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Exploding Julia sets in the Dynamics 6f(z) = A\ Ji(iz) /iz

M. Guru Prem Prasag Tarakanta Nayakand Ashis Kumar Roy
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Abstract— In the present paper, we study the dynamics of the one The point atoo is always in the Julia set since it is an essential
parameter family of entire functions {fx(z) = Af(z) : f(2) = singularity for whichf can not be defined there.
Ji(iz)/iz for z € € and A is anon-zero real numbed where J,(z) is The Fatou set of a function is open by definition. The Julia set
the Bessel function of the first kind of order one. We have found a critical p y " .
parameter \* ~ 2.598 and show that the Julia set off is a nowhere dense IS always a non empty and perfect set. Also the interior of the
subset of the complex planeC for 0 < |X| < A* and is equal to extended Jylia set is empty, unless it is Wh0|e@f[2]_
complex planeC = CU {oo} for |A| > A*. This sudden change in the Julia The dynamics of a function is effectuated basically by the
sets is known aexplosionin the Julia sets orchaotic burstin the dynamics. iodi . f the fi . The definiti dth f
Keywords—Complex dynamics, Julia set, Chaotic burst. perio I(,: p(_)mtS,O the unCtlon' e definition and the nature o
the periodic points are given below.
Definition I.3: A point z is called ap-periodic point off if
) ] . ) . p is the smallest natural number such thigtz) = 2. If p =
A dynamical .system is a physical setting together with rullqs, 2 is called a fixed point. Av-periodic pointz is said to be
for how the setting changes or evolves from one moment of tig@racting, indifferent or repelling iff f7)'(z)| < 1, = 1 or > 1
to the next or from one stage to the next. A basic goal of thgspectively. Further, an indiffereptperiodic point is called
mathematical theory of dynamical systems is to determine @fiionally (irrationally) indifferent if( f7)’(z) = e wheret

characterize the long term behavior of the system. The sifgrational (irrational). A rationally indifferent periodic point is
plest model of a dynamical process supposes that 1)-th gi50 called parabolic periodic point.

state,z, 1 can be determined solely from the knowledge of the o Fat0y component is a maximal connected open subset of

previous state,, that isz,,+1 = f(z,) wheref is a function. g ¢ A component, of F(f) is p-periodic ifp is the smallest
These systems are called Discrete Dynamical Systems. We sRall;ral number such the® (Uy) C Up. The set{Uy, U; =

I. INTRODUCTION

deal with one such systems, nam&ypmplex Dynamical Sys- FU), Uz = f2(Us), -+, Upy_y = fP~1(U)} is called ap-
tem where the the functiorf is a complex valued function of hejggic cycle of Fatou components.Ufis a Fatou component
one complex variable. such thatf?(U) (N f¢(U) = 0 for all natural numberg andg,

In the study ofComplex Dynamical Systenmhe evolution of hantr is called a wandering domain.

the system is realized by the iterations of entire complex func-1q (|assification of periodic Fatou components for transcen-
tionsf : C — C. Entire functions are functions that are analytiﬁental entire functions is given below (See also: [2])

everywhere irC. For a pointzy € C = CU{oc}, tge sequence gyppose thalt/ is ap-periodic Fatou component. Then exactly
of iterates ofz, (or orbit of zy) is given byzo = f"(20), 21 = one of the following possibilities occur.

f(i(’)’ ZQh: f(il.) th(f(;‘q)) andz? :T{](Z"‘l) N f d(zo) for 1. Attracting Basin If for all points  in U, limy,_..c [ () =
n>3w gref is then-th iterate off. € complexaynamics . \here.* is an attracting-periodic point lying inU, then the
problem is to study the long term behavior of the sequence&{mponenU is called an attracting basin

