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ABSTRACT      
The present work deals with drill wear monitoring using 
artificial neural network. A back propagation neural 
network (BPNN) has been used to predict the flank wear 
of high speed steel (HSS) drill bit for drilling holes on 
copper work-piece. Experiments have been carried out 
over a wide range of cutting conditions and the effect of 
various process parameters like feed-rate, spindle speed, 
drill diameter on thrust force and torque in the time 
domain has been studied. The data thus obtained from the 
experiments have been used to train a BPNN for wear 
prediction. 
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1 INTRODUCTION 
Drilling is one of the machining operations extensively 
used in manufacturing industries. Tool wear has 
significant influence on the performance of a machining 
operation. In case of drilling, wear is categorized as flank 
wear, chisel wear, corner wear, and crater wear. Wear on 
the drill has a definitive influence on the hole quality and 
tool life of a drill bit. Therefore monitoring of drill wear is 
a very important issue in manufacturing industries, and 
thus an emergent area of research. Many works have been 
reported in the broad field of tool condition monitoring.      

Noori-Khajavi and Komanduri [1] developed a 
model for online tool wear monitoring of drilling 
operation and observed that only one signal is sufficient 
to monitor the tool wear. Lin and Ting [2] used the force 

signal to monitor online drill wear. They used the least 
square method for determining the thrust force and torque 
as a function of spindle speed, feed-rate, drill diameter 
and average flank wear. Lin and Ting [3], in another work 
used back propagation neural network with sample and 
batch mode, and observed faster convergence of error in 
the case of sample mode. They also observed that neural 
network with two hidden layers with same number of 
nodes converge faster than that with one hidden layer and 
reported that at higher learning rate error produced is less. 
Das et al. [4] used back propagation algorithm for 
measuring flank wear of carbide tool in turning operation. 
Lee et al. [5] used the abductive network modeling for 
drilling process for predicting the tool life, tool wear and 
surface roughness. The network has number of 
polynomial functional nodes. Optimal network 
architecture is prepared based on predicted square error 
criterion. Choudhury et al. [6] developed a three-layer 
feed forward back propagation neural network for 
predicting the flank wear in turning operation. He used 
the geometrical relation in correlating the flank wear on 
cutting tool with change in work-piece dimension. Li and 
Tso [7] used the regression model for monitoring the tool 
wear based on current signal of spindle motor and feed 
motor. Choudhury and Raju [8] developed a regression 
model to measure the flank wear and corner wear of a 
drill bit in cutting operation. Tsao [9] used the radial basis 
function network (RBFN) and adaptive based radial basis 
function network (ARBFN) to predict the flank wear in 
both the cases and compared their result with 
experimentally obtained value. Chien and Tsai [10] used 
the back propagation neural network for prediction of tool 
wear and determining the optimum cutting condition in 



turning operation, they used the genetic algorithm in the 
optimizing model as well as Taguchi method to find the 
optimum parameter for both the model. 

Purpose of the present research is to identify the 
flank wear in the drill bit at different cutting conditions 
like feed-rata, spindle speed, thrust, torque, chip 
thickness, depth of cut and drill diameter. 
 
2 BACK PROPAGATION NEURAL 
NETWORK 
Back propagation neural network (BPNN) has been used 
in the present work. It is composed of a large number of 
highly interconnected processing elements (neuron) 
working in parallel to solve the specific problems. The 
commonest type of artificial neural network consists of 
three groups, or layers, of units: a layer of "input" units is 
connected to a layer of "hidden" units, which is connected 
to a layer of "output" units.  Input layer receives 
information from the external sources, and passes this 
information to the network for processing. Hidden layer 
receives information from the input layer, and does all the 
information processing, and output layer receives 
processed information from the network, and sends the 
results out to an external receptor.  The number of hidden 
layer and the number of node in a hidden layer is a 
variable quantity, which depends upon the convergence 
criteria of results. The input signals are modified by 
interconnection weight, known as weight factor Vij, which 
represents the interconnection of ith

 node of the first layer 
to jth node of the second layer. The sum of modified 
signals (total activation) is then modified by a transfer 
function. Batch mode type supervised learning has been 
used in the present case. In batch mode all the pattern is 
presented at a time to network and weight is updated 
using average gradient information. During training the 
calculated output is compared with the desired output and 
the mean square error is calculated. If mean square error 
is more than a prescribed limiting value error it is back 
propagated i.e., from output to input, weights are further 
modified till the error is within a prescribed limit. 
 
