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Abstract 

The present work deals with developing a fuzzy back propagation neural network scheme for 

prediction of drill wear. Drill wear is an important issue in the manufacturing industries, which not 

only affects the surface roughness of the hole but also influences the drill life. Therefore, 

replacement of drill at an appropriate time is of significant importance. Flank wear in a drill which 

depends upon the input parameters like, speed, feed rate, drill diameter, thrust force, torque and 

chip thickness. Therefore sometimes it becomes difficult to have a quantitative measurement of all 

the parameters and a qualitative description becomes easier. For this kind of situations, a fuzzy 
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back propagation neural network model has been trained in the present work and has been shown 

to predict drill wear with reasonable accuracy. In the present case a left and right (LR) type fuzzy 

neuron has been used. The proposed model is composed of various modules like fuzzy data 

collection at input fuzzy neuron, defuzzyfication of input data to get output, calculation of mean 

square error (MSE) and feeding back to update the network. Results from the present work show a 

very good prediction of drill wear from the present fuzzy back propagation neural network model. 
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1 Introduction 

In order to achieve improved productivity and better quality of the product in drilling 

operation, monitoring of drill wear is an important issue. Since drill wear affects the hole 

quality and tool life of the drill, online monitoring and prediction of drill wear is an 

important area of research. Many works have already been reported in the broad area of 

tool condition monitoring. Following paragraph describes some of the relevant research 

in this direction. 

Lin and Ting [1] studied the effect of drill wear as well as other cutting parameters on the 

current force signals, and established the relationship between the force signals and drill 

wear with the other cutting parameters. In another work Lin and Ting [2] used the neural 

network model to study the drill wear. They observed that the training error in case of 

sample mode converges faster than that in case of batch mode. They also observed that 

the training error with two hidden layers converges faster than that with one hidden layer 

with same total processing element. Lee et al. [3] used the abductive network modeling in 

drilling process for predicting the drilling performance (tool life, thrust force and torque). 

In their work they used a network having number of polynomial functional nodes and the 

input to the network was drilling process parameters (speed, feed and diameter). Optimal 

network architecture was prepared based on predicted square error criterion. They used 

simulated annealing to optimize the process parameter. Xiaoli and Tso [4] monitored the 

tool wear based on current signals of spindle motor and feed motor using regression 

model. Tsao [5] used the radial basis function network (RBFN) and adaptive based radial 

basis function network (ARBFN) to predict the flank wear, and compared their results 

with experimental observation. Ertunc and Loparo [6] used decisions fusion center 
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algorithm (DFCA) for monitoring online tool wear condition in drilling process, and used 

number of numerical methods for predicting the condition of tool wear land. Abbu-

Mahfouz [7] predicted wear rate in drilling using vibration signature analysis. He 

estimated three different patterns of vibration signatures like harmonic wavelets 

coefficient, power spectra density and Fast Fourier Transformation (FFT), and those 

vibration signature were used as inputs to the neural network model.  Multiple objectives 

linear programming models for optimizing drill hole quality with different cutting 

conditions such as speed and feed rate was proposed by Kim and Ramulu [8]. Singh et al. 

[9] used back propagation neural network for prediction of flank wear of HSS drill in a 

copper work piece. They used spindle speed, feed rate, drill diameter, thrust force and 

torque as input parameters and maximum flank wear as output parameter to neural 

network. Li et al. [10] proposed hybrid learning for monitoring of drill wear using a 

combination of fuzzy system and neural network. Kuo and Kohen [11] applied a modified 

fuzzy neural network for detecting the defective sensor signal using membership function 

at the input node and fuzzy rule base. Lo [12] described the tool state in turning operation 

using artificial neuro fuzzy inference system (ANFIS) architecture, and concluded that 

higher accuracy could be achieved in the case of triangular and bell shape membership 

function. Hashmi et al. [13] proposed a fuzzy model for correlating the drilling speed 

with hardness of work material. They have used triangular membership function with 

fuzzy rule base in there analysis. 

Literature review reveals that a number of works have been reported in the subject of drill 

wear monitoring. Literature review also reveals that speed, feed, thrust force, torque, drill 

diameter and chip thickness have been established as important parameters indicative of 

drill wear and hence condition of drill. In case of online monitoring, it is not always 

possible to have a quantitative measure all these parameter and hence it becomes 

advantageous to describe one or more of these parameters as fuzzy linguistic variables. 

