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Loading is one of the vital issues in flexible manufacturing system (FMS) production planning which deals with 
assignment of the necessary operations and tools among various machines in an optimal manner. Such a 
problem is combinatorial in nature and found to be NP-complete. In this paper, an attempt has been made to 
address such problems using mutation in particle swarm optimization (PSO) to avoid premature convergence 
with the objective of minimization of system unbalance. Promising results have been obtained when the solution 
is compared with existing techniques for ten standard problems available in literature representing three 
different FMS scenarios. 
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1. Introduction 
Today’s dynamic production environment is characterized by a large volume of uncertainty such as rapid market 
changes, increased product variety, competitive prices and short product life cycles. Therefore, it is of prime 
importance to introduce flexible manufacturing systems (FMSs) so that these uncertainties can be handled in an 
effective manner. FMS is characterized as an integrated, computer-controlled complex arrangement of 
automated material handling devices and computer numerically controlled (CNC) machine tools that can 
simultaneously process medium-sized volumes of a variety of part types (Stecke, 1983). The highly integrated 
FMS offers the opportunity to combine the efficiency of transfer line and the flexibility of a job shop to best suit 
the batch production of mid volume and mid variety of products. However, flexibility has a cost, and the capital 
investment sustained by firms to acquire such systems is generally very high. Therefore, particular attention 
must be paid to proper planning of FMS during its development phase in order to evaluate the performance of 
the system and justify the investment incurred. Prior to production, careful operational planning is essential to 
establish how well the system interacts with the operations over time. Hence, successful operation of FMS 
requires more intense planning as compared to any conventional production system. The decisions related to 
FMS operations can be broadly divided into pre-release and post-release decisions. Pre-release decisions include 
the FMS operational planning problem that deals with the pre-arrangement of jobs and tools before the 
processing begins whereas post-release decisions deal with the scheduling problems. Pre-release decisions viz., 
machine grouping, part type selection, production ratio determination, resource allocation and loading problems 
must be solved while setting up of a FMS. Amongst pre-release decisions, machine loading is considered as one 
of the most vital production planning problem because performance of FMS largely depends on it. Loading 
problem, in particular, deals with allocation of jobs to various machines under technological constraints with the 
objective of meeting certain performance measures. Therefore, the problem is combinatorial in nature and 
happens to be NP-hard. Formulations of loading problems in FMS and solution techniques have drawn the 
attention of researchers for quite some time. FMS planning problem formulated as non-linear 0-1 mixed-integer 
programming (MIP) (Stecke, 1983) and subsequently a branch-and-bound algorithm was developed (Berrada 
and Stecke, 1986). Although analytical and mathematical programming-based methods are robust in 
applications yet they tend to become impractical when problem size increases. This motivated the researchers to 
develop fast and effective heuristics for solving loading problems in large-sized FMSs. One of the important 
heuristics uses the concept of essentiality ratio for maximization of throughput and minimization of system 
unbalance simultaneously (Mukhopadhyay et al., 1992). Later on, heuristics have been developed using fixed 
pre-determined job ordering rules as input while solving loading problems (Tiwari et al., (1997). However, it 
has been established that shortest processing time (SPT) rule works well in comparison to other rules viz., 
longest processing time (LPT), first-in-first out (FIFO), and last-in-first-out (LIFO) (Moreno and Ding, 1993). 
Then, multi-stage programming approach has been incorporated while developing heuristics for minimizing 
system unbalance (Nagarjuna et. al., 2006). The major limitation of heuristics lies in the fact that their inability 
to estimate the results in a new or completely changed environment as they are generally rule-based and mostly 
rely on empirical data. Therefore, numerous researchers have used meta-heuristic approaches for solving the 
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machine loading problem. Genetic algorithm (GA) based approaches for loading problem is found to ensure 
optimal solution with less computational effort (Tiwari et. al., 2007). Many researchers (Kumar and Shanker, 
2000 and Swarnkar and Tiwari, 2004) have addressed machine-loading problem having the bi-criterion 
objectives of minimizing system unbalance and maximizing the throughput using a hybrid algorithm based on 
tabu search (TS) and simulated annealing (SA). The main advantage of this approach is that a short-term 
memory provided by the tabu list can be used to avoid revisiting the solution while preserving the stochastic 
nature of the SA method.  
   Numerous methods based on mathematical, heuristics, and meta-heuristics have been suggested by the 
researchers in the pursuit of obtaining quality solutions to loading problems and reduce computational burden. 
But these approaches hardly capable of producing optimal/near optimal solutions or requires excessive 
computational efforts to arrive at quality solutions. In order to alleviate these difficulties, an attempt has been 
made in this paper to propose an algorithm based on particle swarm optimization (PSO) to solve the machine 
loading problem of a random FMS with the objective of minimization of system unbalance while satisfying the 
constraints related to available machining time and tool slots. However, PSO has inherent drawback of trapping 
at local optimum due to appreciable reduction in velocity values as iteration proceeds and hence reduce solution 
variety. This drawback has been addressed effectively by incorporating mutation, a commonly used operator in 
genetic algorithm, to improve the solution quality.  
   The remainder of this paper is organized as follows. Section 2 formally defines the problem studied in this 
paper along with the objectives and assumptions made to solve the problem. The proposed algorithm based on 
PSO is presented in section 3. In section 4, results of benchmark problems from open literature are compared 
with proposed method to illustrate its advantage over other methods. Finally, conclusions drawn from this study 
are summarized and direction for future research is outlined in section 5. 