3 EXPERIMENTAL SET-UP 
Experiments over a wide range of cutting conditions has 
been performed. Radial drilling machine (Batliboi 
Limited, BR618 model) is used for the drilling operation. 
HSS drill bits with different diameters have been used for 
drilling in the copper work-piece at different cutting 
conditions. 

Thrust force and torque are recorded through a 
piezo-electric Kistler 9272 dynamometer during drilling. 
Signal from the dynamometer is amplified through charge 
amplifier, and is stored in the computer through data 
acquisition system. Charge amplifiers of B&K 2525 
model have been used in this work. Advantech PCL 818 
HG model data acquisition system is used in present 
work.  
Flank wear is measured by digital microscope with the 
help of Karl-Zeiss software interfacing. The maximum 

flank wear is used as the criterion to characterize the drill 
condition and is obtained by measuring the wear at 
different points on either of the cutting edge. 
 
4 RESULTS AND DISCUSSION 
Drilling operation has been conducted over a wide a range 
of cutting conditions. Spindle speed has been varied in the 
range 630 rpm to 1000 rpm in three steps. Feed-rate has 
been varied from 0.13 to 0.25 mm/rev in three steps. HSS 
drill bit of 8, 10, 12 and 14 mm diameters have been used 
for drilling hole in a copper plate. Various combination of 
spindle speed, feed-rate and drill diameter has been used 
to perform 28 different drilling operations. For each of 
this condition, thrust force and torque signal have been 
measured using the data acquisition system, and is stored 
in the computer. Machine condition has a definitive effect 
of environment during the time domain so change in 
thrust force and torque signal (known as delta thrust and 
delta torque) with respect to time scale is taken as one of 
the input parameters to the network. Also corresponding 
to each cutting condition, maximum flank wear has been 
measured using digital microscope with interface of Karl-
Zeiss software .The result of the experiment are tabulate 
in Table 1. 
 
5 WEAR PREDICTIONS BY NEURAL 
NETWORK 
Back propagation neural network algorithm with batch 
mode has been used in the present work. To train the 
neural network delta thrust, delta torque, feed-rate, drill 
diameter and spindle speed is used as input parameters 
and corresponding maximum flank wear has been used as 
the output parameter. A comparative study is carried out 
including chip thickness as one of the input parameter to 
network. From the 28 data sets obtained from the 
experiment, 21 have been selected at random for training 
the network and remaining 7 are used for testing. 
Shuffling the data sets different sample of data sets is 
prepared. The normalized data sets are used for training 
the network. The data sets are normalized in the range of 
0.1 to 0.9.  
 The number of nodes in the hidden layer, 
learning rate and momentum coefficient are decided by 
trial and error. Large number of neural network 
architecture has been tried and is prepared in Table 2 and 
3 based on the convergence rate of mean square error for 
training and testing as well as the number of iteration. The 
optimal network without chip-thickness and with chip 
thickness is selected from the table 2 and 3 based on mean 
square error. It has been observed that without chip 
thickness mean square for testing is converged to a value 
of 0.0026 with only 511 iteration, but adding chip 
thickness mean square error of testing converged to 
0.0009 with 2827 iteration which are shown Figure 1 and 
3 respectively. It has been observed that without chip 
thickness wear predicted by optimal network is within 
±14% of the experimental value. But adding chip 
thickness as one of the input parameter to neural network 



predicted wear reduces to approximately ±8% of actual 
value as compared in Figure 2 and 4. 
 
5 CONCLUSION 
Back propagation neural network based drill wear 
prediction methodology has been adopted using various 
important parameters like delta thrust, delta torque, drill 
diameter, spindle speed, chip thickness and feed rate 
influencing the drill wear. Chip thickness as input 
parameter has a better influence of the network to learn. 
Neural network could learn well the pattern and could be 
used for future prediction of drill wear. 
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Table 1: Experimental data sets 

 
Drill 

diameter 
(mm) 

Speed 
(RPM) 

Feed-rate 
(mm/rev) 

RMS of 
thrust 
(N) 

RMS of 
torque 
(N-cm) 

Abs RMS of 
delta thrust 

(N) 

Abs RMS of 
delta torque 

(N-cm) 

Chip 
thickness 
(mm) 

Flank 
wear 
(μm) 