Therefore the aim of the present work is to develop a fuzzy back propagation neural 

network which could be trained with large number of drilling experiments conducted at 

different cutting conditions for future prediction of drill wear while using same types 

(material compositions) of drill on same types (material compositions) of work piece 

material. 

2 Tool Life Criteria 

Tool life is based on the limiting wear land of the flank wear. The criteria recommended 

by ISO to define the effective tool life for high speed steel tools are (i) catastrophic 

failure (ii) regularly worn flank wear of 0.3 mm or maximum flank wear of 0.6 mm. One 

way of determining drill life is to evaluate drill flank wear which can be done directly by 
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measuring drill flank wear periodically after cutting a predetermined depth of cut in 

drilling. This method is known as offline monitoring in which drill is removed 

periodically from machine tool to measure wear. 

The maximum flank wear is used as the criterion to characterize the drill condition, and is 

obtained by measuring the wear at different points on either of the cutting edges as shown 

in Fig.1, in which 1,2,3,4 are the points on the cutting edges where wear has taken place 

and measurement is done on these points [1].  

3 Fuzzy Back Propagation Neural Network 

In fuzzy back propagation neural network, fuzzy input is mapped with crisp output. The 

fuzzy neuron makes use of left and right (LR type) fuzzy number. A triangular type 

membership function has been used for simplification of architecture and reduction of 

computational load. 

3.1 LR type of fuzzy number 

LR type fuzzy number having two function values called left and right (L and R) which 

maps with real number within [0,1] and are the decreasing shape function if 

(0) 1,
( ) 0, 1,
(1) 0, ( ) 0

L
L x x
L L

=
< ∀ <
= ∞ =

        (1) 

A fuzzy number M is of type LR if there exists reference functions L (for left), R (for right 

and scalar, 0, 0α β> >  with 
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m xL x m

x mR x m
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       (2) 

Here m is called the mean value of M, is a real number, and α  and β  are called left and 

right spread, respectively. mμ  is the membership function of fuzzy number M. So an LR 

type fuzzy number M can be expressed as ( , , )LRm α β . If ,α β  are both zero, the LR 

type function indicates a crisp value. 

3.2 Fuzzy neuron 

The fuzzy neuron is the basic element of a fuzzy back propagation neural network model. 

Fig. 2 illustrates the architecture of a fuzzy neuron. Given the input vector 
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0 1( , ,........ )lI I I I=  and weight vector 0 1( , ,....... )lW W W W= , the fuzzy neuron computes 

the crisp output O, given by  

0

( )
l

i i
i

O f NET f CE W I
=

⎛ ⎞⎛ ⎞
= = ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑       (3) 

0 (1,0,0)I =  is the bias value. Here, fuzzy weight summation is 

0

l

i i
i

net W I
=

= ∑                                                                                        (4) 

The function CE is the centroid operation of the triangular fuzzy number, and can be 

treated as defuzzification operation, which maps fuzzy weight summation value to a crisp 

value. Thus, if ( , , )mnet net net netα β= is the fuzzy weight summation then function CE 

is given by 

1/ 3( )mCE net net netβ α= + −  

The function f is the sigmoidal function, which performs nonlinear mapping between 

input and output is defined as 

1( )
1 exp( )

f NET
NET

=
+ −

       (5) 

In the fuzzy neuron, both input vector I, and weight vector W are represented by a 

triangular LR type fuzzy number. Thus for 0 1( , ,........ )lI I I I=  the input component 

vector iI  is represented by LR type fuzzy number ( , , )mi i iI I Iα β . Similarly for 

0 1( , ,....... )lW W W W= , the weight vector component iW  is represented as 

( , , )mi i iW W Wα β  

3.3 Fuzzy back propagation neural network architecture 

Fuzzy back propagation neural network is a three-layered feed forward architecture. The 

three layers are input layer, hidden layer and output layer. Functioning of fuzzy back 

propagation proceeds in two stages, namely learning or training and testing. 

