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An Extended Complex Kalman Filter for Frequency
Measurement of Distorted Signals

P. K. Dash, R. K. Jena, G. Panda, and Aurobinda Routray

Abstract—The design of an extended complex Kalman filter for
the measurement of power system frequency has been presented
in this paper. The design principles and the validity of the model
have been outlined. A complex model has been developed to track
a distorted signal that belongs to a power system. The model in-
herently takes care of the frequency measurement along with the
amplitude and phase of the signals. The theory has been applied to
standard test signals representing the worst-case measurement and
network conditions in a typical power system. The proposed algo-
rithm is suitable for real-time applications where the measurement
noise and other disturbances are high. The complex quantities can
be conveniently handled using a floating point processor. Compar-
ison of the results of the proposed method with those obtained from
a real extended Kalman filter reveals the superior performance of
the former method.

Index Terms—Covariance setting, extended complex Kalman
filter, frequency estimation, noise rejection, power system mea-
surements.

I. INTRODUCTION

I N THIS paper, the method presented deals with the mea-
surement of the parameters of a power system signal which

is usually contaminated with noise and high disturbances. The
amplitude and phase estimation of a digitized signal has been
an important area of research for the past several years, and the
methods have been almost standardized for signals with known
frequencies. However, if the frequency is not knowna priori it
becomes a formidable task to accurately measure the amplitude
and phase. It has been a perpetual problem even now to correctly
estimate the frequency of an incoming signal from its sampled
values under high noise conditions. The reason for this is the
association of severe nonlinearity in the modeling process. On
the other hand the philosophy of protection for power systems
has been undergoing a change. The modern protective relays
employ sophisticated signal processing algorithms to accurately
estimate the system conditions from the measured voltage and
current signals. The pitfalls in these schemes stem from the fre-
quency measurement algorithm which, under transient and ab-
normal conditions, cannot sense the correct value.

Many algorithms have been reported in the literature for mea-
surement and estimation of frequency.[1]–[4]. A comparative
study among four different trackers has been outlined in [5]. In
this paper, the performances of 1) an adaptive notch filter, 2)
a multiple frequency tracker, 3) an adaptive IIR filter, and 4)

Manuscript received June 15, 1998; revised March 4, 2000.
P. K. Dash, R. K. Jena, and G. Panda are with the Regional Engineering Col-

lege, Rourkela - 769008, India.
A. Routray is with the Indian Institute of Technology, Kharagpur, India.
Publisher Item Identifier S 0018-9456(00)04805-1.

Fig. 1. The hysteresis band for resetting the covariance matrix.

a hyperstable adaptive line enhancer have been presented. The
complex Kalman filtering has been used in [6] to estimate the
frequency of the signals corrupted with white noise. The present
paper is based on the fundamental work carried out in [6]. How-
ever, in practice the real and imaginary signals can not be ob-
tained simultaneously. Therefore, keeping in view the measure-
ment of power system signals, the signal model has been modi-
fied. The output equation is rewritten to calculate the real signal.

II. SIGNAL MODEL

The nonlinear state space description of the power system
signal can have various forms. Numerous linear as well as non-
linear models have been proposed to estimate the amplitude,
phase and frequency of a single sinusoid. This signal can also
be represented by a complex model. With availability of floating
point DSP processors the computation in the complex domain is
no longer a difficult task. Moreover, the complex representation
is much simpler and direct as far as the frequency measurement
is concerned. Once the signal model is established the extended
Kalman filter theory [7] can be applied to identify the filter equa-
tions and computational steps.

Let an observation signal at time be a sum of
sinusoids with additive noise

(1)

where

(2)

in which , and are amplitude, frequency and the phase
of the th sinusoid, respectively. The observation noiseis a
Gaussian white noise with zero-mean and variance.
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Fig. 2. Step down in amplitude for signal 1.

In the case of power system signals, the percentage of fre-
quency components other than fundamental is low. Therefore
these harmonic components need not be considered in the
model.

For such systems, (2) reduces to a single sinusoid

(3)

where sampling time, and the fundamental angular
frequency

The observation signal can be represented in an autoregres-
sive complex form as follows:

(4)

(5)

where

(6)

(7)

(8)

measurement noise.

The above nonlinear process can be represented as

(9)

(10)

where

(11)

(12)

(13)

Linearizing the above system and applying the extended com-
plex Kalman filter to the first-order system, a nonlinear recur-
sive filter for estimating a single complex sinusoid and its fre-
quency in white noise is obtained as follows [6]:

(14)

(15)

(16)

(17)

(18)

where
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Fig. 3. Step up in amplitude for signal 2.

The filter is nonlinear and therefore the gain and the covari-
ance matrix depend on the estimate of the state vector

.

III. SIMULATION

The following tests have been performed to evaluate the per-
formance of the above method.

Test Signal-I: Fundamental signal with white noise
[signal-to-noise ratio (SNR) 13 dB]

Zero mean Gausian white noise

of standard deviation 0.1

where
Test Signal-II: Fundamental signal with harmonics and

white noise [SNR 37 dB]

noise as above with standard deviation 0.01

where
The problem with all Kalman filter algorithms is to reset the

covariance matrix. After initial convergence the gainand the
covariance matrix settle to very small values. Subsequently
when some of the parameters (amplitude, phase, and frequency)
of the signal change, the covariance matrix has to be reset to
quickly track these values. In this paper a method based on the
magnitude of the error has been used.

