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ABSTRACT 
In recent future, piezoelectric wafers are going to play a pivotal role in nondestructive evaluation (NDE) of 
structures in defence, aerospace and industrial sectors. Structural health monitoring (SHM) or integrated vehicle 
health monitoring (IVHM) requires small, light-weight, minimally invasive sensors which can be embedded in or 
mounted on the surface of the structure. Especially, for the NDE of thin-wall structure, piezoelectric wafers look 
very promising for Lamb wave excitation and sensing. Incidentally, piezoelectric wafers are normally required in 
large numbers for NDE of structures and hence, a proven and cost-effective technology of making such wafers is the 
need of the hour. Though the standard tape casting (doctor-blade) technique is expected to serve the purpose, some 
typical problems, which crop up during fabrication of PZT based wafers, need to be sorted out to make high 
performance wafers. Just by following the standard process of fabrication of alumina/zirconia substrates, one does 
not get quality products in the present case owing to volatilization of lead from PZT at the sintering temperature, 
warpage and adhesion of the wafers with the setter plate. Such problems are quite alarming in the present case as the 
effective exposed surface of a single-layer wafer is much higher compared to that of a bulk or stacked multilayered 
structure. In the present work, important processing parameters to make good quality PZT wafers have been 
discussed. The dielectric and piezoelectric properties of the wafers have been studied and compared with those of 
bulk PZT ceramics. 
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1. INTRODUCTION 
 
Piezoelectric materials are currently used in a variety of applications as sensors and actuators and they play a pivotal 
role in the arena of smart materials and structures. Generally, multilayered structure1 (alternate layers of 
piezoelectric wafers and electrodes) is preferred in most of the actuator applications so that excitation can be done at 
a low voltage. Though wafers or substrates of alumina are common items in electronic industry2-3, piezoelectric 
wafers are seldom used in real-life applications. However, recently, PZT based piezoelectric wafers have opened 
new opportunities for ultrasonic testing of structures. Piezoelectric wafer active sensors (PWAS) can act as both 
sensors and actuators. Several investigators4-6 have explored the generation of Lamb waves with PWAS. 
Piezoelectric wafers are non-intrusive, nominally invasive and non-resonant wide band devices with surface 
pinching in-plain strain and can be surface-mounted on existing structures or inserted between the layers of the lap 
joints or inside composite materials. PWAS can act as both the generator and detector of Lamb wave. Incidentally,  
guided waves (like Lamb waves in thin plates) have certain advantages for NDE of structures, e.g., they travel long 
distances and follow the contour of the structure in which they are propagating and these modes allow inspection in 
regions that are inaccessible, such as buried structures. 

 
Tape casting or doctor-blade process is generally employed to produce thin flat ceramic sheets (substrates/wafers). 
Tape-casting is advantageous for preparing relatively large-area uniform thin sheets with high density2. Tape 
casting2-7, basically, consists of preparing a suspension of a ceramic powder in a solvent with addition of dispersants, 
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binders and plasticizers. The suspension is cast onto a stationary or moving surface. After the evaporation of the 
solvent, the dried green tape is stripped from the surface followed by cutting to the appropriate shape. The green 
tapes are sintered after removal of organic components at a low temperature. Apparently, this simple process of 
making substrates/wafers turns out to be not so-simple when one tries to prepare dense flat PZT wafers. Keeping in 
mind the requirements of indigenous source of low-cost PZT wafers for NDE of thin wall structures like aircraft 
shells, pressure vessels, industrial tubes, pipes etc, we highlight in the present article the technological challenges of 
making thin, dense PZT wafers in a cost-effective way. 

 
2. EXPERIMENTAL 

 
PZT powder of composition Pb(Zr0.52Ti0.48)O3, which is close to morphotropic phase boundary and hence having 
optimum piezoelectric coefficients, was prepared by a mixed route comprising citrate-nitrate gel method followed by 
solid state mixing and calcination. The details of the processing steps have been given elsewhere8.The synthesized 
powder was characterized by an XRD (Philips) and the powder morphology was analyzed in a SEM (Leo 430i). 
 