iterates OAon for any given initial pointzo in C. The setof all 5 parapolic domain In this casedl’ (the boundary of!/)
points inC whose sequences of iterates exhibit stable behavig§ntains a rationally indifferent-periodic pointz*. Further
is called the Fatou set and the set of all point€iwhose se- lim,, ., f™(z) = z* forall z € U.
quences of iterates exhibit unstable or chaotic behavior is cal®dBaker Domain If for all points z € U, lim,, .o, f""(z) =
the Julia set. The following two definitions give a precise mathy then the Fatou componetitis called a Baker domain.
ematical meaning to this idea. 4. Rotational Domain A Fatou component/ is said to be a
Definition I.1: A family T of analytic functions defined in a rotational domain if there exists an analytic homeomorphism
domainD C Cis said to be normal at a poiay € D ifevery 7 — D such thatp(f?(¢~'(z))) = 27~ for some irrational
sequence extracted fromhas a subsequence which convergesumbera whereD is either the unit disc or an annulgs : 0 <
uniformly either to a bounded function orto on each compact » < || < 1}. In the first casel/ is called Siegel disk and in the

subset of some neighborhood f second case Herman ring. Entire functions do not have Herman
Definition I.2: The Fatou setof an entire functionf(z), is rings [2]. Siegel disk is simply connected.
denoted byF(f), is defined as Besides periodic points, the singular values and its forward or-

F(f) = {z € C: the sequence of iterat¢g™ } is normal at:}  bits play an important role in determining the dynamics of a
The complement of the Fatou sEtf) in the extended complex function.
planeC is known as thelulia setof f and is denoted bg(f). Definition I.4: A point z is a critical point off if f'(z) = 0.

The val f the functi = i I he criti-
*Author for correspondence. Tel:(361)2582608, Email: mgpp@iitg.ernet.in e value of the functiorf at z, w f(z) s called the crit

tThe research work of Tarakanta Nayak is supported by the CSIR Senior R&J Value_ off. A pointw Is called an asymptotic value gfif
search Fellowship N0.9/731(31)/2004-EMR-. there exists a continuous curyét) : (0,00) — C such that
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lim;—, 00 ¥(t) = oo andlim;_,, f(7(t)) = w. All the critical certain type of periodic components in Fatou sef pfs estab-
and asymptotic values of a function are known as singular véished in Propositions 1.2 and 11.3. Finally, a complete picture
ues. The set of all singular values of a functipis denoted by of the dynamics of the functiong, is presented.

S;. .
The set of all forward orbits of all singular values is denotefy Singular values of
by O (Sy) and is given by{f"(w) : w € Sy andn =  The following proposition locates all singular valuesfgfec

0, 1, 2, ---}. The relation between the séx"(S;) and the B+,
periodic Fatou components gfis summarized in the following  Proposition I1.1: Let fy € B*. Then, f\ has infinitely many

theorem. singular values all lying in a bounded setRf

Theorem I.1: [2] Let f be an entire fgnc_tion and Proof: We first observe thaf}(z) = %;)(w) where
C = {Uo, Uy, ---, Up-1} be ap-periodic cycle of compo- Jo(z) is the Bessel function of the first kind of order two [4].
nents ofF(f). _ _ _ _ The critical points offy (z) are the solutions of,(iz) = 0 and
1. IfC isa cycle of attracting bgsms or parabolic domains, th?ﬁ'ese are infinitely many purely imaginary numbers [4]. They
there exists a natural numbgwith j € {0, 1, ---, p =1} form an unbounded sequence &giz) is entire. Let these

such th_an NSy #0. . ] _ be arranged in an increasing sequence in magnitude, namely,
2. If C'is acycle of rotational domains théd/; ¢ O+(S;) for {zr = iz} wherez;, € R for all k € N. Now, the crit-

aljef{o, 1, -, p—-1}. _ ical value corresponding to the critical point is given by
. In recent years, the dynamics of transcendental gnt|re fu Co) = falizy) = /\Jli—zk) which is a real number. Since
tions has been studied by many researchers. While studyjn (—2k) .

the dynamics of one parameter famify = {\e* : X > koo Falzk) = 014 and £y () # OJf(z,r.)a" k, there are in-

0}, Devaney and coworkers [5] observed that the Julia set '8}itely many critical values of . Since== is bounded orR,

Ae” is a nowhere dense subset of extended complex plane #ithe critical values lie in an bounded intervalin

0 < X < 1/e, where as it becomes the whole of the extended !t IS easy to show that the order (WhICh me_asures_the growth
complex plane for\ > 1/e. This sudden change in the Ju®f Maximum modulus) [8] of the entire functiofy(z) is one.

lia sets is known asxplosionin the Julia sets ochaotic burst BY Ahlfors-Denjoy theorem [1], it follows thaf, has at most

in the dynamics of one parameter family Similar chaotic two finite asymptotic values. The functigh tends to) whenz
bursts are exhibited for the familffy (z) = A€=1l . ) - tends toco along the positive and the negative imaginary axis.