Fig. 3 shows the l-m-n (l input neurons, m hidden neurons and n output neurons) 

architecture of a fuzzy back propagation neural network model. 

Let 1 2( , ,....... ), 1,2....p p p plI I I I p N= =  be the pth pattern among N input patterns with 

0 (1,0,0)I = as bias. Here, ( , , )pi pmi p i p iI I I Iα β= . piO , pjO  and pkO are the ith, jth and kth 

crisp defuzzification output of neuron from input, hidden and output layers, 
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respectively. jiW  and kjW are LR type fuzzy connection weights between ith input neuron 

to jth hidden neuron, and jth hidden neuron to kth output neuron, respectively. 

Output from a neuron in the input layer is, 

, 1,2.....pi piO I i l= =         (6) 

Output from a neuron in the hidden layer is, 

0
( ) , 1, 2.......

l

pj pj ji pi
i

O f NET f CE W O j m
=

⎛ ⎞⎛ ⎞= = =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑    (7) 

Output from a neuron in the output layer is, 

0

( ) , 1, 2.......
m

pk pk kj pj
j

O f NET f CE W O k n
=

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑    (8) 

3.4 Learning or training in fuzzy back propagation neural network 

Sample mode type of supervised learning has been used in the present case, where, all 

input-output pattern sets are presented to the neural network one by one, and then 

interconnection weights are adjusted using average gradient information. During training, 

the predicted output is compared with the desired output, and the mean square error is 

calculated. If the mean square error is more than a prescribed limiting value, it is back 

propagated from output to input, and weights are further modified till the error is within a 

prescribed limit. 

Mean square error, pE  for pattern p is defined as 

2

1

1 ( )
2

n

p pi pi
i

E D O
=

= −∑        (9) 

where, piD is the target output, and piO  is the computed output for the ith pattern. 

Weight change at any time t, is given by 

( ) ( ) ( 1)pW t E t W tη αΔ = − + ×Δ −       (10) 

where η  is learning rate, andα  momentum parameter. 

3.5 Testing of fuzzy back propagation neural network 

The error on the testing set is monitored during the training process. The testing error will 

normally decrease during the initial phase of training, as does the training set error. 

However, when the network begins to over fit the data, the error on the testing set will 

typically begin to rise. When the testing error starts increasing for a specified number of 
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iterations, the training is stopped; and the weights and biases at the minimum value of the 

testing error are returned. 

4 Experimental Set-up 

In the present work, large number of drilling operation over a wide range of cutting 

conditions has been performed, and corresponding to each cutting condition progressive 

flank wear of drill has been measured.  

Fig. 4 shows a schematic representation of the experimental set up used in this work. A 

radial drilling machine (Batliboi Limited, BR618 model) is used for the drilling 

operation. High-speed steel (HSS) drill of three different diameters (chemical 

composition and geometrical specification) are listed in Tables 1 (a) and (b) have been 

used to drill holes on mild steel (refer Tables 2 (a) and (b) for specification and 

compositions) specimen at different cutting condition. In all the drilling operations 

performed in the present work, no coolant has been used. Signals from the piezoelectric 

dynamometer were passed through low pass filter, amplified through charge amplifier 

(B&K, 2525), and stored in the computer through a data acquisition system (Advantech, 

PCL 818 HG, 100 kHz sampling rate). For each cutting condition, drilling process was 

carried out in mild-steel work piece up to 15mm depth of cut and sensor data was 

captured through the dynamometer, which was stored in the computer through data 

acquisition system during time of drilling. The data stored in the computer is 

instantaneous and hence an offline analysis was done to calculate the root mean square 

(RMS) of the data. In order to check the consistency of the data, initially three different 

10mm diameter drill at a given cutting condition has been used and root mean square 

value of thrust force and torque has been observed in each case. It was found that 

variation is less than ±10%. After each drilling operation, tool was taken out and flank 

wear was measured through digital microscope along with Carl-Zeiss software 

interfacing. After locating the maximum flank wear on either of cutting edges, a grid in 

micro meter scale is imposed and the maximum depth of flank wear is measured in the 

vertical direction as per the number of grid division. Photographs of gradual wear build-

up process in the drill for three different feed rates are shown in Fig. 5(a)-5(c).  

