
1st International Conference on Advances in Computing, Chikhli, India, 21-22 February 2008

 A Novel Load Balancing Algorithm for I/O-intensive Load

in Heterogeneous Clusters
Pushpendra Kumar Chandra

Department of CSE
National Institute of Technology Rourkela

Orissa -769008
+91-9861286202

pushpendrachandra@gmail.com

Bibhudatta Sahoo
Department of CSE

National Institute of Technology Rourkela

Orissa -769008
+91-6612462358

bdsahu@nitrkl.ac.in

ABSTRACT
Load balancing techniques play a very important role in

developing high-performance cluster computing platforms. Many

load balancing polices achieve high system performance by

increasing the utilization of CPU, memory, or a combination of

CPU and memory. However, these load-balancing policies are

less effective when the workload comprises of a large number of

I/O-intensive tasks and I/O resources exhibit imbalanced load.

The I/O intensive tasks running on a heterogeneous cluster needs

effective usage of global I/O resources. We have proposed a load-

balancing scheme based upon system heterogeneity and migrate

I/O-intensive tasks from with heavily loaded nodes to under

loaded nodes. The proposed load balancing scheme can minimizes

the average slow down of all parallel jobs running on a cluster and

reduces the average response time of the jobs.

Categories and Subject Descriptors
D.3.3 [Distributed System]

General Terms
Algorithms

Keywords
Heterogeneous cluster, I/O-intensive load, Load balancing

1. INTRODUCTION
Load balancing scheme are widely recognized as important

techniques for the efficient utilization of resources in network of

workstations or cluster. Clusters have evolved to support

applications ranging from supercomputing and mission-critical

software, through web server and e-commerce, to high-

performance database applications [12]. A cluster consist of a

number of node has a combination of multiple types of resources,

such as CPU, memory, disk and network connectivity. In a cluster

system, load balancing schemes can improve system performance

by attempting to assign a work to machines with idle or under-

utilized resources. Many load balancing polices are achieved high

system performance by increasing the utilization of CPU,

memory, or a combination of both CPU and memory resources.

While these load-balancing policies are very effective in

increasing the utilization of resources in heterogeneous cluster

system, they have ignored one type of resource, namely disk I/O.

The impact of disk I/O on overall system performance is

becoming increasingly significant as more and more data intensive

or I/O-intensive applications are running on heterogeneous

cluster. This makes storage device a likely performance bottleneck

under I/O-intensive workload. Therefore, we believe that any

load balancing scheme to be effective in this new application

environment; it must be made I/O –aware. Typical example of

I/O-intensive application includes long running simulations of

time-dependent phenomena that periodically generate snapshots

of their state, archiving of raw and processed remote sensing,

biological sequence, multimedia and web based applications.

These applications share a common feature in that their storage

and computational requirements are extremely high. Therefore,

the high performance of I/O-intensive applications heavily

depends on the effective usage of storage, in addition to that of

CPU and memory.

In this paper we proposed a novel load balancing algorithm for

all job coming to cluster. And it will balance the load in such a

way that I/O, CPU and memory resource at each node can be

simultaneously well utilized.

The rest of the paper is organized as follows. In the section 2
that follows, related work in the literature is briefly reviewed. In

section 3, we describe the system model. In section 4 we describe

the novel load balancing algorithm for I/O intensive tasks. Finally

section 5 concludes the paper by summarizing the main
contribution of this paper

2. RELATED WORK
Load balancing strategies try to ensure that every nodes in the

cluster does almost the same amount of work at any point of time.

There are many approaches to balancing load in disk I/O resource

can be found in literature [1][2][3][4][6][10]. Xiao Qin[1]

proposed an algorithm IOLB and compare this algorithm with

conventional CPU and memory-aware load balancing schemes

and shows that the IOLB algorithm significantly improves the

resource utilization of a cluster computing platform under I/O-

intensive workload.

Mais Nijim Tao Xie, 2005 developed a performance model for

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICAC Conference’08, February 21–22, 2008, Chikhli, M.S.INDIA,

© Copyright 2008 Research Publications, Chikhli, India

1

1

1st International Conference on Advances in Computing, Chikhli, India, 21-22 February 2008

self-manage computer systems under dynamic workload

condition, where both CPU and I/O intensive applications are

running in computer systems. They show that the controller is

capable of achieving high performance for computer systems

under workloads exhibiting high variability.