 
2. Problem Description 

The loading problem in manufacturing deals with selecting a subset of jobs from a set of all the jobs to be 
manufactured and assigning their operations to the relevant machines in a given planning horizon with the 
technological constraints in order to meet certain performance measures such as minimization of system 
unbalance  and maximization of throughput. System unbalance can be defined as the sum of unutilized or 
overutilized times on all the machines available in the system whereas throughput refers to the summation of the 
batch size of the jobs that are to be produced during a panning horizon. Minimization of system unbalance is 
equivalent to maximization of machine utilization. The processing time and tool slots required for each 
operation of the job and its batch size are known before hand. There are two types of operations; essential and 
optional associated with the part types. Essential operations can be carried out on a particular machine using a 
certain number of tool slots while the optional operation can be performed on a number of machines with same 
or different processing time and tool slots. The FMS under consideration derives its flexibility in selection of 
machine for optional operation of the job. Generally, the complexity of these problems depends on whether the 
FMS is of a dedicated type or a random type. A dedicated FMS is designed to produce a rather small family of 
similar parts with a known and limited variety of processing requirements while in a random-type system a large 
family of parts having a wide range of characteristics with random elements is produced and the product mix is 
not completely defined at the time of installing the system. This paper addresses the loading problem in a 
random FMS. The proposed approach has been tested on problems pertaining to three sizes of FMSs (the details 
are given in Table 1). The details of data related to problem 1 of FMS type 1 (jobs, batch size, unit processing 
time, machine options, number of tool slots etc.) having four machines are given in Table 2. 

 
Table 1 Details of different FMS scenarios 

FMS type Number 
of 

machines 

Available time on each machines Number of tool slots 
on each machines 

FMS 1 4 480 min, 480 min, 480 min, 480 min 5, 5, 5, 5 
FMS 2 5 960 min, 960 min,960 min, 960 min,960 min 10, 12, 10, 12, 10 
FMS 3 6 960 min, 960 min,960 min, 960 min,960 min, 960min 14, 14, 14, 14, 14,16 

 
In order to minimize the complexities in analyzing the problem for a practical FMS, the mathematical model 

is based on the following assumptions: 
• Initially, all the jobs and machines are simultaneously available. 
• Processing time required to complete an entire job order is known a priori. 

Job undertaken for processing is to be completed for all its operation before considering a new job. 
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Table 2 Detail description of jobs of problem number 1 (FMS 1) 
Job 

Number 
Batch size Operation 

number 
Machine 
number 

Unit 
processing 
time(min) 

Tool slots 
needed 

Total 
processing 

time 
1 4 16 1 160 1 10 
2 4,2,3 7,7,7 1,1,1 70 
1 12,3 25 1 325 
2 2,1 17 1 221 

2 13 

3 1 24 1 312 
1 4,1 26,26 2,2 364 3 14 
2 3 11 3 154 
1 3 24 1 168 4 7 
2 4 19 1 133 
1 1,4 25 1 255 
2 4 25 1 255 

5 9 

3 2 22 1 198 
6 8 1 3 20 1 160 

1 2,3 22,22 2,2 198 7 9 
2 2 25 1 225 

• This is called non-splitting of the job. 
• Operation of a job once started on a machine is continued until it is completed. 
• Transportation time required to move a job between machines is negligible. 
• Sharing and duplication of tool slots is not allowed. 