0} by Kapoor and Prasad [9] and for the family,(z) = So,0 is an asymptotic valu_e fofy. If a # 0is an asympto_tic
)\sinh(z) G | dny Prasad [7] value of f, then—a anda will be also asym.ptotlc valugs since
= 1 Aisanon zero real paramejdry i : I%](Z) = fa(—2) and fr(2) = fa(z). This is not possible by

In the present paper, we study the dynamics of the one \Ifors-Denjoy theorem [1]. Thereforg,, has only one finite

rameter family of entire function§fy(z) = Af(z) : f(z) =
J1(iz)/iz for z € C and )\ is a non-zero real numbewhere
Ji(z) is the Bessel function of the first kind of order one giveB. Real Periodic Points of

asymptotic value, namelg, This completes the proof. |

o (= o\ 241
by J1(2) = "2 % (5)7" forz e C. Weremarkthat | this subsection, the existence and nature of real periodic
f(z) = 262 — =11 () wherel;(z) denotes the modified points of £\ is studied. The functiorf(z) = .Ji (iz)/(iz) takes

1z

Bessel function of first kind and order one. Clearly the positive values for alt € R. It gives that, all the real pe-
. riodic points of fx(x) lie on the positive real axis. Supposg
. o0 2k . . . . _ N
f(z) = J;(”) _ Z z forz € C is a rea/l periodic point such tgﬁf(:po) = Zo for somep > 1.
iz 226+ I (K + 1) Since f(z) > 0 for z > 0, f{(z0) = o is not possible for
k=0 L . . . .
p > 1. Therefore, any real periodic point ¢f is a fixed point.
is an entire function. Consider the functiow(z) = f(x) — zf'(z) forz > 0. As

¢'(x) = —xf"(x) < 0forall z > 0, ¢(x) is decreasing for

x > 0. Using the intermediate value theorem and the facts that
#(0) = f(0) > 0 andlim,_,, ¢(x) = —oo, We get a unique
pointz* > 0 such that

1. DYNAMICS OF f)

Let B = {/fa(z) = Af(2) : f(2)= % for z € C and

A is a non-zero real numbjr

For f, € B, observe thatfy(—z) = fa(z). So, >0 forogx*< ¥
foa(2) = —falz) = —fi(—2) for all = € C. Conse- o(z)q =0 forz=a
quently, f*,(2) = —f#(—2) forall z € Candn € N, <0 forz>uz

and dynamics off, and f_, are essentially same. The func-
tions f, and f_, are called conformally conjugate. So, it is
sufficient to study the dynamics of the one parameter fam

Throughout this paper, we denaoké by % wherex* is
e unique positive real root ef(z) = f(z) — zf'(z) = 0.

. T1(i2) ote that) < \* < ﬁ sincez* > 0 and% is decreasing
BT ={fa(z) = Af(2) + f(z) = — — forz e Cand in R*. Numerically it is found thah* ~ 2.598.
A > 0}. The following theorem describes the existence and nature of

We first prove that the functiofi, has infinitely many singu- the real fixed points of for A > 0.
lar values in Proposition 1.1. The existence and nature of theTheorem Il.1:Let fy(x) = AJy(iz)/(iz) for x € R where
fixed points forf), is proved in Theorem Il.1. Non-existence ofA > 0. Then,
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1. For0 < A < \*, the functionf, has only two real fixed .
pointsay andr) (say) with0 < ay) < r) wherea, is attracting
andr) is repelling.
2. ForA = \*, the functionf, has only one real fixed point at
x*, and it is rationally indifferent.
3. For\ > \*, the functionf, has no real fixed point.