Xiao Qin et al.[4] proposed a feedback control mechanism to

improve the performance of a cluster by adaptively manipulating

the I/O buffer sizes. The primary objective of this mechanism is to

minimize the number of page faults for memory-intensive jobs

while improving the buffer utilization of I/O-intensive jobs. The

feedback controller judiciously configures the weights to achieve

an optimal performance. Meanwhile under a workload where the

memory demand is high, the buffer sizes are decreased to allocate

more memory for memory-intensive jobs, thereby leading to a low

page-fault rate. In the above scheme increasing attention has been

drawn toward I/O-intensive application. Kandaswamy et al.[10]

modeled the load balancing as an optimization problem and

effectiveness of load balancing scheme against architecture

scalability. They evaluated their proposed techniques using five

I/O-intensive applications from both small and large applications

domain.

Xiao Qin et al.[6] developed two effective I/O-aware load-

balancing schemes, which make it possible to balance I/O load by

assigning I/O-intensive sequential and parallel jobs to nodes with

light I/O loads. However, the above techniques are insufficient for

automatic computing platforms due to the lack of adaptability. We

proposed a algorithm that take all the parallel task and it balance

the I/O-intensive load with effective manner.

3. SYSTEM MODEL
In this study we have considered a cluster computing platform

of heterogeneous system in which set of N={N1 ,N2 , N3 …..Nn}

n nodes are connected via a high speed network. Each node in

this model composed of a combination of various resources

including processor, memory, disk , network connectivity and

every node is differ with their processor, memory and disk. A

dynamic load distribution algorithm must be general, adaptive,

stable, fault tolerant and transparent to applications. Load

balancing algorithms can be classified as (i) global vs. local, (ii)

centralized vs. decentralized, (iii) Non-cooperative vs.

cooperative, and (iv) adaptive vs. non-adaptive[13]. In this paper

we have used centralized load balancing algorithm for

Heterogeneous computing clusters. Load manager in the master

node in the cluster is is responsible for load balancing and

monitoring available resources of the node.

Load manager process all arrival task in a FCFS manner.

Master node communicates the assimilated information to all

individual computing nodes, so that the nodes know the system

state, when they have to migrate their process or accept new

process. The computing nodes in the cluster solely depend upon

the information available with master node for allocation decision.

Task are to be executed in the cluster are arrives at master

node. We shall assume that all arrival streams are Poisson process.

Figure 1 shows the queuing model for load manager. After being

handled by load manager task are dispatched to one of the best

suited node for execution. T he nodes, each of which maintains a

local queue, can execute task in parallel. Load manger is

composed of three modules: (1) predictor; (2) selector; and (3)

scheduler;

 Figure 1. Queuing model for load manager

When a new task is arrives at load manger, the identification of

program being executed is sent to the predictor, which predicts

the resource requirements of the task. These predicted values are

then fed to the selector, which selects the node with under utilized

and well suited for its requirement resource.

Predictor is used to predict the file I/O, CPU and memory

requirements of a task. For this we use prediction scheme

described in [7], which uses a statistical pattern-recognition to

predict the task requirements. The prediction is made at the

beginning of a process’s life, given the identity of the program

being executed. The prediction scheme consists of two parts. In

the first part, which is an off-line procedure, resource usage states

are determined for program executions of a given system.

Resource usage data is collected for all processes that ran on the

system for a few days, this data is analyzed as follows: Each

process is represented by a point in a three-dimensional space,

where each dimension corresponds to the resources of the system,

i.e., the CPU, the memory, and the file I/O. A statistical clustering

algorithm is then used to identify the high density regions of this

three-dimensional space (i.e., determine the number of such

regions and the means of their centroids). By definition, most

program executions occur in or near these regions, and therefore

they are referred to as the resource usage states.

In the second part, which is an on-line procedure, actual

prediction is made. The prediction scheme builds and maintains a

state-transition model for each program on an on-going basis. The

states of the model are the resource usage states defined above.

Suppose a program has been executed several times, providing a

sequence of execution instances. First, the sequence of execution

instances is converted into a sequence of resource usage states by

assigning the nearest resource usage state to each execution

instance. The state transition probabilities are then calculated from

this new sequence to build a state-transition model for the

program. The prediction is a weighted mean calculation of

resource requirements using the program’s current state-transition

model and the actual resource usage in its most recent execution

[7].