   Different researchers have calculated system unbalance in different ways. Some researchers such as solved the 
machine loading problem by considering overloading of the machines (Mukhopadhyay et al. 1992, Nagarjuna et 
al., 2006 and Tiwari et. al., 2007) while others have not permitted overloading (Shanker et al., 1989).  In order 
to examine the efficiency of the proposed algorithm, the problem described above is formulated in this paper by 
considering two cases. In first case, an optimal solution is obtained without permitting overloading on machines 
whereas overloading on machines is permitted in the second case. Mathematical formulation of the problem for 
both the cases are described in the followings.  
 
2.1 Mathematical formulation 
2.1.1. Notations 
In order to formulate machine loading problem of FMS, the following notations are introduced: 

j: job index , j = 1,2………J 
m: machine index, m = 1,2,……..M 
Sm: tool slot capacity of machine m 
o: number of operations for job j, o = 1,2……..Oj 
Bj :Batch size of job j 
Tm : Length of scheduling period for mth machine 
Pjom : Processing time of operation o of job j on machine m 
Sjom: Number of tool slots required for processing operation o of job i on 
machine m 
B(j,o): Set of machines on which operation o of job j can be performed 
SU: System Unbalance 
TH: Throughput 

⎩
⎨
⎧

=
otherwise,0

selectedisjjobif,1
X j

 

⎩
⎨
⎧

=
otherwise,0

mmachineonassignedisjjobofooperationif,1
X jom

 

Case1: Overloading not permitted 
Objective of the FMS loading problem is to minimize total system unbalance and is represented by Eq. (1) 
Subjected to the following constraints:  
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The constraint, Eq. (2), ensures that overloading of machines is not permitted. Eq. (3) is to ensure the jobs will 
be loaded only when there is availability of tool slots on each machine. Eq. (4) ensures that a particular 
operation of a job is done only on one machine and Eq. (5) ensures that the job cannot be split. 
Case2: Overloading permitted 
Objective of the FMS loading problem is to minimize the absolute value of total system unbalance and is 
represented in Eq. (6). 

                  Minimize    .....(6)........................................
M

1m

J

1j

Oj

1o
X  jomp jomBjTm∑

=
∑
=

∑
=

−  

Subjected to following constraints: 
 

.....(7).............................................M1,2.......m
M

1m
mTXjompjom

J

1 j

Oj

1o
Bj

M

1m
=∑

=
≤∑

=
∑
=

∑
=

 
 
 
 

)........(8...................................M1,2.......mSmX jom
J

1j

O j

1o
Sjom =≤∑

=
∑
=

 
 
 
 

( )
O j......1,2.......o

......(9)........................................................J1,2.......j1
oj,BG

X joG

=

=≤∑
∈ 

 
 

10).........(...............................................J1,2.......jOjXj

Oj

1o

M

1m
Xjom ==∑

=
∑
=

 
 
 

The constraint, Eq. (7), ensures that overloading of machines is permitted. Eq. (8) is to ensure the jobs will be 
loaded only when there is availability of tool slots on each machine. Eq. (9) ensures that a particular operation of 
a job is done only on one machine and Eq. (10) ensures that the job cannot be split. 
 

3. Proposed Methodology  
3.1. Particle Swarm Optimization 
Particle Swarm Optimization (PSO) algorithm, originally introduced by Kennedy and Eberhart in 1995, is a 
population-based evolutionary computation technique. It is motivated by the behavior of organisms such as bird 
flocking and fish schooling. In PSO, each member is called particle, and each particle moves around in the 
multidimensional search space with a velocity which is constantly updated by the particle’s own experience and 
the experience of the particle’s neighbors or the experience of the whole swarm. The members of the entire 
population are maintained throughout the search procedure so that information is socially shared among 
individuals to direct the search towards the best position in the search space. Two variants of the PSO algorithm 
have been developed, namely PSO with a local neighborhood, and PSO with a global neighborhood. According 
to the global neighborhood, each particle moves towards its best previous position and towards the best particle 
in the whole swarm, called the gbest model in the literature. On the other hand, based on the local variant so 
called the pbest model, each particle moves towards its best previous position and towards the best particle in its 
restricted neighborhood. Generally, PSO is characterized as a simple heuristic of well balanced mechanism with  
flexibility to enhance and adapt to both global and local exploration abilities. Compared with GA, PSO has 
some attractive characteristics. It has memory that enables to retain knowledge of good solutions by all particles 
whereas previous knowledge of the problem is destroyed once the population changes in GAs. Due to the simple 
concept and easy implementation, PSO has gained much attention and been successfully applied to a wide 
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 range of applications such as system identification, neural network training, mass-spring system, task 
assignment, supplier selection and ordering problem, power and voltage control etc. (Yoshida, 2000).  

