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Abstract 

 
In this paper, methods of generating self-invertible matrix for Hill Cipher algorithm 
have been proposed. The inverse of the matrix used for encrypting the plaintext 
does not always exist. So, if the matrix is not invertible, the encrypted text cannot 
be decrypted. In the self-invertible matrix generation method, the matrix used for 
the encryption is itself self-invertible. So, at the time of decryption, we need not to 
find inverse of the matrix. Moreover, this method eliminates the computational 
complexity involved in finding inverse of the matrix while decryption. 
 
Keywords: Hill Cipher, Encryption, Decryption, Self-invertible matrix. 

 
 

1. INTRODUCTION 

Today, in the information age, the need to protect communications from prying eyes is greater 
than ever before. Cryptography, the science of encryption, plays a central role in mobile phone 
communications, pay-TV, e-commerce, sending private emails, transmitting financial information, 
security of ATM cards, computer passwords, electronic commerce and touches on many aspects 
of our daily lives [1]. Cryptography is the art or science encompassing the principles and methods 
of transforming an intelligible message (plaintext) into one that is unintelligible (ciphertext) and 
then retransforming that message back to its original form. In modern times, cryptography is 
considered to be a branch of both mathematics and computer science, and is affiliated closely 
with information theory, computer security, and engineering [2]. 
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Conventional Encryption is referred to as symmetric encryption or single key encryption. It can be 
further divided into categories of classical techniques and modern techniques. The hallmark of 
conventional encryption is that the cipher or key to the algorithm is shared, i.e., known by the 
parties involved in the secured communication. Substitution cipher is one of the basic 
components of classical ciphers. A substitution cipher is a method of encryption by which units of 
plaintext are substituted with ciphertext according to a regular system; the units may be single 
letters (the most common), pairs of letters, triplets of letters, mixtures of the above, and so forth. 
The receiver deciphers the text by performing an inverse substitution [3]. The units of the plaintext 
are retained in the same sequence as in the ciphertext, but the units themselves are altered. 
There are a number of different types of substitution cipher. If the cipher operates on single 
letters, it is termed a simple substitution cipher; a cipher that operates on larger groups of letters 
is termed polygraphic. A monoalphabetic cipher uses fixed substitution over the entire message, 
whereas a polyalphabetic cipher uses a number of substitutions at different times in the 
message— such as with homophones, where a unit from the plaintext is mapped to one of 
several possibilities in the ciphertext. Hill cipher is a type of monoalphabetic polygraphic 
substitution cipher.  
 
In this paper, we proposed novel methods of generating self-invertible matrix which can be used 
in Hill cipher algorithm. The objective of this paper is to overcome the drawback of using a 
random key matrix in Hill cipher algorithm for encryption, where we may not be able to decrypt 
the encrypted message, if the matrix is not invertible. Also the computational complexity can be 
reduced by avoiding the process of finding inverse of the matrix at the time of decryption, as we 
use self-invertible key matrix for encryption. 
 
The organization of the paper is as follows. Following the introduction, the basic concept of Hill 
Cipher is outlined in section 2. Section 3 discusses about the modular arithmetic. In section 4, 
proposed methods for generating self-invertible matrices are presented. Finally, section 5 
describes the concluding remarks. 
 

2. HILL CIPHER 

It is developed by the mathematician Lester Hill in 1929. The core of Hill cipher is matrix 
manipulations. For encryption, algorithm takes m  successive plaintext letters and instead of that 

substitutes m  cipher letters. In Hill cipher, each character is assigned a numerical value like 

25,...,1,0 === zba [4]. The substitution of ciphertext letters in the place of plaintext letters leads 

to m  linear equation. For 3=m , the system can be described as follows: 
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This case can be expressed in terms of column vectors and matrices: 
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or simply we can write as  KPC = , where C  and P  are column vectors of length 3, representing 

the plaintext and ciphertext respectively, and K  is a 33×  matrix, which is the encryption key. All 

operations are performed 26mod  here. Decryption requires using the inverse of the matrix K . 