5.  Results and Discussion 

Drilling operations have been conducted over a wide a range of cutting condition. Spindle 

speed has been varied in the range 315 rpm to 1000 rpm in six steps. Feed rate has been 

varied from 0.13 to 0.71 mm/rev in six steps. High speed steel (HSS) drill of three 

different diameter size of 5mm, 7.5mm and 10mm have been used for drilling hole in a 

mild steel plates. Various combinations of spindle speed, feed rate and drill diameter have 
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been used to perform 52 different drilling operations. For each of these conditions, thrust 

force and torque have been measured using the dynamometer, and the data is stored in the 

computer through the data acquisition system. Also corresponding to each cutting 

condition, maximum flank wear has been measured. The results of the experiment are 

tabulated in Table 3. In this table chip thickness is shown as a fuzzy linguistic variable, 

which can be medium (M), low (L) or high (H). This is described in details in the section 

5.2. 

5.1 Effect of important parameters on thrust force and torque 

Fig. 6 shows the variation of thrust force with drill diameter for different spindle speeds. 

It could be observed that for a particular spindle speed, thrust force increases as drill 

diameter is increased. This is due to the fact that the un-deformed chip thickness 

increases, as the drill diameter is increased leading to increase in thrust force. This is an 

established fact known as size effect [1]. It could be observed that for a particular drill 

diameter thrust force decreases with increasing spindle speed. This is due to fact that 

increasing spindle, tool chip interface temperature increases and thus the strength of the 

work material reduces [1] leading to decrease in thrust force. Fig. 7 shows the variation of 

torque with drill diameter for different spindle speeds. Here it also could be observed that 

a for a particular spindle speed, torque increases as drill diameter is increased and for a 

particular drill diameter torque decreases with increasing spindle speed due to the same 

reason as stated in the case of thrust force. 

5.2 Wear prediction by fuzzy back propagation neural network 

Fuzzy back propagation neural network architecture, considered in the present work, 

comprises of six input nodes with the input parameters as spindle speed, feed rate, drill 

diameter, thrust force, torque and chip thickness. The output parameter of the network is 

flank wear, and hence the number of neuron in output layer is one. In case of portioning 

the experimental data into training and testing data different publication [14,15,16,17,18] 

have been referred .  

After shuffling the 52 data set, 37 have been selected at random for training the network, 

and remaining 15 are used for testing. The normalized data sets are used for training the 

network. The data sets are normalized in the range of 0.1 to 0.9 using  

min

max min

0.1 0.8 x xy
x x

⎛ ⎞−
= + ⎜ ⎟−⎝ ⎠

       (11) 

where, 
x     = Actual value, 
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maxx = Maximum value of x , 

minx = Minimum value of x ,                                         

y    = Normalized value corresponding to x .  

In the present model, chip thickness is used as a fuzzy input, and spindle speed, feed rate, 

drill diameter, thrust force and torque are used as crisp input for the fuzzy back 

propagation neural network. All the crisp data sets are converted into LR type fuzzy 

number by assigning zero to left and right spread. A triangular membership function has 

been used to describe chip thickness as fuzzy input parameter. Fuzzy sets of chip 

thickness are overlapped by the adjacent one by 25% as shown in Fig. 8. In the present 

work, it is assumed that maximum chip thickness could be 1.2 mm, hence fuzzy set of 

low, medium and high chip thickness is assigned in the range of 0-1.2 mm. 

Best network architecture (i.e., number of hidden layers, number of neurons in the hidden 

layers, learning rate and momentum coefficient) has been obtained by trial and error 

based on mean square error (MSE) in training, testing, and the number of iterations. 

Large numbers of runs were given for selecting the best architecture and few of these are 

shown in Table 4. The best network architecture arrived at in the present model is 6-9-1 

with learning rate (η )=0.9 and momentum coefficient (α )=0.6. Fig. 9 shows the mean 

square error in training and testing with number of iteration. It could be observed from 

the Fig. 10 that flank wear predicted by the present fuzzy neural network is very close to 

10%±  of the actual values. Most of the values are within the 5%±  error band. 