Proof:

Letgy(z) = fa(z) —ax for z € R. Since all the coefficients of
the Taylor series of, about the point = 0 are non-negative,
the functionsfy(z), fi(x) and f{(z) are positive forz > 0.

It gives thatf,(z) and f{(z) are increasing ifR ", the positive
real axis. e e R S

Suppose thak < %. Theng) (0) < 0. Since the function
gh(xz) = fi(z) — 1is increasing inR* and tends totco as
x approaches ta-oo, there exists a unique, > 0 such that "
gi(z) < 0forz € (0, xy), gh(xx) = 0 andg)(z) > O for
x € (x5, 00). Thereforeg, decreases in the intervidl, z,],
attains its minimum value at, and then increases in the interval

L
4 5

Fig. 2. Graph off for A = A\* ~ 2.598 and the liney = .

10

(zx, 00). Foreach\ < ﬁ there exists a unique positive real

numberz, such that\ = % |
* 1 1 H 1 H H

1. If A < X* then g < e Slnce—f,(w) is strictly i

decreasing ifR ™, it follows thatz, > z* andg(xy) < ¢(z*) =

0 as¢(x) is decreasing. Sincg(z,) > 0 and for that,;f’,(&)) =

5

— L L L L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5
a4k

sk . . ] Fig. 3. Graph off for A > A* and the liney = z, (\ = 2.8).

A 1 C. Fatou Components gf,

of . We show in this subsection that the Fatou sefpfioes not
Ll , | contain certain kinds of Fatou components.

Proposition 11.2: Let f, € B*. Then, the Fatou set(f)
does not contain any Siegel disk.

Proof: As A > 0, fa(x) > 0 for all z € R. By Proposi-
s s : s s ) tion 11.1, the set of all singular values ¢f, is contained ifR™.
Consequently, the forward orbits of all singular valags(Sy, )
is also contained iR T.

Let U be a Siegel disk in the Fatou set ff. Thenf, is a
bijection onU by definition. It follows from Picard’s theorem
that, there are infinitely many pre-periodic components(ifi, )
each of which is equal t¢;’“(U) for somek € N. Itis known

. / / ) from Theorem 1.1 thaO™* (S}, ) is dense iU, the boundary
(See Fig. 1). Observe thd{ (ax) < fy(zx) =1andfy(zx) > ot 17 500U is contained(irﬂ}g. But this is not possible since

fa(ry) = 1. Thereforea, is attracting and is repelling. U is simply connected. Therefore, the Fatou sef.ofor A > 0
2. By similar arguments as in proof of (1), we conclude th@{yes not contain a Siegel disk. ]

ga(zx) = 0for A = A" andzy = z. As gx(x») is the mini- - Now we prove non-existence of Baker domains and wandering
mum value ofgy (x), ., is the only zero ofjx (z). Hencef\(z)  gomains forfy € B+.

has only one real fixed point* (See Fig. 2) and it is rationally Proposition I1.3: Let fy € B+. Then,F(f) contains neither

indifferegt. ) ) wandering domain nor Baker domain.
3. ForA™ <A < < Proof: Let on contrary}¥ be a wandering domain of,.

Fig. 1. Graph off for A < A* and the liney = z, (\ = 2).

gx(xy) < 0, the minimum valugyy(zy) = fa(zyn) — zy of
gx(x) is negative. Therefore, there exist two poinfsandr,
(say) withay < z) < 7y such thatgy(ay) = 0 = ga(ry).
That means, the points, andr, are the fixed points of(x)

) T ﬁ It implies thatz) <
2™ and, consequentlyy(x,) > 0. Furthergx(z) > gx(xx) =0 |t is already shown that any real number tends either to a non
forall z > 0. Therefore, there is no real fixed point ff(x) repelling (attracting or parabolic) real fixed point ortounder
for gy > A > A% ForA > 555, 95(0) = 0 andga(z) > iteration of f,. It is known that for a wandering domaii’
g2(0) > 0 for all z > 0 asg, is increasing in positive real axis.of an entire functiory, every limit function of{ f™(z)},>0 for
So f, has no fixed point iR (See Fig. 3). z € Wis in Julia set and is a limit point adD*(S) (co can