The inverse matrix 1−
K  of a matrix K  is defined by the equation IKKKK

-- == 11 , where I  is 
the Identity matrix. But the inverse of the matrix does not always exist, and when it does, it 

satisfies the preceding equation. 1−
K  is applied to the ciphertext, and then the plaintext is 

recovered. In general term we can write as follows: 

For encryption: pk  K P EC == )(  … (3) 
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For decryption: PKKCKCDP p
--

k ====
11

)(  … (4) 

 

3. MODULAR ARITHMETIC 

The arithmetic operation presented here are addition, subtraction, unary operation, multiplication 
and division [5]. Based on this, the self-invertible matrix for Hill cipher algorithm is generated. The 
congruence modulo operator has the following properties: 

1. ( )banpba −≡ ifmod  

2. ( ) ( ) pbapbpa modmodmod ≡⇒=  

3. pabpba modmod ≡⇒≡  

4. pcapabpba modmodandmod ≡⇒≡≡  

 

Let [ ]app −= ,...,1,0Z  the set of residues modulo p . If modular arithmetic is performed within this 

set pZ , the following equations present the arithmetic operations: 

1. Addition : ( ) ( ) ( )[ ] ppbpapba modmodmodmod +=+  

2. Negation : )mod(mod pappa −=−  

3. Subtraction : ( ) ( ) ( )[ ] ppbpapba modmodmodmod −=−  

4. Multiplication : ( ) ( ) ( )[ ] ppbpapba modmodmodmod ∗=∗  

5. Division : ( ) cpba =mod/  when ( ) pcba mod∗=  

 
The following Table exhibits the properties of modular arithmetic. 
 

Property Expression 

Commutative Law 
( ) ( )
( ) ( ) pxpx

pxpx

modmod

modmod

ωω

ωω

∗=∗

+=+
 

Associative law ( )[ ] ( )[ ] pyxpyx modmod ++=++ ωω  

Distribution Law ( )[ ] ( ){ } ( ){ }[ ] ppypxpyx modmodmodmod ∗∗∗=+∗ ωωω  

Identities 
( )

( ) papaand

papa

modmod1

modmod0

=∗

=+
 

Inverses 
For each ,pZx ∈ ∃  y  such that ( ) xypyx −==+ then0mod  

For each pZx ∈  ∃  y  such that ( ) 1mod =∗ pyx  

Table 1: Properties of Modular Arithmetic 

 

4. PROPOSED METHODS FOR GENERATING SELF-INVERTIBLE MATRIX 

As Hill cipher decryption requires inverse of the matrix, so while decryption one problem arises 
that is, inverse of the matrix does not always exist [5]. If the matrix is not invertible, then 
encrypted text cannot be decrypted. In order to overcome this problem, we suggest the use of 
self-invertible matrix generation method while encryption in the Hill Cipher. In the self-invertible 
matrix generation method, the matrix used for the encryption is itself self-invertible. So, at the 
time of decryption, we need not to find inverse of the matrix. Moreover, this method eliminates the 
computational complexity involved in finding inverse of the matrix while decryption. 
 

A  is called self-invertible matrix if 1−= AA . The analyses presented here for generation of self-
invertible matrix are valid for matrix of +ve integers, that are the residues of modulo arithmetic on 
a prime number. 
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4.1 Generation of self-invertible 22×  matrix 

Let 



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


=
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aa

aa
A , then, 
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A , where, a∆  is the )(tdeterminan A  

A  is said to be self-invertible if 1−= AA  

So, aaa ∆−= /1212  & aaa ∆−= /2121  

0and1 22112211 =+⇒−=−=∆∴ aaaaa  … (5) 

 
Example: (For modulo 13) 
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4.2 Generation of self-invertible 33×  matrix 

Let 
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where 11A  is a 11×  matrix = [ ]11a , 12A  is a 21×  matrix = [ ]1312 aa , 

21A  is a 12 ×  matrix = 








31
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a
 and 22A  is 22 ×  matrix = 
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If A  is self-invertible then, 
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2
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,0,
 … (6) 

Since 11A  is 11×  matrix = [ ]11a  and ( ) 0221121 =+ AIaA  

For non- trivial solution, it is necessary that 02211 =+ AIa  

That is −=11a (one of the Eigen values of 22A ) 

1221AA  can also be written as 
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So 1221 AA  is singular and  

2
221221 AIAA −=  … (7) 

Hence 22A  must have an Eigen value 1± . It can be shown that [ ] 21121221 AAAATrace = . 