Suspensions of PZT were prepared using reagent grade solvent consisting of an azeotropic mixture of methyl ethyl 
ketone (MEK) and ethanol (66:34 by volume). PZT and the solvent in the weight ratio of 1:15 along with 1-3 wt% 
phosphate ester (Emphos PS21-A, Witco Chemicals, USA) were ball milled for 20 h using zirconia balls to get the 
desired suspension. Electrophoretic mobility of the particles in the above suspensions was studied using a  
microelectrophoresis apparatus (Zetameter 3.0+, Zetameter Inc., USA). A typical PZT tape casting slurry was made 
as per the composition given in Table 1. An excess PbO was used as a sintering aid 9-10 in the batch composition. To 
prepare the tape casting slurry, PZT powder along with the excess PbO and dispersant was ball-milled in the solvent 
for 20 h using zirconia balls. The binder, plasticizer and homogenizer were then added to the slurry followed by 
further milling for 2 h. The viscosity of the slurry was measured by using a concentric cylinder rotational viscometer 
(VT 500 Haake, Germany) at a shear rate 40.34 s-1. The slurry was tape-cast using a moving doctor-blade at a speed 
in the range of 20-25 mm/sec. The dried tapes were cut into square shapes (10-15 mm square) and fired in air at a 
slow heating rate (5oC/h) from room temperature to 600oC so as to remove the organics. The fired tapes were then 
sintered at a temperature in the range of 1150oC-1200oC with heating rates between 150-400oC/h under controlled 
atmosphere (created by using a mixture of lead zirconate and lead oxide powders inside a closed crucible). 
 

Table 1: Composition of PZT tape casting slurry 

Ingredients Function Wt% 
PZT [Pb(Zr0.52Ti0.48)O3] Ceramic 75.00 
PbO Sintering additive 2.25 
Phosphate Ester Dispersant 1.93 (Equivalent to 

2.5 wt% of PZT) 
Methyl Ethyl Ketone (E. Merck India Ltd) + Ethanol (Bengal 
Chemicals & Pharmaceuticals Ltd) 

Solvent 14.56 

Polyvinyl Butyral (Hipol B-30, Hindustan Inks and Resins 
Ltd. Gujarat, India) 

Binder 2.47 

Polyethylene Glycol ( S. D. Fine-Chem Pvt. Ltd). Plasticizer 2.66 
Butyl Benzyl Phthalate (Merck-Schuchardt) Plasticizer 0.74 
Cyclohexanone (S. D. Fine-Chem Pvt. Ltd.) Homogenizer/ 

Skin inhibitant 
 

0.39 

 
The bulk density of the fired wafers was calculated geometrically and the microstructures were viewed in the SEM. 
The dielectric studies of the fired wafers were made using a Hioki 3532-50 LCR Hitester in the frequency range of 
100-1MHz after electroding with gold paste. The piezoelectric strain constant (d33) was measured by a d33 meter 
(Pennbeker 8000 d33 tester) after poling the samples in silicone oil at a temperature of 120oC at 3kV/mm field for 30 
min. The planer electrochemical coupling coefficient (kp) was determined from the resonance (fr) and antiresonance 
(fa) frequencies using the formula 
 

  
r

p f
fK ∆

= 51.2                  (1) 
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 where  is equal to f∆ ( ra ff )− . Ferroelectric hysteresis studies of the wafers were carried out in a loop tracer 
(Precision LC, Radiant Technologies Inc.) 
 

3. RESULTS & DISCUSSION 
 
The synthesized PZT powder was phase pure as observed from the X-ray diffractorgram (Fig.1). The average 
particle size of synthesized PZT powder was around 200 nm (Fig.2). The electrophoretic mobility (Fig.3) and the 
viscosity of the slurry (Fig.3) justify the amount of dispersant added in order to get proper dispersion of the slurry. 
Apparently, making satisfactory tapes by controlling the slurry rheology12 does not ensure good quality final 
products. Some of the problems unique to fabrication of dense, flat PZT wafers are given below. 
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Figure 2: SEM photograph of synthesized powder. 
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Figure 3: Electrophoretic mobility and viscosity of the slurry with varying amounts of phosphate ester. 
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Table 2: Characteristics of Sintered Wafers Under Varying Processing Parameters 
 

 

Sorrounding  
Powder, 
[Batch wt / 
Powder wt] 

Firing Schedule PbO (wt%) 
excess or 
deficient (with 
respect to PZT) 
after firing 