B well be such a limit point) [3]. Let € W and{f"*(2)}r>0
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converges tag. Then,zq is areal number and in Julia set. Being Corollary 11.1: Let f, € B*. Then,
a limit point of the set{ f{(z)}n>0, 2 € W C F(fx), z0 can 1. For0 < X < \*, the Julia sef(f,) is equal to the com-
not be a repelling fixed point. Therefors, is not a fixed point plement of the attracting basi(a, ) of the real attracting fixed
of fy and, hencéim,, ., f™(z9) = oo as f is increasing pointay.
in the positive real axis. By continuity of,, it follows that 2. For\ = \*, the Julia sef(f) is equal to the complement of
limy oo f™ ™ (2) = f™(20). Sincelimy_.o f™T™(z) = the parabolic basi®(z*) of the real rationally indifferent fixed
f™(20) andlim,,, ., f™(z9) = oo, we can find a subsequencepointx*.
{7 (2) teso Of {f1(2) }nso such thatimy o 3" (z) = co. 3. ForA > A*, the Julia sef(f») = C.

Using logarithmic change of variable, it has been proved that,The following theorem is an easy consequence of Theo-
if f is an entire function and the set of all its singular valuggm I1.2 and the conformal conjugacy betwegnand f_ .
is bounded then the sequence of itera¢8(z)},~0 can not  Theorem I1.3:Let A < 0. Then,
converge toco for any z in the Fatou set off [6]. From the 1. For—\* < \ < 0, the Fatou sef( f,) is equal to the attract-
proof of this result, we can show that the above result is true fipig basinA(—a, ) of the real attracting fixed pointa,.

any subsequencgf,"*(z)}x>o. It contradicts the conclusion2. For\ = —\*, the Fatou sef(fy) is equal to the parabolic
made in the previous paragraph. Therefgiehas no wandering basinP(—z*) of the real rationally indifferent fixed poinrtz*.
domain. 3. For\ < —\*, the Fatou seff( f») is empty.

Non-existence of Baker domains of any period follows from Corollary I11.2: Let A < 0. Then,
the fact that no subsequence{gf(2)},~o can converge too 1. For—\* < A < 0, the Julia se§(f,) is equal to the comple-

foranyz € F(f\) [6]. B ment of the attracting basiA(—a, ) of the real attracting fixed
. point—a.
D. Fatou and Julia sets of 2. ForA = —)*, the Julia sef(f,) is equal to the complement
In this subsection, the dynamics ¢f(z) for = € C is de- of the parabolic basi®(—z*) of the real rationally indifferent
scribed for each non zero real number fixed point—z*. R
Theorem I1.2: Let f, € B*. Then, 3. ForA < —\*, the Julia sef(f\) = C.

1. For0 < A < A\*, the Fatou sef( f) is equal to the attracting

basinA(a,) of the real attracting fixed poirt, .

2. For A = X\*, the Fatou seff(f,) is equal to the parabolic In the previous section, it is proved that the Julia &gt )

domain P(x*) corresponding to the real rationally indifferenis equal to the complement of either the attracting basin or the

fixed pointz*. parabolic domain fob < |A| < A*. Since the Fatou set gf,

3. For\ > X\*, the Fatou sef(f,) is empty. is non-empty for0 < |A| < \*, it follows that the Julia set of
Proof: The Fatou set off, does not contain any Siegelf, has empty interior. That is, the Julia setf5fis a nowhere

disk, Baker domain or wandering domain by Propositions Il@ense subset of the complex plane foc || < A\*. If |}

and I1.3. So, every periodic Fatou component is an attractingpsses the valug*, the Julia set suddenly explodes and equals

basin or parabolic domain. All the singular valuesfafand to the extended complex plane. Thus,explosionin the Ju-

their forward orbits lie in the real axis. If there is a perioditia sets orchaotic burstin the dynamics of the one parameter

attracting basin or parabolic domaif, say corresponding to afamily B = {A(z) = M) fz) = % for 2z €

non-real periodic point then there is a singular valu®f fx C and X is a non-zero real numbgrof entire transcendental

in U by Theorem L.1. In that casg (w) must be non-real for functions occurs an| = \*.

sufficiently largen which is not possible. So, any periodic Fatou
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