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Abstract 
In the present work, different type of artificial neural network (ANN) architectures have been used in an attempt to predict flank wear 
in drill bits. Flank wear in drill bit depends upon speed, federate, drill diameter and hence these parameters along with other derived 
parameters such as thrust force and torque have been used to predict flank wear using ANN. The results obtained from different ANN 
architectures have been compared and some useful conclusions have been made. 
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1 INTRODUCTION 

In order to achieve improved productivity and better quality of the product in drilling operation, monitoring of drill bit wear is an 

important issue. Since wear on drill bit affects the hole quality and tool life of the drill bit, online monitoring and prediction of drill 

wear is an important area of research. For improving the performance of decision making in tool condition monitoring, different type 

of intelligent system has been prepared by many authors. Following paragraph describes some of the relevant research in this 

direction. 

Lin and Ting [1] studied the effect of drill wear as well as other cutting parameters on the current force signals, and established the 

relationship between the force signals and drill wear with the other cutting parameters. In another work, Lin and Ting [2] used the 

neural network model to study the drill wear and observed that the training error in case of sample mode converges faster than that in 

case of batch mode. Lee et al. [3] used the abductive network modeling in drilling process for predicting the drilling performance 

(tool life, thrust force and torque). Li and Tso [4] monitored the tool wear based on current signals of spindle motor and feed motor 

using regression model. Tsao [5] used the radial basis function network (RBFN) and adaptive based radial basis function network 

(ARBFN) to predict the flank wear, and compared their results with experimental observation. Ertunc and Loparo [6] used decisions 

fusion center algorithm (DFCA) for monitoring online tool wear condition in drilling process, and used number of numerical methods 

for predicting the condition of tool wear land. Abbu [7] predicted wear rate in drilling using FFT of vibration signature as an input to 

ANN. Multiple objectives linear programming models for optimizing drill hole quality with different cutting conditions such as speed 

and feed rate was proposed by Kim and Ramulu [8]. A.K Singh et al. [9] used back propagation neural network for prediction of 

flank wear of High Speed Steel drill bit in a copper work piece using spindle speed, feed rate, drill diameter, thrust force and torque 

as input parameters and maximum flank wear as output parameter to neural network. S.S Panda et al. [10] used back propagation 

neural network for prediction of flank wear of High Speed Steel drill bit in a mild steel work piece using the spindle speed, feed rate, 
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drill diameter, thrust force, torque and chip thickness as input parameters and maximum flank wear as output parameter to neural 

network and concluded that including chip thickness as input parameter to network can predict flank wear very well. Li et al. [11] 

proposed hybrid learning for monitoring of drill wear using a combination of fuzzy system and neural network. Kuo and Kohen [12] 

applied a modified fuzzy neural network for detecting the defective sensor signal using membership function at the input node and 

fuzzy rule base. Lo [13] described the tool state in turning operation using artificial neuro fuzzy inference system (ANFIS) 

architecture, and concluded that higher accuracy could be achieved in the case of triangular and bell shape membership function. 

Hashmi et al. [14] proposed a fuzzy model for correlating the drilling speed with hardness of work material. They have used 

triangular membership function with fuzzy rule base in there analysis. Chung-Chen Tsao [15] used radial basis function network to 

forecast the flank wear of different coated drill bit using hybrid learning rule i.e combination of least square method and gradient 

descent method. G.H Lim [16] in his work correlate the flank wear of tool and acceleration amplitude of vibration signature in turning 

operation and he concluded that vibration acceleration produces two-peak amplitude just before tool failure. Tamas Szecsi [17] has 

proposed a cutting force model in machining operation using neural network. E.O.Ezugwu et al. [18] correlate cutting parameters like 

cutting speed, feed rate cutting time and coolant pressure with cutting process parameter like cutting force, feed force, flank wear and 

power consumption etc. and used neural network with marquardt learning algorithm. Marek Balazinski et al. [19] used three artificial 

intelligence (AI) methods: feed forward back propagation neural network, fuzzy decisions support system and an artificial neural 

network based fuzzy inference system to monitor the flank wear in turning operation. Toshiyuki Obikawa et al. [20] used 

unsupervised and self-organizing neural network Adaptive Resonance Theory (ART2) for monitoring of flank wear in high speed 

machining operation. C. Chungchoo et al. [21] used fuzzy neural network model for online tool wear estimation in CNC turning. D.K 

Sonar et al. [22] used radial basis function neural network for predicting the surface roughness in turning operation 

The aim of the present work is to study the efficiencies of different ANN architectures in predicting drill wear.  

