. 13 Identified and actual
models (NN identification)
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Fig. 14 Identified and actual
models (NN–DE identification)
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Fig. 15 Identified and actual
models (DE+LM+NN
identification)
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Fig. 16 Comparison of error in
modeling [NN versus (DE +
LM + NN identification)]
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Table 1 Comparison of
performances of three methods

Method Time of convergence MSE
(in seconds)

NN+LM 17.490 0.0047 Example 1

NN+DE 50.112 6.8830

NN+LM+DE 24.899 0.0030

NN+LM 18.991 0.3115 Example 2

NN+DE 121.148 3.5470

NN+LM+DE 30.985 0.0059

NN+LM 20.929 0.0038 Example 3

NN+DE 102.347 2.6680

NN+LM+DE 54.895 0.0001

Figure 16 gives the comparison of proposed DE+LM+NN scheme with the NN scheme.
In the proposed DE+LM+NN scheme, the network is trained both by DE and Levenberg
Marquardt algorithm. From this figure we marked that the proposed DE+LM+NN scheme
has exhibited the expected identification performance i.e. the error between the true system
and the identified one is minimum. Table 1 summaries the performance of the proposed
method of system identification (NN+LM+DE) over the existing ones (NN, NN+DE) for
different example and case studies.
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5 Conclusions

The paper has described the scope of improving system identification of nonlinear systems
by using proposed DE+LM+NN approach. In the proposed identification frame work,
differential evolution is used only to find approximate values in the vicinity of the global
minimum. These approximate weight values are then used as starting values for a faster
convergence algorithm i.e. Levenberg Marquardt algorithm. From the results presented in
Sect. 4, it is clear that there is certainly an improvement in identification performance for
nonlinear systems over the existing approaches. In comparison to use of only differential
evolution approach proposed DE+LM+NN approach provides better system identification
performance in terms of speed of convergence and identification capability.
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