The mathematic description of PSO is presented in the followings. Suppose i denotes a particle and the dimension 
of the searching space is n. The position of the ith particle at iteration t in n dimensional space is represented as Xi

t 

= (xi1
t,xi2

t, ………xin
t). The pbest of the ith particle at iteration t in n dimensional space is represented as Pi

t = 
(pi1

t,pi2
t,…..pin

t). The index of gbest i.e the best pbest among all the particles is represented by the symbol G = 
(g1

t,g2
t,…..gn

t). The velocity for the ith particle at iteration t in n dimensional space is represented as Vi
t = (vi1

t + 
vi2

t +…… vin
t). PSO is initialized with a population of random solutions of the objective function. After finding 

the personal best and global best values, velocities and positions of each particle are updated using Eq. 11 and 
12 respectively. 
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where v
ij

t
 represents velocity of particle i at iteration t with respect to jth dimension (j =1,2,……n). p

ij

t
 represents 

the position value of the ith personal best with respect to the jth dimension. xij
t is the position value of the ith 

particle with respect to jth dimension. c1 and c2 are positive acceleration parameters, called cognitive and social 
parameter, respectively and r1 and r2 are uniform random numbers between (0,1). 
w is known as inertia weight which is updated as: 

wt = wt-1 ×  α   ………………………………………………………….(13) 
where α is a decrement factor. The parameter ‘w’ controls the impact of the previous velocities on the current 
velocity. Termination criterion might be a maximum number of iteration or maximum CPU time to terminate 
the search. 
3.1.1 Solution Representation 
One of the most important issue when designing the PSO algorithm lies on its solution representation. In order 
to construct a direct relationship between the problem domain and the PSO particles for the FMS loading 
problem, we present n number of dimensions for n number of jobs. In other words, each dimension represents a 
typical job. In addition, the particle Xi

t= (xi1
t,xi2

t, ………xin
t) corresponds to the continuous position values for n 

number of jobs in the loading problem. The particle itself does not present a permutation. Instead, we use the 
Smallest Position Value (SPV) rule to determine the sequence implied by the position values xij

t of particle Xi
t. 

Table 3 illustrates the solution representation of particle Xi
t for the FMS loading problem together with its 

corresponding velocity and sequence. According to the SPV rule, the smallest position value is xi1
t = 0.11, so the 

dimension j=1 is assigned to the first job xi1
t =4 in the sequence; the second smallest position value is xi2

t = 0.57, 
so the dimension j=2 is assigned to be the second job xi2

t = 6 in the sequence, and so on. In other words, 
dimensions are sorted according to the SPV rule, i.e., according to the position values xij

t to construct the initial 
sequence. 

Table 3 Solution Representation of Particle Xi
t in PSO 

Dimension,j 1 2 3 4 5 6 7 
xt

i 1.67 2.82 1.23 0.11 3.47 0.57 0.98 
vt

ij 2.98 -0.87 1.51 -3.54 0.45 2.32 -1.50 
Job sequence 4 6 7 3 1 2 5 

3.1.2 Lack of Diversity and Mutation Operator 
Particle swarm optimization schemes described above typically converge relatively rapidly in the first part of the 
search and then slow down or stop. This behavior has been attributed to the loss of diversity in the population 
and a number of researchers have suggested methods to overcome this drawback with varying degrees of 
success (Riget, 2002). Looking at the positions of the particles when the swarm had stagnated, it was clear that 
the points were very tightly clustered and the velocities were almost zero. The points were often not that far 
from the global optimum but the updating equations, due to the almost zero velocity, were unable to generate 
new solutions which might lead the swarm out of this state. This behavior can also lead to the whole swarm 
being trapped in a local optimum from which it becomes impossible to escape.  