2 RADIAL BASIS FUNCTION NETWORK 

(a) Architecture of radial basis function network 

Basically radial basis function network is compose of large number of simple and highly interconnected artificial neurons and can be 

organized into several layer, i.e input layer, hidden layer, and output layer [23]. 

Input layer: 

An input pattern enters the input layer and is subjected to direct transfer function and output from input layer is same as input pattern. 

Number of nodes in the input layer is equal to the dimension of input vector L .  

Output from input layer with element ( 1 )i i to LI = is iI . 

Hidden layer: 

The hidden layer does all the important process these nodes satisfy a unique property being radially symmetry. Being radially 

symmetry it must have the following 
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a. A center vector jv  in the input space, made up of cluster center with element ( 1 )ji j to Mv = .’ M P≤ ’ where M is the 

number of center vectors and P  is number of training patterns. The vector typically is store as weight factors from input 

layer to hidden layer.  

b. A distance measure to determine how far an input pattern with element iI  is from cluster center jiv . We have used 

Euclidean distance norm for this purpose. 

Euclidean distance 2

1

( )
L

j j i ji
i

ed I v I v
=

= − = −�             (1) 

c. A transfer function which transfer Euclidean distance to give output for each node. In our case we used the gaussian function 

for this purpose. 

2 2exp( )j joutput ed σ= ÷                  (2) 

Where σ  is the spread parameter determined [24]  

max( ) /ed Mσ =                   (3) 

Where  max( )ed is maximum Euclidean distance between selected centers and M is no of center   

Output layer: 

There are weight factor ( 1 , 1 )kj k to N j to Mw = = between kth nodes of output layer and jth nodes of hidden layer.’ N ’is the dimension of 

output vector. Output from output layer transferred through a transfer function like log sigmoid or tan sigmoid. 

Output from the output layer is given by 

1

( )
N

k kj j
k

output f w output
=

= ×�                  (4) 

(b) Training RBFN  

Two kind of training has been considered as fixed centers and self-organizing selection of centers. 

(i) Fixed center selected at random 

1. Location of center vector is choosen randomly from the training data set. A sufficient number of centers were choosen in 

order to ensure adequate sampling of input space. 

2. Euclidean distance was calculated as per eqn (1)  

3. Spread parameter was calculated as per eqn (3) 

4. Initialize the weight of output layer to small random values, and output from output layer was calculated as per eqn (4). 

5. Then MSE training sample was calculated and if the MSE training is not reaching the goal specified then weight is updated 

based on gradient descent method. The weight updated based on sample as well as batch mode. 

6. The process was carried out for a definite number of iteration. 



 - 4 - 

(ii) Self-Organized selection of centers 

1. It is a self-organizing network known as ‘SOM’ in which initial centers vector was choosen randomly jv . The only 

restriction is that these intial values must be different. 

2. Read the training sample and Euclidean distance was calculated for the initial center vector as per eqn (1) 

3. The corresponding center vector was modified closest to the training sample as  

( )

. 0 1

new old old
j j pi jv v I v

P training sample

j no of centre vector

i input node

learning rate i e

α

α α

= + × −

=
=
=
= < <

             (5) 

4. This process was continued for fixed number of iteration until no noticeable change was for the center vector jv . This is 

known as k-means clustering algorithm [23], a special case of competitive (winners takes all) learning process. 

5. Spread parameter was calculated as per eqn (3) 

6. Initialize the weight of output layer to small random values, and output from output layer was calculated as per eqn (4). 

7. Then MSE training sample was calculated and if the MSE training is not reaching the goal specified then weight updated 

based on gradient descent method. The weight was updated based batch mode. 