6 Conclusions 

In the present work, a fuzzy back propagation neural network model has been developed 

for predicting flank wear of drill in drilling operations by a specific class of drill on a 

specific work piece. In the present model all the input parameters for the neural network 

could be either fuzzy or crisp variables, which will provide the crisp output. In this model 

five parameters are crisp inputs, and one parameter is used as fuzzy input. A triangular 

membership function has been used to describe the fuzzy parameter. Several tests have 

been performed in drilling to train and test the fuzzy neural network. A large number of 

fuzzy neural network architecture have been considered, and the best architecture has 

been predicted. All the predicted flank wear by the best architecture came out to be very 

close to the actual values, and most of them lie within 5%±  error-band. This present 

fuzzy neural network model has the potential to be used for the online prediction and 

control of drill flank wear. Even through the present methodology has been developed for 

predicting drill wear at any time during drilling operation, it could also be extended for 

drill life prediction based on limiting drill wear criterion. 
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Table 1 HSS drill bit geometry and chemical composition 

(a) Geometry of HSS drill bit (long series) 

Tool diameter (mm) Flute length (mm) Total length  (mm) Point angle(degree) Helix angle(degree) 

5 44.4 76.2 118 30 

7.5 60.3 95.2 118 30 

10 73 114.3 118 30 

Flute   2 flutes 

Flute type  parabolic 

Shank type  straight cylindrical 

Coating any  No 
 
 

(b) Chemical Composition of HSS drill materials (wt%) 

Tungston Cromium Vanadium Cobalt Molybdenum Carbon Hardness 

18 4.3 1.1 5 0.65 0.75 290 BHN 

 

 

 

Table 2 Mild steel properties and chemical composition 

(a) Chemical Composition (wt%) 

Carbon Manganese Silicon Sulfur Phosphorus Others 

0.07 1.1 0.5 0.035 0.025 0.08 Ti 

0.07 Zr 

(b) Mechanical Properties 

Ultimate tensile stress 

(MN/m2) 

Yield stress 

(MN/m2) 

Density (Kg/m3) Elongation  (%) Vickers 

Hardness 

300 170 7850 42 140 
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Table 3 : Experimental data for mild steel work-piece 

Sl. No. Drill diameter 

(mm) 

Spindle Speed 

(m/min) 

Feed 

(mm/rev) 

Thrust Force 

(N) 

Torque 

(N-m) 

Chip thickness 

(mm) 

Wear 

(mm) 

1 10 15.71 0.13 3256 0.6 M 0.1 

2 7.5 11.78 0.13 667 0.1434 M 0.13 

3 5 7.85 0.13 567 0.0958 L 0.08 

4 10 15.71 0.18 3298 0.6251 H 0.17 

5 7.5 11.78 0.18 692 0.1458 M 0.14 

6 5 7.85 0.18 584 0.1012 L 0.04 

7 10 15.71 0.25 3789 0.6754 H 0.1 

8 7.5 11.78 0.25 1004 0.1722 M 0.3 

9 5 7.85 0.25 956 0.1456 L 0.15 

10 10 12.56 0.13 3892 0.6276 H 0.12 

11 7.5 9.42 0.13 712 0.1524 H 0.09 

12 5 6.28 0.13 612 0.0989 L 0.07 

13 10 12.56 0.18 3935 0.6472 H 0.07 

14 7.5 9.42 0.18 744 0.1565 H 0.13 

15 5 6.28 0.18 624 0.1096 L 0.03 

16 10 12.56 0.25 4056 0.6821 H 0.09 

17 7.5 9.42 0.25 1045 0.173 H 0.08 

18 5 6.28 0.25 997 0.1532 M 0.14 

19 10 19.78 0.13 2854 0.5165 M 0.04 

20 7.5 14.83 0.13 621 0.1125 M 0.17 

21 5 9.89 0.13 554 0.0764 L 0.05 

22 10 19.78 0.18 2988 0.5762 M 0.11 

23 7.5 14.83 0.18 675 0.1215 M 0.07 

24 5 9.89 0.18 569 0.0822 L 0.04 

25 10 19.78 0.25 3426 0.6111 H 0.1 

26 7.5 14.83 0.25 978 0.1654 M 0.2 

27 5 9.89 0.25 944 0.1324 L 0.05 
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28 10 25.11 0.36 2547 0.4895 H 0.0775 