As mutation is capable of introducing diversity in the search procedure, two types mutation have attracted the 
researchers - mutation of global best and mutation based on sharing information from neighbors. Because the 
global best individual attracts all members of the swarm, it is possible to lead the swarm away from a current 
location by mutating a single individual if the mutated individual becomes the new global best. This mechanism 
potentially provides a means both escaping local optima and speeding up the search. Looking at the individual 
components of solution vectors corresponding to the global best function values revealed that it was often only a 
few components which had not converged to their global optimum values. This suggested the possibility of 
mutating a single component only of a solution vector. The latter approach introduces diversity by mutating few 
individuals in the swarm.  

In this work, a mutation operator is introduced which mutates a position vectors of few particles selected 
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randomly. The mutation operation is not executed in every iteration. A function, randi (0, MAXT), is used to 
return an integer greater than or equal to 0 and less than MAXT. In each iteration, if the elapsed time with no 
further progress is greater than this random value, mutation operation is executed. Two reasons may account for 
this strategy: 1) if there is no premature convergence happening, the execution of PSO will not be affected. 2) 
the algorithm will not increase computational overhead much. The mutation operator swaps between two 
positions of a particle randomly. Then, permutations are generated for new positions. PSO algorithm with 
mutation operation is as follows: 

// t: time //  
// P: populations //  

// DELTA: the elapsed time of no further progress // 
// MAXT: maximum time of no further progress // 
t=0 
initialize P(t) 
evaluate P(t) 
while (not-termination-condition) do 
t=t+1 
update swarm according to formulae (11) and (12) 
if (DELTA > randi (0, MAXT) 
do mutation 
end if 
evaluate the swarm 
End 

3.1.3 Proposed Algorithm 
  Step 1. Input total number of available machines, jobs, batch size, tool slots on each machine operations of all 

the job (both essential and optional), and processing time of every operation of each job. 
Step 2. Initialize the parameters such as population size, maximum iteration, decrement factor, inertia weight, 
social and cognitive parameters. Generate initial population randomly. Construct the initial position values of 
the particle uniformly: xij

t = xmin + (xmax – xmin)×U(0,1) where xmin=0.0,xmax=4.0 and U(0,1) is a uniform random 
number between 0 and 1. Generate initial velocities of the particle vij

t = vmin + (vmax – vmin)×U(0,1) where vmin=-
4.0,vmax=4.0 and U(0,1) is a uniform random number between 0 and 1. 
Step 3. Get the initial sequence by using SPV rule. Then select the first job from that sequence and do the 
following: 

a) First load the essential operation on the machine if and only if available machining time is greater than 
the time required by the essential operation otherwise reject the job. 

b) Similarly load the optional operation if and only if available machining time and tool slot is greater than 
the time and tool slot required by the optional operation on the basis of machine having maximum 
available time otherwise reject the job 

Step 4. Evaluate each particles fitness (System unbalance) by using equation (1) for case 1 and (6) for case 2 
while satisfying their respective constraints.  
Step 5. Find out the personal best (pbest) and global best (gbest)  
Step 6. If no progress in pbest value is observed for an elapsed period of DELTA, carry out mutation of a 
particle using the mutation strategy as outlined in Section 4.2 provided DELTA is greater than a random number 
between zero and maximum time of no progress (MAXT) 
Step 7. Update velocity, position and inertia weight by using equation (11), (12) and (13). 
Step 8. Compute particles fitness similar to step 3 and find new pbest and gbest. 
Step 9.Terminate if maximum number of iterations is reached and store the gbest value. Otherwise, go to Step 2. 

 
4. Results and discussion 

In real-life situations, industrial application of the model will invariably face a large number of variables and 
constraint. The swarm optimization based approach is proposed for taking decisions in such scenarios. The 
proposed PSO algorithm for the FMS loading problem is coded in Visual C++ and implemented in a Pentium IV 
PC. The performance of the PSO algorithms is evaluated by using ten benchmark problems available in open 
literature representing three different FMS scenarios. For solving the problems, parameters are set as population 
size = 25, w=0.85, α=0.9 and c1=c2=2 after a thorough examination of the results. Since different methods have 
been used by researchers for calculation of system unbalance, the machine loading problem of FMS has been 
solved in this paper by considering two cases to examine the robustness of the PSO algorithm. Computational 
results for case I and case II are summarized in 4 respectively using standard PSO. The results obtained by using 
PSO are summarized in Table 4. It may be noted that that both system unbalance and throughput can be 
improved if overloading of machines are permitted. However, economic justification of overloading must be 
looked into before permitting overloading.   
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Table 4 Summery of results obtained from PSO algorithm (adopted from Tiwari et. al., 2007) 
Case I Case II Problem 