8. The process was carried out for a definite number of iteration. 

3 EXPERIMENTAL SET-UP 

Fig. 1 shows a schematic representation of the experimental set up used in this work. In the present work, a radial drilling machine 

(Batliboi Limited, BR618 model) is used for the drilling operation. High speed steel (HSS) drill bits with different diameters have 

been used for drilling in copper work piece at different cutting conditions. Root mean square (RMS) values of thrust force and torque 

signal are recorded through a piezo-electric dynamometer (Kistler, 9272). Signals from the dynamometer were passed through low 

pass filter, amplified through charge amplifier (B&K, 2525), and stored in the computer through a data acquisition system 

(Advantech, PCL 818 HG, 100 KHz sampling rate). The digital microscope along with Carl-Zeiss software interfacing have been 

used to measure flank wear. The maximum flank wear is used as the criterion to characterize the drill condition, and is obtained by 

measuring the wear at different points on either of the cutting edges.  

4 RESULTS AND DISCUSSION 

Drilling operations have been conducted over a wide a range of cutting condition. Spindle speed has been varied in the range 315 rpm 

to 1000 rpm in six steps. Feed rate has been varied from 0.13 to 0.71 mm/rev in six steps. High speed steel (HSS) drill bit of three 

different diameter size of 5m, 7.5m and 10m have been used for drilling hole in a copper plates. Various combination of spindle 

speed, feed rate and drill diameter has been used to perform 49 different drilling operations for copper plate. For each of these 

conditions, thrust force and torque have been measured using the dynamometer, and the data are stored in the computer through the 
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data acquisition system. Corresponding to each cutting condition, maximum flank wear has also been measured. The results from the 

present experiment are tabulated in Table 1.  

 (a) Wear predictions by radial basis function network 

After shuffling the 49 data set, 34 have been selected at random for training the network, and remaining 15 are used for testing. The 

normalized data sets are used for training the network. The data sets are normalized in the range of 0.1 to 0.9 using  

min

max min

0.1 0.8
x x

y
x x

� �−= + � �−� �
                                                                                                   (6) 

where, 

x = Actual value, 

maxx = Maximum value of x , 

minx = Minimum value of x ,                                         

y = Normalized value corresponding to x .  

Radial basis function neural network architecture, considered in the present work, comprises of five input nodes with the input 

parameters as spindle speed, feed rate, drill diameter, thrust force and torque. The output parameter of the network is flank wear, and 

hence the number of neuron in output layer is one. 

(i) Fixed center selected at random 

After shuffling the 49 data set, 35 have been selected at random for training the network, and remaining 14 are used for testing. The 

normalized data sets are used for training the network. The data sets are normalized in the range of 0.1 to 0.9 as per eqn (6). 

Best network architecture (i.e. number of center vectors in the hidden layers, learning rate and momentum coefficient) has been 

obtained by trial and error based on mean square error in training, testing, and the number of iterations. Large number of runs were 

given for selecting the best architecture in sample and batch mode, and few of these are shown in Table 3. The best network 

architecture arrived at in the present model in case of sample mode is 5-20-1 with η =0.3 and α =0.3 and in case of batch mode is 5-

20-1 with η =0.7 and α =0.4. Fig. 2 shows the mean square errors for training and testing with number of iteration for sample mode 

and fig. 4 shows the mean square errors for training and testing with number of iteration for batch mode. It is observed that training in 

sample mode is much more faster than that of batch mode It could be observed from the fig. 3 and 5 that flank wear predicted by the 

present radial basis function network is very close to 15%±  of the actual values in case of sample mode and 20%±  in case of 

batch mode of training. Most of the values are within the 10%±  error band. 

(b) Self-Organized selection of centers 

After shuffling the 49 data set, 35 have been selected at random for training the network, and remaining 14 are used for testing. The 

normalized data sets are used for training the network. The data sets are normalized in the range of 0.1 to 0.9. 
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Best network architecture (i.e. number of center vectors in the hidden layers, learning rate and momentum coefficient) has been 

obtained by trial and error based on mean square error in training, testing, and the number of iterations. Large number of runs were 

given for selecting the best architecture and few of these are shown in Table 2. The weight is updated based on batch mode. The best 

network architecture arrived at in the present model is 5-15-1 with η =0.1 and α =0.9. Fig. 6 shows the mean square error in training 

and testing with number of iteration. It could be observed from the Fig. 7 that flank wear predicted by the present radial basis function 

network is very close to 15%±  of the actual values. Most of the values are within the 10%±  error band. 