Then predicted value is fed to the selector, which responsible

2

1st International Conference on Advances in Computing, Chikhli, India, 21-22 February 2008

for selecting the best node among all nodes. Scheduler is

responsible to dispatch the task to the node selected by the

selector. On task assigned to the selected node for execution,

Load manager update the load status table.

4. I/O-INTENSIVE LOAD BALANCING

ALGORITHM
We proposed an algorithm for a wide variety of workload

conditions including I/O-intensive, CPU-intensive and memory-

intensive load. The objective of the proposed algorithm is to

balance the load of three types of resources across all nodes in a

cluster. In this study analytically evaluate the performance of

algorithm; we are focused on a remote execution mechanism in

which task can be running on a remote node where it started

execution. Thus preemptive migrations of tasks are not supported

in our algorithm.

Algorithm: IO load balancing

Input: a job with task j submitted to load manger

1. for each task do

2. Predict the value of IO, CPU and memory requirements

3. if),,max(MEMREQ
j

CPUREQ
j

IOREQ
j

IOREQ
j
=

4. choose set of k node such that node)(min
1

IO

a

n

a

k

IO LL
=

=

satisfy the all three requirements

5. calculate response time
k

jR of task j in set of k node

6. if)(min
1

b

j

k

b

i

j RR
=

= then

7. dispatch the task to node Ni and execute there

8. else if),,max(MEMREQ
j

CPUREQ
j

IOREQ
j

MEMREQ
j
=

9. choose set of k node such that node)(min
1

MEM

a

n

a

k

MEM LL
=

=

satisfy the requirements

10. calculate response time
k

jR of task j in set of k node

11. if)(min
1

b

j

k

b

i

j RR
=

= then

12. dispatch the task to node Ni and execute there

13. else if),,max(MEMREQ
j

CPUREQ
j

IOREQ
j

CPUREQ
j
=

14. choose set of k node such that node)(min
1

CPU

a

n

a

k

CPU LL
=

=

satisfy the requirements

15. calculate response time
k

jR of task j in set of k node

16. if)(min
1

b

j

k

b

i

j RR
=

= then

17. dispatch the task to node Ni and execute there

18. update the load status;

19. end for

Figure 2. Pseudo code of the IO load balancing algorithm

To describe this algorithm first we introduce the following

three load indices with respect to I/O, CPU, memory resources.

(1) CPU load of a node is characterized by the length of CPU

waiting queue, denoted as LCPU(i). to identify whether node i’s

CPU is overloaded. (2) Memory load of a node is the sum of the

memory space allocated to all the task running on that node. The

memory load of node i is denoted as LMEM(i) (3)I/O load measures

two types of I/O accesses, i.e. (a) implicit I/O request includes by

page fault; (b) explicit I/O request issued from tasks. IO load

index of node i is denoted as LIO(i).

Now we describe the load balancing algorithm of which the

pseudo code is shown in Figure 2. Given a set of independent

tasks submitted to the load manager. Our algorithm make an effort

to balance the load of the cluster resource’s by allocating each

task to a node such that the expected response time is minimized.

For each task t our algorithm repeatedly performs steps 2-19

described follows:

First it will predict all three IOREQj, CPUREQj, MEMREQj

requirements of task j from set of task by step 2. This three

predicted value are important because according to this value task

execute with best suited node. Step 3 is used to find the highest

requirements of task and it is responsible for initiating the process

of balancing I/O resources. Step 4-7 are used to balance the I/O

load. In step 4 If the I/O requirements of task j are high then it

will find the set of node where I/O load is minimum and satisfy all

three requirements. Step 5 calculates the response time of task

with all selected node. Step 6 if the response time is minimum

with particular node then task will send to that specific node.

Second, step 8 if the memory requirements of task are high

then it will perform to step 9-12 to balance memory load among

all nodes. Page fault behaviors occur when the memory space

allocated by running tasks exceeds the amount of available

memory. That’s why it is necessary to balance memory to

minimize the page fault. Step 9 searches the set of node with

minimum memory load and satisfies all three resource

requirement of task. Step 10 calculate the response time of task

with all selected node then step 11 find the minimum response

time of task from selected node then step 12 dispatch the to

selected node.