8 630 0.13 302.1360 173.2582 243.9321 117.4846 1.340 9 

8 630 0.18 368.8668 196.7067 280.2943 116.5424 1.34 10 

8 630 0.25 424.0121 249.7400 179.2039 47.7866 1.34 13 

8 800 0.13 213.2314 104.2341 26.8021 72.8714 1.415 12 

8 800 0.18 309.2489 187.9397 152.4617 61.8451 1.385 15 

8 800 0.25 324.5988 244.1572 172.3974 61.7673 1.365 16 

8 1000 0.13 177.8196 119.9028 22.5935 79.2308 1.246 17 

8 1000 0.18 258.3172 161.6020 47.9875 74.0186 1.233 20 

8 1000 0.25 328.7271 186.6766 102.5257 63.2135 1.170 23 

10 630 0.13 322.7427 234.5440 243.4622 117.7749 1.415 8 

10 630 0.18 386.4270 250.1095 243.1373 90.4861 1.332 12 

10 630 0.25 432.7161 255.0504 111.4878 45.5968 1.275 14 

10 800 0.13 270.2510 134.6798 17.0838 108.2325 1.225 10 

10 800 0.18 361.6624 220.7611 130.2710 78.2321 1.160 16 

10 800 0.25 433.9120 242.5445 45.2026 24.7938 1.125 18 

10 1000 0.13 184.9971 123.8156 2.4614 80.5026 1.0 17 

10 1000 0.18 267.4196 212.3019 151.1116 40.6836 1.440 19 

12 630 0.13 340.3940 259.5553 208.2819 135.6040 1.825 8 

12 630 0.18 399.7980 320.5312 230.9828 69.4281 1.4 12 

12 630 0.25 479.9599 337.3189 137.3384 36.7033 0.96 13 

12 800 0.13 289.0885 227.7611 61.2862 114.2321 1.455 11 

12 800 0.18 379.5711 278.9677 83.4265 68.9167 1.363 15 



12 800 0.25 478.0625 303.4089 88.8650 55.0684 1.220 17 

12 1000 0.13 216.9482 142.2341 55.6672 85.331 1.150 17 

12 1000 0.18 307.0 243.6705 122.9572 39.7383 1.1 19 

14 630 0.13 390.1036 295.0981 208.0963 173.3156 1.360 16 

14 630 0.18 456.2198 439.5404 223.0519 97.9018 1.083 17 

14 630 0.25 598.3699 454.0336 128.8578 65.5759 0.923 22 

 
 

 
 

Table 2: Network architecture without chip thickness 
 
 

Network 
architecture 

Learning rate Momentum 
coefficient 

MSE training 
 

MSE testing Number of 
iteration 

Maximum 
error (%) 

Minimum 
error (%) 

5-1-1 0.6 0.4 0.0279 0.0043 1893 18.07 -3.16 
5-2-1 0.6 0.4 0.0273 0.0051 2763 19.60 0.51 
5-3-1 0.6 0.4 0.0255 0.0044 1261 -20.13 3.5 
5-5-1 0.6 0.4 0.0274 0.0038 1142 16.72 6.13 
5-5-1 0.4 0.4 0.0272 0.0039 1761 18.00 7.15 
5-3-1 0.5 0.6 0.0294 0.0029 963 14.20 -1.13 
5-3-1 0.7 0.8 0.0306 0.0026 511 -14.06 -1.18 

 
 

Table 3: Network architecture with chip thickness 
 

Network 
architecture 

Learning rate Momentum 
coefficient 

MSE training 
 

MSE testing Number of 
iteration 

Maximum 
error (%) 

Minimum 
error (%) 

6-3-1 0.4 0.8 0.0480 0.0017 599 12.08 -0.50 
6-1-1 0.4 0.5 0.0489 0.0012 8524 8.28 -0.74 
6-3-1 0.4 0.5 0.0388 0.0030 2988 -17.54 -1.61 
6-6-1 0.4 0.5 0.0438 0.0025 2376 15.08 -3.09 
6-5-1 0.5 0.6 0.0421 0.0020 1387 -11.65 -1.15 
6-1-1 0.6 0.6 0.0501 0.0009 2827 -7.96 -2.94 
6-1-1 0.6 0.7 0.0537 0.0009 1517 -8.65 -0.05 

 
 

Figure1: Comparison of optimal network mean square error without chip thickness 
 



 
 
 
 
 
 
 

Figure 2: Scattering of predicted results without chip thickness 
 

 
 



 
Figure 3: Comparison of optimal network mean square error with chip thickness 

 

 
 
 
 
 

Figure 4: Scattering of predicted results with chip thickness 
 

 