5 CONCLUSION 

Radial basis function neural network have been tested for prediction of flank wear in drill bits. It has been observed that radial basis 

function neural network can be trained well and the trained network can predict drill were within an error of ± 15%. It has also been 

concluded from the present work that fixed center radial basis function neural network can learn much faster when the trained data is 

fed in sample mode compared to batch mode data feeding and also compared to self organized method (SOM). 
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Fig. 1: Schematic diagram of the experimental set-up. 
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Fig.2: Variation of mean square error with number of iteration of 5-20-1 architecture fixed center selection in sample 

mode  

(for α =0.3, η =0.3). 
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Fig. 3: Comparison between experimental values with predicted values of flank wear by 5-20-1 architecture fixed 

center selection in sample mode (forα =0.3, η =0.3). 
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Fig. 4: Variation of mean square error with number of iteration of 5-20-1 architecture fixed center selection in batch 

mode (for α =0.4, η =0.7). 
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Fig. 5: Comparison between experimental values with predicted values of flank wear by 5-20-1 architecture fixed center 

selection in batch mode (forα =0.4,η =0.7). 
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Fig. 6: Variation of mean square error with number of iteration of 5-15-1 architecture in SOM (for α =0.9, η =0.1). 
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Fig. 7: Comparison between experimental values with predicted values of flank wear by 5-15-1 architecture in SOM 

(forα =0.9,η =0.1). 
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Table 1 
Experimental data copper work-piece 

Serial number Drill diameter 
(mm) 

Spindle speed 
(rpm) 

Feed rate 
(mm/rev) 

Thrust  
force 
(N) 

Torque 
(N-cm) 

Maximum wear 
(mm) 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

10 
7.5 
5 

500 
500 
500 
500 
500 
500 
500 
500 
500 
400 
400 
400 
400 
400 
400 
400 
400 
400 
630 
630 
630 
630 
630 
630 
630 
630 
630 
800 
800 
800 
800 
800 
315 
315 
315 
315 
315 
315 
315 
315 
315 

1000 
1000 
1000 
1000 
1000 
1000 

0.13 
0.13 
0.13 
0.18 
0.18 
0.18 
0.25 
0.25 
0.25 
0.13 
0.13 
0.13 
0.18 
0.18 
0.18 
0.25 
0.25 
0.25 
0.13 
0.13 
0.13 
0.18 
0.18 
0.18 
0.25 
0.25 
0.25 
0.36 
0.36 
0.5 
0.5 
0.5 