29 7.5 18.83 0.36 649 0.1062 M 0.0525 

30 5 12.55 0.36 523 0.0624 L 0.045 

31 10 25.11 0.5 3021 0.5224 H 0.082 

32 7.5 18.83 0.5 696 0.1335 M 0.074 

33 5 12.55 0.5 547 0.0864 M 0.0675 

34 10 25.11 0.71 3501 0.5761 H 0.094 

35 7.5 18.83 0.71 956 0.1524 H 0.088 

36 5 12.55 0.71 912 0.1037 M 0.074 

37 10 9.88 0.36 4114 0.7156 H 0.096 

38 7.5 7.41 0.36 1068 0.1827 H 0.0832 

39 5 4.94 0.36 1034 0.1154 M 0.0725 

40 10 9.88 0.5 4181 0.7262 H 0.102 

41 7.5 7.41 0.5 1112 0.1944 H 0.085 

42 5 4.94 0.5 1084 0.1285 M 0.076 

43 7.5 7.41 0.71 1434 0.2362 H 0.105 

44 5 4.94 0.71 1325 0.1814 M 0.086 

45 10 31.36 0.36 2423 0.4451 H 0.068 

46 7.5 23.52 0.36 584 0.0647 M 0.044 

47 5 15.68 0.36 489 0.0236 M 0.038 

48 10 31.36 0.5 2473 0.4632 H 0.074 

49 7.5 23.52 0.5 607 0.0738 H 0.062 

50 5 15.68 0.5 503 0.0315 M 0.0575 

51 7.5 23.52 0.71 921 0.0812 H 0.078 

52 5 15.68 0.71 884 0.0457 M 0.065 
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Table 4: Training error for different neural network architectures 

Sl. 

No. 

 

Network 

architecture 

Momentum 

coefficient ( )α  

Learning 

rate ( )η  

Mean 

square 

error for 

training 

Mean 

square 

error for 

testing 

Number 

of 

iteration 

Maximum 

Predicted 

error (%) 

Minimum 

predicted 

error (%) 

1 6-9-1 0.7 0.5 0.000241 0.0003 6965 -12.63 -0.24 

2 6-7-1 0.7 0.5 0.00235 0.000465 11188 -21.4 -1.1 

3 6-9-1 0.5 0.7 0.00195 0.00023 10375 -14.28 -0.17 

4 6-9-1 0.3 0.8 0.00195 0.000235 12505 10.47 0.04 

5 6-8-1 0.8 0.3 0.00105 0.000085 18732 -17.05 0.41 

6 6-10-1 0.8 0.3 0.0028 0.00039 7005 -17.62 -0.14 

7 6-9-1 0.6 0.9 0.0004 0.000115 19382 9.94 -0.04 

8 6-9-1 0.7 0.9 0.00055 0.000215 11101 36.64 -0.06 

9 6-6-1 0.7 0.9 0.0012 0.0002 11751 -14.76 0.08 

10 6-8-1 0.7 0.9 0.0005 0.00016 12452 34.22 -0.19 
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Fig. 1.  Flank wear measurement 

 

 

 
 

Fig.2. Fuzzy neuron architecture 

 



2 

 

Fig 3. Architecture of fuzzy back propagation 

 

 

Fig 4. Schematic diagram of experimental set-up 
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Fig.5 (a) Flank wear at diameter 10mm, spindle speed 19.78m/min and feed rate 0.13mm/rev 

 

Fig.5 (b) Flank wear at diameter 10mm, spindle speed 19.78m/min and feed rate 0.18mm/rev 
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Fig.5 (c) Flank wear at diameter 10mm, spindle speed 19.78m/min and feed rate 0.25mm/rev 

 

Fig 6. Variation of average thrust force with drill diameter at different speeds 
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Fig 7. Variation of average torque with drill diameter at different speeds 

 

Fig 8. Membership function 
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Fig 9. Variation of mean square error with number of iteration of 6-9-1architecture 

(for 0.6, 0.9α η= = ) 
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Fig 10. Comparison between experimental values and predicted values of flank wear by 6-9-1 

architecture (for 0.6, 0.9α η= = ) 
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