Remarks 

*PZ:PbO (1:1) ,  
 [0.064] 

Heated @ 150o C/h to  1200o C (3h 
soaking) and cooled @ 150o C/h  

- 6.7 to -7.4 High PbO loss 

PZ:PbO (1:1) ,  
 [0.0213] 

Heated @ 150o C/h to  1200o C (3h 
soaking) and cooled @ 150o C/h 

- Tapes stick to the setter   
 Plate#  

PZ:PbO (1:1) ,  
 [0.0213] 

Heated @ 150o C/h to  1200o C (3h 
soaking) and cooled @ 150o C/h 

- Tapes stick to the setter   
 plate  

PZ:PbO (1:1) ,          
 [0.064] 

Heated @ 300o C/h to  1200o C (4min 
soaking) and cooled @ 300o C/h 

 Tapes stick to the setter   
 plate  

PZT:PbO (1:1) ,        
[0.064] 

Heated @ 300o C/h to  950o C (1 h) 
then heated @ 300o C/h to 1200o C  
(10 min) and cooled @ 300o C/h 

-2.38 to -2.5 Could not be removed from 
the setter plate 

PZT:PbO (1:1) ,        
 [0.08] 

Heated @ 300o C/h to  950o C (1 h) 
then heated @ 300o C/h to 1200o C  
(10 min) and cooled @ 300o C/h 

- 1.8 to -2.0 Some regions of the tapes 
stuck to the setter plate 
while others could be easily 
removed. 

PZT:PbO (1:1) ,        
[0.213] 

Heated @ 300o C/h to  950o C (1 h) 
then heated @ 300o C/h to 1175o C  
(10 min) and cooled @ 300o C/h 

- 1.4 to -1.6 Tapes could be removed 
easily from the setter plate. 

PZT:PbO (1:1) ,        
[0.213] 

Heated @ 400o C/h to  950o C (1 h) 
then heated @ 400o C/h to 1175o C  
(10 min) and cooled @ 400o C/h 

+ 0.37 to -0.47 Tapes could be removed 
easily from the setter plate. 

PZT:PbO (1:1) ,        
[0.085] 

Heated @ 400o C/h to  950o C (1 h) 
then heated @ 400o C/h to 1175o C  
(10 min) and cooled @ 400o C/h 

+ 1.08 to +1.51 Still some tapes got stuck to 
the substrate while others 
could be easily removed. 
 

 
(*PZ = PbZrO3)                                                                                                                                    (#dense zirconia) 
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Figure 4: Polarization – electric field hysteresis of PZT wafers. 
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Table 3: Dielectric and piezoelectric properties of PZT wafers and bulk samples 
 
 

 
 
 
 
 
 
 
 
 
 
 
               
 

Sample 
Code 

Excess / 
deficient 

PbO 
content*  
(wt %) 

Density 
(% of ρth) 

Dielectric 
Constant 

(K) 
( at 1 kHz) 

Dissipation  
Factor (D) 
( at 1 kHz) 

d33 
(pC/N) 

 

Coupling 
Coefficient 

(kp) 

a 
(wafer) 

-1.523 
 

97.03% 668.41 0.031 220-230  0.35 

b 
(wafer) 

-1.405 
 

96.39% 613.00 0.029 201-208  0.35 

c 
(wafer) 

-0.50 96.19% 570.98 0.037 200-205  
 

0.35 

d 
(wafer) 

+1.26 95.35% 479.83 0.073 142-146  0.31 
 

Bulk# Near  
morphotropic 

- 612.00 0.004 223  0.52 

(# as per ref 17) 
(* with respect to morphotropic PZT) 
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Figure 5: Variation of dielectric constant and dissipation factor of the wafers with frequency. 
4. CONCLUSION 

 wall structures in aerospace, industrial and civil sectors, PZT based piezoelectric wafers are going 
le as sensors and actuators. As the wafers are required in large numbers for surface mounting and 
e the structures, it is essential to develop a technology of making dense PZT wafers in a cost-
n the present work, it has been shown that standard tape casting followed by sintering may not 
flat high performance PZT wafers. It needs fine tuning of the processing parameters like sintering 
osition and the amount of surrounding atmosphere powder and the amount of excess PbO in the 
n to get PZT wafers of acceptable properties. 
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