Third, step 13 is responsible if the CPU requirements of task is

high and step 14 is search the set node with minimum CPU load

among all node that satisfy all requirements of task. And then

3

1st International Conference on Advances in Computing, Chikhli, India, 21-22 February 2008

calculate the response time of task in each selected node. Step16

find node that gives minimum response time to execute the task.

Step 17 dispatches the task to the selected node. Last step 21

maintains updated load information that is send to the load

manger.

5. CONCLUSION
Cluster computing has emerged as a result of the convergence

of several trends, including the availability of inexpensive high

performance microprocessors and high speed networks, the

development of standard software tools for high performance

distributed computing, and the increasing need of computing

power for computational science and commercial applications.

Even though there are number of different dynamic load

balancing techniques for cluster systems, their efficiency depends

topology of the communication network that connects nodes. This

research has developed an efficient load-balancing algorithm for

I/O intensive tasks that uses a new procedure for calculating the

load at individual node. The proposed load balancing scheme aim

to achieve the effective usage of global disk resources in the

cluster. This can minimizes the average slow down of all parallel

jobs running on a cluster and reduces the average response time of

the jobs. Future studies can be performed to evaluate the

effectiveness of proposed approach in following directions: (i) on

scalability of cluster size, (ii) dependent tasks and periodic tasks

with and without dead line, (iii) communication latency and type

switching technology used in cluster.

6. ACKNOWLEDGMENTS
This research was supported by R&D project grant 2005-2008

of MHRD Government of India with the title as “Fault Tolerant

Real Time Dynamic Scheduling Algorithm For Heterogeneous

Distributed System” and being carried out at department of

Computer Science and Engineering, NIT Rourkela.

7. REFERENCES
[1] Xiao Qin.2006. Performance comparisons of load balancing

algorithms for IO-intensive workloads on clusters,

Journal of Network and computer applications

doi:10.1016/j.jnca.2006.07.001.

[2] Xiao Qin.2003, Dynamic Load Balancing for IO-Intensive
Tasks on Heterogeneous Clusters, Proceeding of the 2003

International Conference on High Performance

Computing(HiPCO3)

[3] Xiao Qin ,Hong Jiang ,Yifeng Zhu ,David R.
Swanson.2003, A Dynamic Load Balancing Scheme for IO-

Intensive Applications in Distributed Systems, Proceeding

of 2003 international conference on Parallel processing

Workshop(ICPP 2003 Workshop)

[4] Xiao Qin, A feedback control mechanism for balancing I/O-
intensive and memory-intensive applications on cluster,

parallel and distributed computing practices journal

[5] Paul Werstein ,Hailing Situ and Zhiyi Huang.2006 , Load
balancing in cluster computer, Proceeding of the seventh

international conference on Parallel and Distributed

Computing, Applications and Technology (PDCAT’06)

[6] Xiao Qin, H.Jiang, Y.Zhu and D.swanson.2003, Toward
load balancing support for I/O intensive parallel jobs in a

cluster of workstation, Poc. Of the 5th IEEE international

conference cluster computing(cluster 2003) ,Hong Kong,

Dec. 1-4-2003

[7] Kumar K. Goswami, Murthy Devarakonda and Ravishankar
K. Iyer.1993, Prediction–baesd dynamic load-sharing

heuristics, IEEE transaction on parallel and distributed

systems, VOL.4, No.6, june 1993

[8] Xiao Qin, An availability-aware task scheduling strategy for
heterogeneous systems, IEEE transaction on computers

[9] Mohammed Javeed Zaki, Wei Li, Srinivasan Parthasarathy,
A Review of Customized Dynamic Load Balancing for a

Network of Workstations

[10] M. Kandaswamy, M.Kandemir, A.Choudhary,
D.Benholdt.1998, Performance implication of architectural

and software techniques on I/O intensive application, Proc

International conference parallel processing 1998

[11] Neeraj Nehra, R.B.Patel, V.K. Bhat.2007 ,A Framework for
Distributed Dynamic Load Balancing in Heterogeneous

Cluster,Journal of computer science 3(1):14-24-2007

[12] Marc H. Willebeek-LeMair.1993, Strategies for Dynamic
Load Balancing on highly parallel computer IEEE

Transactions on parallel and distributed systems Vol. 4,No.

9, September 1993.

[13] Jie Wu.1999 Distributed system design,(CRC press, 1999)

[14] Buyya, R.1999 High Performance Cluster Computing:
Architectures and Systems .

4