The decision to set the covariance matrix to the initial value is
based on a hysteresis type decision block. The hysteresis band

is determined by the amount of noise and the nature of conver-
gence band. If the noise is estimated to be around 10% of the
amplitude, then the hysteresis band is chosen to be 20–30% of
the amplitude to avoid frequent resetting of the covariance ma-
trix. A flag is set when the error exceeds the higher threshold
and is reset when the error falls below the lower threshold.
If the flag is 1 and any of the Kalman gains are very small, then
the covariance is reset and the flag is also reset to 0 so that there
is no immediate resetting of the covariance matrix (see Fig. 1).

Generally, the frequency variation in power systems is limited
to 5 Hz. Therefore, for faster tracking the frequency is limited
to 40 Hz on the lower side and 60 Hz on the upper side. This
results in the stable operation of the filter and does not lead the
filter wayward and lose track of the desired frequency under
high noise conditions.

Two different types of test signals as above have been taken to
study the effectiveness of the proposed algorithm. In each of the
cases the fundamental amplitude and frequency are subjected to
sudden changes, and under such conditions the tracking ability
of the proposed filter is examined. The same tests are also car-
ried out using an ordinary extended Kalman filter (see the Ap-
pendix). The comparative performance has been presented in
Figs. 2–9.

Case-I: The amplitude is suddenly reduced from 1.4 p.u. to
1.0 p.u . The test is repeated for the above two types of sig-
nals, i.e., signal with and without harmonic components. For
the latter the amplitude is reduced from 1.2 p.u. to 0.8 p.u. The
signal without harmonics contains more noise as compared to
the signal with harmonics. The instantaneous waveforms have
been displayed in Figs. 2 and 3. The comparative study shows
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Fig. 4. Step up in amplitude for signal 1.

Fig. 5. Step up in amplitude for signal 2.

that the complex Kalman filter exhibits slightly inferior perfor-
mance in estimating the amplitude and frequency in the case of

the signals without harmonics. Both the filters settle down at
the new values within approximately half a cycle (about 0.01
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Fig. 6. An 8% step up in the frequency for signal 1.

Fig. 7. An 8% step up in the frequency for signal 2.

s) of the fundamental time period. The proposed complex filter
exhibits a little oscillation in the frequency during the ampli-

tude change. For the second type of signal (i.e., signal with har-
monics) the performance of the complex Kalman filter is much
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Fig. 8. Step down in frequency of signal 1.

Fig. 9. Step down in frequency of signal 2.

better. In this case the tracking time is a little over half a cycle
(about 0.011 s). The real Kalman filter is unable to track the am-
plitude with 1.2 p.u. fundamental, 0.12 p.u. third harmonic, and

0.06 p.u. fifth harmonic. However, as soon as the amplitudes
of these components are reduced to 0.8, 0.08, and 0.04, respec-
tively, the filter settles down quickly.
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Case-II: In this case, the amplitude is suddenly increased
from 1.0 p.u. to 1.4 p.u for both signals. The comparative study
shows similar performances of the filters (Fig. 4). They almost
settle within half a cycle (0.01 s) of the fundamental signal.
However, a little dent in the frequency is observed in the case
of the complex Kalman filter. For the test signal II the real
Kalman filter loses complete track of the signal with the new
value of amplitude (Fig. 5). Under identical conditions the com-
plex Kalman filter takes almost 1-cycle (0.02 s) of the funda-
mental to track the amplitude, phase and frequency of the signal
with the new amplitude.

Case-III: The frequency is suddenly increased from 50 Hz
to 54 Hz. The study shows that the complex Kalman filter ex-
hibits quicker tracking performance as compared to the ordinary
Kalman filter in the case of the signal without harmonics (Fig.
6). The proposed filter settles within 0.75 cycle (0.015 s) of the
fundamental signal. But the real Kalman filter takes over five
cycles. For the test signal-II, the latter becomes unstable after
the frequency has been increased, whereas the proposed filter
takes around three cycles to settle down at the new value of the
frequency. These waveforms are depicted in Fig. 7.

Case-IV: Fig. 8 shows the waveforms when the frequency
is suddenly reduced from 50 Hz to 46 Hz. For test signal-I the
proposed filter takes around 0.015 s (0.75 cycles) to settle at
the new value of the frequency. The real filter is slower and
takes almost one and a half cycles (0.03 s) before settling at
these values. For the test signal-II the real filter malfunctions and
fails to track after the frequency is changed. But the proposed
complex filter settles within one and a half cycles (Fig. 9).

Thus, the above results exhibit better performance of the com-
plex filter in estimating the signal frequency. Besides it is ob-
served that the real filter malfunctions and loses complete track
of the signal when the signal is contaminated with harmonics
and noise.

IV. CONCLUSION

A nonlinear filter based on the complex Kalman filter has
been proposed. The hysteresis method has been suggested for
resetting the covariance matrix, which enables fast tracking of
the frequency. The proposed filter offers superior performances
in all cases. In addition the filter involves less computation
which makes it attractive for real-time implementation. The
issues such as stability of the algorithm and performance under
other disturbances are currently under investigation.

APPENDIX

SIGNAL MODEL FORREAL EXTENDED KALMAN FILTER

Let the signal model be represented by

(A1)

where sampling time, and
the fundamental angular frequency.

The observation signal can be represented in a nonlinear state-
space model as follows:

(A2)

where

(A3)

(A4)

measurement noise

The above nonlinear process can be represented as

(A5)

(A6)

Linearizing the above system and applying the extended
Kalman filter to the first-order system, a nonlinear recursive
filter for estimating a single sinusoid and its frequency in white
noise is obtained as follows [7]:

(A7)

(A8)

(A9)

(A10)

(A11)

The initial estimate of the covariance matrixis decided by
trial and error and fixed to an identity matrix. The covariance
resetting under abnormal changing conditions is decided by the
same hysteresis method discussed earlier. The filter is nonlinear
and therefore the gain and the covariance matrix de-
pend on the estimate of the state vector .
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