Number 
Number of 
part types SU TH SU TH 

1 7 414 22 52 47 
2 6 219 52 9 64 
3 6 778 46 778 46 
4 8 590 137 530 137 
5 6 892 96 108 120 
6 5 844 86 0 125 
7 10 213 107 20 122 
8 12 150 159 5 148 
9 8 569 128 569 128 

10 14 171 112 5 130 
   One of the drawbacks of PSO is its premature convergence. In order to eliminate this and to improve solution 
quality, mutation operator is adopted from genetic algorithm. The results of proposed MPSO (PSO with 
mutation) are compared with four standard sequencing rules such as LPT, SPT, LIFO and FIFO in Table 5. The 
results indicate that MPSO improves the solution quality and outperforms other techniques available in literature 
in most of the instances. N 

RECTETable 5 Comparison of results obtained using PSO based approach with other methods 
Problem 
Number 

 

SPT 
(SU, TH) 

LPT 
(SU, TH) 

 LIFO 
 (SU, TH) 

FIFO 
(SU, TH) 

Tiwari et. al 
(2007) (SU, TH) 

MPSO Approach 
without overloading 

(SU, TH) 

MPSO 
Approach with 

overloading 
(SU, TH) 

1 288, 48 133, 29 158, 43 13, 44 63, 48 414,22 52, 47 

2 1004, 47 187, 53 479, 62 496, 50 276, 61 219,52 9, 64 
3 819, 51 778, 46 819, 51 1099, 43 819, 51 778,46 778, 46 
4 1490, 107 836, 128 1490, 107 836, 128 536, 137 566,137 482, 137 
5 168, 120 696, 96 1268, 110 168, 120 168, 120 892,96 108, 120 

6 1540, 73 236, 97 236, 97 356, 107 356, 107 844,86 0, 125 
7 776, 115 38, 118 836, 108 11, 117 20, 122 206,117 10, 127 
8 960, 114 88, 148 238, 145 348, 153 9, 167 136,155 0, 173 

9 1504, 113 619, 128 1049, 123 619, 128 619, 128 569,128 569, 128 
10 782, 124 236, 104 246, 120 20, 112 0, 146 171,112 0, 128 

   An important parameter in PSO is population size. To study the effect of population size on solution quality, it 
is increased from 10 to 100 at the increment of 10 for test problems keeping all other parameters constant. 
Figure 1 shows the effect of population on system unbalance for Problem No. 1. From this figure, it can be 
observed that as the population size increases system unbalance decreases to certain extent and further increase 
of population has no effect on solution quality. This may be attributed to the fact that diversity in solution space 
increases as the population size increases but large increase in population size causes a random or worst point of 
search and increases the possibility of trapping at local optimum. However, the population size must be 
maintained at least two times of the number of jobs in order to obtain improved solution. 
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5. Conclusions 
This paper presents an efficient and reliable evolutionary based approach to solve the FMS loading problem. 
The proposed approach utilizes the global and local exploration capabilities of PSO to search for the optimal 
solution by considering availability of tool slots and machining time constraints into account. The key advantage 
of PSO is its computational efficiency and less parameter is required to be adjusted in order to get the optimum 
result compared to related techniques. Extensive computational experiments have been conducted on different 
benchmark problems to show the effectiveness of the proposed approach. A comparative study has been carried 
out for same set of problems with similar objective functions and constraints and the computational experience 
manifests that proposed meta-heuristic approach based on PSO outperforms the existing methodologies as far as 
solution quality is concerned with reasonable computational efforts. Although the objective of this study is to 
minimize system unbalance, the proposed meta-heuristic based on PSO not only minimizes system unbalance 
but also simultaneously increases the throughput for most of the instances. To avoid premature convergence, 
PSO algorithm is modified in this paper with the introduction of mutation operation. The performance of this 
algorithm is compared other related techniques. The result obtained by PSOM is promising and encouraging. It 
is evident from this study that overloading of machines is a viable proposition for minimizing the system 
unbalance but it involves cost. Therefore, a trade off between balancing of loads on machines and cost incurred 
must be made. In future, the study can be extended to solve loading problem by considering more realistic 
variables and constraints such as availability of pallets, jigs, fixtures, AGVs etc in addition to tool slots and 
machining time. 
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