0.36 
0.36 
0.36 
0.5 
0.5 
0.5 

0.71 
0.71 
0.71 
0.36 
0.36 
0.36 
0.5 
0.5 
0.5 

1925 
510 
245 

3860 
595 
275 

3740 
539 
386 

2518 
853 
267 

3921 
646 
451 

4010 
1051 
505 

1258 
488 
186 

1470 
524 
187 

3077 
441 
285 

2234 
1666 
2548 
1440 
1087 
3303 
1866 
592 

3413 
1688 
1210 
3920 
1828 
1282 
1460 
554 
421 

1960 
784 
651 

19.253 
7.1 
2.5 

25.1 
4.41 
2.75 

27.44 
5.39 
2.9 

23.52 
11.27 

3.1 
26.78 
12.64 
3.96 

29.25 
16.54 
1.96 

10.11 
5.86 
2.94 

13.23 
3.95 
2.64 

15.68 
4.41 
2.15 

22.34 
8.66 
24.1 
19.3 

11.27 
25.33 
12.74 
7.72 

29.54 
15.19 
13.39 
36.22 
17.15 
16.66 
12.25 
5.39 
4.21 

18.13 
7.35 
6.17 

0.11 
0.06 
0.03 

0.195 
0.08 
0.06 
0.21 

0.105 
0.095 
0.185 
0.085 
0.05 
0.2 
0.1 

0.085 
0.26 
0.1 

0.07 
0.12 
0.09 
0.08 

0.125 
0.1 

0.07 
0.18 
0.1 

0.025 
0.16 
0.13 
0.19 
0.13 
0.09 
0.20 
0.16 
0.1 

0.205 
0.14 
0.08 
0.24 
0.12 
0.1 

0.14 
0.095 
0.06 
0.13 
0.1 

0.07 
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48 
49 

10 
7.5 

1000 
1000 

0.71 
0.71 

2009 
970 

20.58 
8.05 

0.17 
0.12 

 
 
 
Table 2 
Training error for different neural network architectures  (Radial basis function network) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Serial 
No 

Number 
of center 
vector 

Momentum 

coefficient ( )α  

Learning 

rate ( )η  

MSE 
Training 

MSE 
Testing 

Number 
of 
iteration 

Absolute 
maximum 
predicted 
error 

Absolute 
minimum 
predicted 
error 

Radial 
basis 
network 
type 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

10 
10 
15 
15 
15 
20 
20 
25 
35 
35 

0.90 
0.10 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 
0.90 

0.6 
0.6 
0.1 
0.3 
0.6 
0.1 
0.6 
0.1 
0.3 
0.6 

0.002999 
0.00703 

0.0027368 
0.002751 
0.002576 
0.002975 
0.003013 
0.002537 
0.002336 
0.002377 

0.001703 
0.009292 
0.001575 
0.001988 
0.001705 
0.001621 
0.001603 
0.002086 
0.001717 
0.001853 

 

842 
4205 
409 
268 
125 
119 
41 

182 
91 

130 

21.53 
21.53 
16.43 
18.97 
18.79 
23.98 
19.23 
31.66 

35 
27.8 

2.38 
2.38 
0.33 
1.76 
2.12 
1.10 
0.4 

0.89 
1.27 
0.2 

SO
M

 



 - 17 - 

Table 3 
Training error for SOM 

 

 

Serial 
No 

Number 
of 
center 
vector 

Momentum 

coefficient ( )α  

Learning 

rate ( )η  

MSE 
Training 

MSE 
Testing 

Number 
of 
iteration 

Absolute 
maximum 
predicted 
error 

Absolute 
minimum 
predicted 
error 

Radial basis 
network type 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
 

15 
20 
20 
20 
20 
25 
25 
30 
30 
30 

0.1 
.1 
.6 
.3 
.1 
.3 
.1 
.1 
.3 
.1 

.1 

.1 

.1 

.3 

.3 

.1 

.9 

.1 

.3 

.6 

0.001924 
0.0018 

0.001869 
0.001921 
0.001877 
0.001689 
0.001537 
0.001651 
0.00149 
0.001482 

0.002376 
0.00156 
0.001461 
0.001337 
0.001388 
0.001561 
0.001726 
0.001688 
0.001572 
0.00154 

1196 
1071 
498 
241 
317 
527 

6521 
614 

4127 
3852 

23.84 
17.95 
16.94 
15.64 
16.33 
19.79 
21.94 
18.41 
21.77 
22.06 

3.0 
0.30 
0.18 
0.66 
0.35 
1.56 
0.30 
1.12 
1.71 
1.16 
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.3 

.4 

.4 

.4 

.4 

.7 

.7 

.1 

.2 

.6 

.7 

.7 

.6 

.1 

.6 

.1 

.5 

0.013264 
0.0047 

0.007102 
0.006973 
0.005367 
0.006085 
0.006206 
0.009456 
0.00386 
0.003857 

0.009296 
0.002034 
0.002938 
0.003166 
0.001948 
0.002217 
0.002359 
0.00383 
0.001999 
0.001999 

4012 
498 

2624 
11235 
2060 
2466 

12103 
1379 
8227 
1651 

38.80 
26.44 
30.23 
33.26 
21.52 
27.14 
26.88 
44.80 
26.06 
26.04 

0.07 
2.15 

0.002 
0.23 
0.94 
0.47 
0.03 
0.27 
1.49 
1.49 
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