Since it can be proved that if −== 1111 aA (one of the Eigen values of 22A ),  

then, any non-trivial solution of the equation (7) will also satisfy  
2

112112 1 aAA −=  … (8) 

 
Example: (For modulo 13) 

Take 
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
=
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22A  which has Eigen value =λ 1 and 7 

−=11a 7 = 6 or −1 = 12 
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51221 =aa . So, 521 =a  and 112 =a  

121321 =aa . So, 5
5

12
13 ==a and 5

1

5
31 ==a  

So the matrix will be




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

=
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A . Other matrix can also be obtained if we take 1211 =a . 

 
4.3 Generation of self-invertible 44×  matrix 

Let 
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Then, 
2

112112 AIAA −= , 022121211 =+ AAAA , 

021221121 =+ AAAA , and 2
221221 AIAA −=  

In order to obtain solution for all the four matrix equations, 2112 AA  can be factorized as 

( )( )11112112 AIAIAA +−=  … (9) 

So, if ( )kAIA 1112 −=  or ( )kAI 11+  

( )
k

AIA
1

1121 +=  or ( )
k

AI
1

11− , where k  is a scalar constant. 

Then, ( ) ( ) 2211111122121211 AkAIkAIAAAAA −+−=+  or ( ) ( )112211 AIAAk −+  

So, IAorAA ==+ 112211 0  … (10) 

Since IA =11  is a trivial solution, then, 02211 =+ AA is taken. 

When we solve the 3
rd

 and 4
th
 matrix equations, same solution is obtained. 

 

Example: (For Modulo 13) 

Take 
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4.4 A general method of generating an even self-invertible matrix 

Let A=
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where n  is even and 2221,1211 &, AAAA  are matrices of order 
22

nn
×  each. 
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So, ( )( )1111
2
112112 AIAIAIAA +−=−=  … (11) 

 

If 12A  is one of the factors of 2
11AI −  then 21A  is the other. 

Solving the 2
nd

 matrix equation results 02211 =+ AA .  

Then form the matrix. 
 
Algorithm: 

1. Select any arbitrary 
22

nn
×  matrix 22A . 

2. Obtain 2211 AA −=  

3. Take ( ) ( )111112 or AIkAIkA +−=  for k  a scalar constant.  

4. Then ( ) ( )111121

1
or

1
AI

k
AI

k
A −+=  

5. Form the matrix completely. 
 
Example: (For modulo 13) 

Let 
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4.5 A general method of generating self-invertible matrix 

Let A=
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11A  is a 11×  matrix = [ ]11a , 12A  is a )1(1 −× n  matrix = [ ]naaa 11312 ...  
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So, 
2

11
2

112112 1 aAIAA −=−=  … (12) 

and ( ) 0221112 =+ AIaA  … (13) 

Also, −=11a (one of the Eigen values of 22A  other than 1) 

Since 1221AA  is a singular matrix having the rank 1  

and 2
221221 AIAA −=  … (14) 

So, 
2

22A  must have rank of )2( −n  with Eigen values +1 of )2( −n  multiplicity. 

Therefore, 22A  must have Eigen values 1± . 

It can also be proved that the consistent solution obtained for elements 21A  & 12A  by solving the 

equation (14) term by term will also satisfy the equation (12). 
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Algorithm: 

1. Select 22A , a non-singular )1()1( −×− nn  matrix which has )2( −n  number of Eigen values 

of either +1 or −1 or both. 

2. Determine the other Eigen value λ  of 22A . 

3. Set λ−=11a . 

4. Obtain the consistent solution of all elements of 21A  & 12A  by using the equation (14). 

5. Formulate the matrix. 
 
Example: (For modulo 13) 
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4.6 Another method to generate self-invertible matrix 
Let A  be any non-singular matrix and E  be its Eigen matrix. Then we know that λEAE = , 

where λ  is diagonal matrix with the Eigen values as diagonal elements. E  the Eigen matrix is 

non-singular. 
 

Then, 1−= EEA λ  … (15) 

and ( ) 1111111 −−−−−−− === EEEEEEA λλλ  … (16) 

So, 1−= AA only when 1−= λλ  
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Algorithm: 

1. Select any nonsingular matrix E . 
2. Form a diagonal matrix λ  with 1±=λ  but all value of λ  must not be equal. 

3. Then compute AEE =−1λ . 

 
Example: (For modulo 13) 
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5. CONCLUSION 

This paper suggests efficient methods for generating self-invertible matrix for Hill Cipher 
algorithm. These methods encompass less computational complexity as inverse of the matrix is 
not required while decrypting in Hill Cipher. These proposed methods for generating self-
invertible matrix can also be used in other algorithms where matrix inversion is required. 
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